JPH023536B2 - - Google Patents

Info

Publication number
JPH023536B2
JPH023536B2 JP58188404A JP18840483A JPH023536B2 JP H023536 B2 JPH023536 B2 JP H023536B2 JP 58188404 A JP58188404 A JP 58188404A JP 18840483 A JP18840483 A JP 18840483A JP H023536 B2 JPH023536 B2 JP H023536B2
Authority
JP
Japan
Prior art keywords
cell
molecular beam
heater
reflector
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188404A
Other languages
Japanese (ja)
Other versions
JPS6080217A (en
Inventor
Yasuhiro Suzuki
Seigo Tarucha
Keiji Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18840483A priority Critical patent/JPS6080217A/en
Publication of JPS6080217A publication Critical patent/JPS6080217A/en
Publication of JPH023536B2 publication Critical patent/JPH023536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明はAs2、Sb2、P2などの分子線を効率よ
く発生させる分子線発生装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molecular beam generator that efficiently generates molecular beams of As 2 , Sb 2 , P 2 and the like.

〔発明の背景〕[Background of the invention]

従来の分子線エピタキシ装置において、例えば
Asの分子線を発生させるためのセルは、第1図
に示すようにセル1の外周に沿つてヒータ線2を
巻きその外側にリフレクタ3を設け、セル1の内
部の金属ひ素を加熱しAs4発生させていた。しか
しAs4分子線で形成した成長膜とAs2分子線で形
成した成長膜とを較べると、As2分子線で形成し
た成長膜の方がGaAs膜中に形成される深いレベ
ル不純物濃度が小さく良質の膜が得られ、また
As2分子線を用いた方が低いAs圧で膜を成長させ
ることが可能であり、ひ素の消費を抑えることに
より分子線エピタキシ装置のひ素汚染を改善し、
成長結晶の生産性を向上させることが可能である
ことから、最近はAs2を発生する分子線発生装置
が使用されている。従来のAs2分子線発生装置は
第2図に示すように、内側下部に原料を保持する
セル4の外側下方に加熱用ヒータ5を巻き外側上
方にはクラツカ部分ヒータ6を巻いて、これらヒ
ータ5,6の外側をリフレクタ7および8でそれ
ぞれ蔽つている。セル4の内部上方にはクラツカ
板9を設け、該クラツカ板9と下部の原料保持部
4′との間には熱遮蔽板10を設けてセル4内の
上部と下部との温度差を確保している。セル4の
下部内側に保持した金属ひ素を4セル外側下方の
加熱ヒータ5の熱放射によつて約300℃に加熱し
As4分子線を発生させる。セル4の上部にあるク
ラツカ板9はクラツカ部分ヒータ6の熱放射によ
つてセル4の下部よりも高温に加熱する。このよ
うな状態でセル4の下部から発生したAs4分子線
は高温のクラツカ板9に衝突してAs4→2As2の熱
分解を生じ、As2分子線が得られる。しかし上記
の分子線発生装置では、As4→2As2の反応が、高
効率におこる温度までクラツカ板9の温度を上昇
させるにはクラツカ部分ヒータ6の温度をかなり
上昇させなければならないが、この場合熱遮蔽板
10でセル上部とセル下部の温度差を確保するこ
とが難しくなり、セル下部の温度の制御性が悪く
なる。そのためクラツカ部分ヒータ6の温度が比
較的低く抑制されることになり、高効率のAs4
2As2反応を得ることが難しい。
In conventional molecular beam epitaxy equipment, e.g.
As shown in Fig. 1, a cell for generating a molecular beam of As is constructed by wrapping a heater wire 2 around the outer periphery of the cell 1 and installing a reflector 3 on the outside thereof to heat the metallic arsenic inside the cell 1. 4 was occurring. However, when comparing a film grown with As 4- molecular beams and a film grown with As 2- molecular beams, the deep-level impurity concentration formed in the GaAs film is lower in the grown film with As 2- molecular beams. A good quality film can be obtained, and
It is possible to grow a film at a lower As pressure using an As bimolecular beam, and by suppressing arsenic consumption, it improves arsenic contamination in molecular beam epitaxy equipment.
Molecular beam generators that generate As 2 have recently been used because they can improve the productivity of grown crystals. As shown in Fig. 2, the conventional As 2 molecular beam generator has a cell 4 that holds the raw material at the lower inner side, a heating heater 5 on the outer lower side, and a Kratzka partial heater 6 on the outer upper side. 5 and 6 are covered by reflectors 7 and 8, respectively. A cracker plate 9 is provided above the interior of the cell 4, and a heat shield plate 10 is provided between the cracker plate 9 and the lower raw material holding section 4' to ensure a temperature difference between the upper and lower parts of the cell 4. are doing. Metal arsenic held inside the lower part of cell 4 is heated to about 300°C by heat radiation from heater 5 located below the outside of cell 4.
Generates As 4 molecular beam. The cracker plate 9 in the upper part of the cell 4 is heated to a higher temperature than the lower part of the cell 4 by the heat radiation of the cracker partial heater 6. In this state, the As 4 molecular beam generated from the lower part of the cell 4 collides with the high-temperature Kratzka plate 9, causing thermal decomposition of As 4 →2As 2 to obtain an As 2 molecular beam. However, in the above molecular beam generator, in order to raise the temperature of the Kratzka plate 9 to a temperature at which the As 4 →2As 2 reaction occurs with high efficiency, the temperature of the Kratzker partial heater 6 must be raised considerably. In this case, it becomes difficult to ensure a temperature difference between the upper part of the cell and the lower part of the cell with the heat shield plate 10, and the controllability of the temperature in the lower part of the cell deteriorates. Therefore, the temperature of the Kratzka partial heater 6 is suppressed to a relatively low temperature, resulting in high efficiency As 4
2As2 reaction is difficult to obtain.

