JP2951769B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JP2951769B2
JP2951769B2 JP3255599A JP25559991A JP2951769B2 JP 2951769 B2 JP2951769 B2 JP 2951769B2 JP 3255599 A JP3255599 A JP 3255599A JP 25559991 A JP25559991 A JP 25559991A JP 2951769 B2 JP2951769 B2 JP 2951769B2
Authority
JP
Japan
Prior art keywords
gas
heater
substrate
heat
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3255599A
Other languages
Japanese (ja)
Other versions
JPH0521363A (en
Inventor
均 清水
Original Assignee
株式会社富士電機総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士電機総合研究所 filed Critical 株式会社富士電機総合研究所
Priority to JP3255599A priority Critical patent/JP2951769B2/en
Publication of JPH0521363A publication Critical patent/JPH0521363A/en
Application granted granted Critical
Publication of JP2951769B2 publication Critical patent/JP2951769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、非晶質シリコン太陽
電池や非晶質シリコン薄膜トランジスタなどの材料とな
る非晶質シリコン系薄膜のような薄膜を基板表面に気相
成長させる装置であって、薄膜形成のために反応槽内へ
導入される, 薄膜成分を含む化合物ガスを加熱, 分解す
るガス加熱ヒータを備えたガス分解用ヒータユニット
と、基板を所定の高温に保つ基板加熱ヒータとを備えた
気相成長装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for vapor-phase growing a thin film such as an amorphous silicon thin film which is a material for an amorphous silicon solar cell or an amorphous silicon thin film transistor on a substrate surface. A gas decomposition heater unit provided with a gas heater for heating and decomposing a compound gas containing thin film components, which is introduced into a reaction tank for forming a thin film, and a substrate heater for keeping a substrate at a predetermined high temperature. The present invention relates to a configuration of a vapor growth apparatus provided.

【0002】[0002]

【従来の技術】最近、特に半導体工業の分野で薄膜の利
用分野が拡大している。そのような薄膜としては、非晶
質シリコン, 多結晶シリコン, 酸化シリコンあるいは窒
化シリコンなどの薄膜がある。薄膜の製造方法としては
CVD技術を用いるのが一般的で、原料である化合物ガ
スに解離エネルギーを与え、分解生成物からなる所期の
組成の薄膜を堆積させるものである。例えば、非晶質シ
リコン系薄膜の製造方法としては、シラン系原料ガスの
ガス分子を、プラズマ放電, 熱エネルギーあるいはレー
ザ, 紫外線等の光を用いて励起し、分解させて基板上に
堆積し、薄膜を形成する方法が知られている。また、薄
膜の材料にシリコン以外の元素を添加し、所望の光学バ
ンドギャップを有する非晶質材料として、a−SiGe:Hや
a−SiC:Hなどの化合物半導体とする場合には、原料ガ
スとしてシラン (SiH4 ) のほかに、ゲルマン (Ge
4 ) やメタン (CH4) などを用いる。また、非晶質
材料にほう素や燐などのドーピングを行う場合、ジボラ
ン (B2 6 ) やフォスフィン (PH3 ) を反応ガスに
添加する。このような異種の原料ガスを混合した反応ガ
スを用いる場合、原料ガスのうち最も分解しにくいガス
に対してそれが分解できるように原料ガス分解のエネル
ギーを与える。このため、分解エネルギーの低いガスな
どは、最適条件での解離ができず、好ましくないラジカ
ル等を発生することが問題となっている。この問題を解
決するために、特願平2−9799号に報告されている
ように、各原料ガスにそれぞれ独立に分解エネルギーを
与え各原料ガスを最も合った最適条件で解離・分解させ
基板上に堆積し、薄膜を形成する研究が進められてい
る。
2. Description of the Related Art Recently, the field of application of thin films has been expanding, especially in the semiconductor industry. Such thin films include amorphous silicon, polycrystalline silicon, silicon oxide, and silicon nitride. In general, a thin film is manufactured using a CVD technique, in which dissociation energy is applied to a compound gas as a raw material to deposit a thin film having an intended composition composed of decomposition products. For example, as a method for producing an amorphous silicon-based thin film, gas molecules of a silane-based source gas are excited using plasma discharge, heat energy or laser, light such as ultraviolet light, decomposed, deposited on a substrate, A method for forming a thin film is known. In addition, when an element other than silicon is added to the material of the thin film to form a compound semiconductor such as a-SiGe: H or a-SiC: H as an amorphous material having a desired optical band gap, a source gas is used. Besides silane (SiH 4 ), germane (Ge
H 4 ) or methane (CH 4 ) is used. When doping the amorphous material with boron or phosphorus, diborane (B 2 H 6 ) or phosphine (PH 3 ) is added to the reaction gas. When a reaction gas obtained by mixing such different types of source gases is used, the source gas is decomposed with energy so that the most difficult to decompose among the source gases can be decomposed. For this reason, a gas having a low decomposition energy cannot be dissociated under optimum conditions, and there is a problem that undesired radicals are generated. In order to solve this problem, as disclosed in Japanese Patent Application No. 2-9799, decomposition energy is given to each raw material gas independently, and each raw material gas is dissociated and decomposed under the most suitable optimum condition, and the substrate gas is decomposed. Research on depositing a thin film to form a thin film has been advanced.

【0003】図7に、この種気相成長装置の例として前
記特願平2−9799号に基づいて構成された気相成長
装置を示す。真空容器として形成されキャリアガス導入
口11とガス排気口12とを有する反応槽1の内部には、載
置された基板3を所定の高温に保持する基板加熱ヒータ
2が配されている。基板3の表面に形成される薄膜中の
各成分をそれぞれ1つ含む複数の化合物ガス,例えばシ
ラン (SiH4 ),ジボラン (B2 6 ),メタン (CH4 )
を反応槽1内へ送り込むためのガス導入管51,52, 53
が、反応槽1の上部に設けられた真空容器4の天井板に
形成されたガス導入口41, 42, 43から反応槽1の天井板
を貫通して反応槽1内へ延び、これらのガス導入管から
各化合物ガスが基板3に対して吹き付けられる。これら
の化合物ガスは、ガス導入管51, 52, 53が