〔発明の目的〕[Purpose of the invention]

本発明は効率よく2原子分子の分子線ビームを
発生することができる分子線発生装置を得ること
を目的とする。
An object of the present invention is to obtain a molecular beam generator capable of efficiently generating a molecular beam of diatomic molecules.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明による2原
子分子の分子線を発生させる分子線エピタキシ用
の分子線発生装置は、内側下部に原料を保持し外
側に断熱用のリフレクタを有するセルと、該セル
の下部外周に沿つてリフレクタとの間に巻いたヒ
ータと、上記セル内の原料保持部の上部に設けた
熱遮蔽板とを備え、リフレクタで蔽われた該熱遮
蔽板の上方の上記リフレクタで蔽われたセル内に
クラツカ用ヒータを設けたことにより、セル内下
方で発生した4原子分子の分子線を上記クラツカ
用ヒータに直線入射させて2原子分子の分子線を
得るようにしたものである。
In order to achieve the above object, a molecular beam generator for molecular beam epitaxy that generates a molecular beam of diatomic molecules according to the present invention includes a cell that holds a raw material in the lower part of the inside and has a reflector for heat insulation on the outside; A heater is wound along the lower outer periphery of the cell between the reflector and a heat shielding plate provided above the raw material holding part in the cell, and the reflector is above the heat shielding plate covered with the reflector. By installing a Kratzka heater in the cell covered by the cell, a molecular beam of 4-atom molecules generated in the lower part of the cell is made to enter the Kratzka heater in a straight line to obtain a molecular beam of diatomic molecules. It is.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明す
る。第3図は本発明による2原子分子の分子線を
発生させる分子線発生装置の一実施例を示す構成
図である。第3図において本分子線発生装置は、
内側下部に原料を保持し外側に断熱用のリフレク
タ78を有するセル4と、該セル4の下部外周に
沿つてリフレクタ7との間に巻いたヒータ5と、
上記セル4内の原料保持部4′の上部に設けた熱
遮蔽板10とを備え、リフレクタ8で蔽われた上
記セル4内の熱遮蔽板10の上方にクラツカ用ヒ
ータ11を設けている。上記装置におけるセル4
内の下部に原料である金属ひ素を保持しヒータ5
を加熱して、金属ひ素からAs4分子線ビームが発
生する300℃程度にセル4の内側下部の温度を上
昇させる。セル4上部のクラツカ用ヒータ11を
900℃程度に加熱すると、セル4の下部で発生し
たAs4ビームはセル4上部のクラツカ用ヒータ1
1に直接入射し、該クラツカ用ヒータ11の熱を
うけて熱分解しAs2分子線ビームを発生する。本
実施例は上記のようにAs4分子線をクラツカ用ビ
ーム11に直接入射させてAs4→2As2の反応をお
こさせるため、クラツカ用ヒータ11の温度は第
2図に示した従来装置のクラツカ部分ヒータ6の
温度に較べて低くてもよく、入力パワーが少くて
すむ。また従来はセル4内の原料保持部4′に対
するクラツカ部分ヒータ6の温度の影響が大きか
つたため本実施例ではセル4内における上部から
下部への熱放射が小さくなり、かつ熱遮蔽板10
の介在によつてセル4内に上部を従来よりも高温
にすることが可能であるから効率よくAs2分子線
ビームを発生することができる。上記クラツカ用
ヒータ11の形状は単コイル状のほか、2重コイ
ル状、すり鉢状あるいは石英管に巻付けるなど
種々のものが考えられるが、これらの形状にこだ
わらない。前記第2図に示したクラツカ板9をク
ラツカ部分ヒータ6で加熱する間接加熱形の従来
の分子線発生装置では、As圧を良質な膜形成に
最適である1×10-6ton程度に制御しようとする
場合にクラツカ部分ヒータ6に流せる電流は3A
程度にまでであるが、上記クラツカ部分ヒータ6
に3A以上の電流を流した場合でもクラツカ板9
の温度を900℃程度に上げることは難しく、その
ためにAs4→2As2の反応がおこりにくい。さらに
クラツカ部分ヒータ6の入力パワーを上げると熱
放射によつてセル4内下部の金属ひ素を加熱する
ためAs4分子線が多く発生してしまい、高効率に
As2分子線を得ることが難しくなる。これに対し
本発明による分子線発生装置は、クラツカ用ヒー
タ11に2.5A程度の電流を流すことによつて、
クラツカ用ヒータ11の温度をAs4→2As2の反応
が効率よく行われる約900℃の温度に十分到達さ
せることができ、上記クラツカ用ヒータ11から
セル4の下部への熱放射は従来装置に較べて少
く、As圧は1×10-6ton程度に十分制御すること
ができる。上記実施例はセル4内でAs4を加熱分
解してAs2分子線を発生させる場合について記し
たが、本発明の分子線発生装置を用いてSb4、P4
などの他の4原子分子を加熱分解してSb2、P2
どの2原子分子の分子線を上記同様に発生させる
ことができる。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing an embodiment of a molecular beam generating device for generating a molecular beam of diatomic molecules according to the present invention. In Figure 3, this molecular beam generator is
A cell 4 which holds a raw material at the inner lower part and has a heat insulating reflector 78 at the outer side, and a heater 5 wound between the reflector 7 along the outer periphery of the lower part of the cell 4,
A cracker heater 11 is provided above the heat shield plate 10 in the cell 4 covered by the reflector 8. Cell 4 in the above device
Heater 5 holds metal arsenic as a raw material in the lower part of the inner part.
is heated to raise the temperature of the inner lower part of the cell 4 to about 300°C, at which point a four-molecule beam of As is generated from metal arsenic. Heater 11 for cracker on top of cell 4
When heated to about 900°C, the As 4 beam generated at the bottom of cell 4 is transferred to cracker heater 1 at the top of cell 4.
1 and is thermally decomposed by the heat of the cracker heater 11 to generate an As 2 molecular beam. In this embodiment, as mentioned above, the As 4 molecular beam is directly incident on the cracker beam 11 to cause the As 4 →2As 2 reaction, so the temperature of the cracker heater 11 is the same as that of the conventional device shown in FIG. The temperature may be lower than that of the Kratzka partial heater 6, and less input power is required. Furthermore, in the past, the influence of the temperature of the Kratzka partial heater 6 on the raw material holding portion 4' in the cell 4 was large, so in this embodiment, the heat radiation from the upper part to the lower part in the cell 4 is reduced, and the heat shielding plate 10
As a result of this intervention, it is possible to make the upper part of the cell 4 higher in temperature than before, so that an As bimolecular beam can be generated efficiently. The shape of the cracker heater 11 may be a single coil, a double coil, a mortar shape, or wound around a quartz tube, but is not limited to these shapes. In the conventional indirect heating type molecular beam generator in which the Kratzka plate 9 shown in FIG. 2 is heated by the Kratzker partial heater 6, the As pressure is controlled to about 1×10 -6 ton, which is optimal for forming a high-quality film. The current that can be passed through the Kratzka partial heater 6 when attempting to do so is 3A.
Although to a certain extent, the above-mentioned Kratzka partial heater 6
Even if a current of 3A or more is applied to the
It is difficult to raise the temperature to around 900℃, which makes it difficult for the As 4 →2As 2 reaction to occur. Furthermore, when the input power of the Kratzka partial heater 6 is increased, the metal arsenic in the lower part of the cell 4 is heated by heat radiation, resulting in the generation of many As4 molecular beams, resulting in high efficiency.
It becomes difficult to obtain an As bimolecular beam. In contrast, the molecular beam generator according to the present invention generates a beam by passing a current of about 2.5A through the cracker heater 11.
The temperature of the Kratzka heater 11 can sufficiently reach the temperature of about 900°C at which the As 4 →2As 2 reaction takes place efficiently, and the heat radiation from the Kratzka heater 11 to the lower part of the cell 4 is different from that of the conventional device. The As pressure can be sufficiently controlled to about 1×10 −6 ton. In the above embodiment, As 4 is thermally decomposed in the cell 4 to generate an As 2 molecular beam, but the molecular beam generator of the present invention can be used to generate Sb 4 , P 4
Molecular beams of diatomic molecules such as Sb 2 and P 2 can be generated in the same manner as described above by thermally decomposing other tetraatomic molecules such as Sb 2 and P 2 .

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による2原子分子の分子線
を発生させる分子線エピタキシ用の分子線発生装
置は、内側下部に原料を保持し外側に断熱用のリ
フレクタを有するセルと、該セルの下部外周に沿
つてリフレクタとの間に巻いたヒータと、上記セ
ル内の原料保持部の上部に設けた熱遮蔽板とを備
え、リフレクタで蔽われた上記セル内の熱遮蔽板
の上方にクラツカ用ヒータを設けたことにより、
セル内下方で発生した4原子分子の分子線を上記
クラツカ用ヒータに直接入射させて加熱分解し2
原子分子の分子線を発生させるようにしたから、
セル内上部の高温部と下部の低温部との間の熱遮
蔽が容易になり上部のクラツカ用ヒータの温度を
十分高めることができ、効率よく2原子分子の分
子線ビームを発生することができる。また高効率
な2原子分子の分子線発生により原料の消費量が
減少し、良質な膜を形成することが可能である。
As described above, the molecular beam generator for molecular beam epitaxy that generates a molecular beam of diatomic molecules according to the present invention comprises a cell that holds a raw material at the inner lower part and has a heat insulating reflector on the outer side, and a lower outer periphery of the cell. and a heat shield plate provided above the raw material holding part in the cell, and a heater for crackers is provided above the heat shield plate in the cell covered by the reflector. By establishing
A molecular beam of four atoms generated in the lower part of the cell is directly incident on the cracker heater and thermally decomposed.
Because we made it possible to generate molecular beams of atoms and molecules,
Thermal shielding between the high-temperature part at the top and the low-temperature part at the bottom of the cell becomes easy, and the temperature of the cracker heater at the top can be raised sufficiently, making it possible to efficiently generate a molecular beam of diatomic molecules. . In addition, the consumption of raw materials is reduced due to highly efficient molecular beam generation of diatomic molecules, and it is possible to form a high-quality film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分子線発生装置の構成図、第2
図は従来の2原子分子の分子線を発生させる分子
線発生装置の構成図、第3図は本発明による2原
子分子の分子線を発生させる分子線発生装置の構
成図である。 4……セル、4′……原料保持部、5……ヒー
タ、7,8……リフレクタ、10……熱遮蔽板、
11……クラツカ用ヒータ。
Figure 1 is a configuration diagram of a conventional molecular beam generator, Figure 2
The figure is a block diagram of a conventional molecular beam generator that generates a molecular beam of diatomic molecules, and FIG. 3 is a block diagram of a molecular beam generator of the present invention that generates a molecular beam of diatomic molecules. 4... Cell, 4'... Raw material holding section, 5... Heater, 7, 8... Reflector, 10... Heat shielding plate,
11... Heater for Klatzka.

Claims (1)

【特許請求の範囲】[Claims] 1 原料であるAs4、Sb4、P4などの族元素の
原子分子を加熱分解し、As2、Sb2、P2などの2
原子分子の分子線を発生させる分子線エピタキシ
用の分子線発生装置において、内側下部に原料を
保持し外側に断熱用のリフレクタを有するセル
と、該セルの下部外周に沿つてリフレクタとの間
に巻いたヒータと、上記セル内の原料保持部の上
部に設けた熱遮蔽板とを備え、該熱遮蔽板の上方
の上記リフレクタで蔽われたセル内にクラツカ用
ヒータを設けたことを特徴とする分子線発生装
置。
1 The atomic molecules of group elements such as As 4 , Sb 4 , and P 4 as raw materials are thermally decomposed to produce 2 atoms such as As 2 , Sb 2 , and P 2 .
In a molecular beam generator for molecular beam epitaxy that generates molecular beams of atoms and molecules, there is a cell between a cell that holds a raw material at the bottom inside and a reflector for heat insulation outside, and a reflector along the outer periphery of the bottom of the cell. The invention is characterized by comprising a wound heater and a heat shielding plate provided above the raw material holding portion in the cell, and a cracker heater provided in the cell covered by the reflector above the heat shielding plate. Molecular beam generator.
JP18840483A 1983-10-11 1983-10-11 Molecular beam generating device Granted JPS6080217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18840483A JPS6080217A (en) 1983-10-11 1983-10-11 Molecular beam generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18840483A JPS6080217A (en) 1983-10-11 1983-10-11 Molecular beam generating device

Publications (2)

Publication Number Publication Date
JPS6080217A JPS6080217A (en) 1985-05-08
JPH023536B2 true JPH023536B2 (en) 1990-01-24

Family

ID=16223049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18840483A Granted JPS6080217A (en) 1983-10-11 1983-10-11 Molecular beam generating device

Country Status (1)

Country Link
JP (1) JPS6080217A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385038B1 (en) * 2020-03-16 2022-04-12 티오에스주식회사 Apparatus for growing single crystal metal-oxide epi wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694731A (en) * 1979-12-19 1981-07-31 Philips Nv Method of forming epitaxial layer and semiconductor device formed of semiconductor substrate for imparting same layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694731A (en) * 1979-12-19 1981-07-31 Philips Nv Method of forming epitaxial layer and semiconductor device formed of semiconductor substrate for imparting same layer

Also Published As

Publication number Publication date
JPS6080217A (en) 1985-05-08

Similar Documents

Publication Publication Date Title
US4023520A (en) Reaction container for deposition of elemental silicon
JPS5963732A (en) Thin film forming device
US4069120A (en) Photo-electrolytic production of hydrogen
JPH023536B2 (en)
JP2001278611A (en) Method of producing polycrystalline silicon and apparatus therefor
JP2510157B2 (en) Method for modifying semiconductor
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JPS61222911A (en) Synthesis of phosphorated compound
Parnis et al. Photochemistry of methylcopper hydride, CH3CuH: wavelength dependence of the product distribution
JPS634454B2 (en)
Kikoin et al. " Acceptor" and" donor" excitons bound to transition-metal impurities in ll-VI semiconductors
JP2502360Y2 (en) Metamorphic furnace in endothermic gas generator
Khirunenko et al. Radiation defect formation in Ge-doped silicon as a result of low-temperature irradiation
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS6326540B2 (en)
JP2951769B2 (en) Vapor phase growth equipment
JPS59202622A (en) Manufacture of single crystal thin film
JP2732741B2 (en) Manufacturing method of semiconductor diamond
JPS60113420A (en) Device for manufacturing semiconductor crystal
JPS631023A (en) Molecular beam source
JPS6153186A (en) Heater for resistance heating
JPH0365591A (en) Molecular beam generation apparatus
JPS63232315A (en) Vapor phase epitaxial growth method
US3310426A (en) Method and apparatus for producing semiconductor material
Fedorov et al. Interaction in the System Nb--Se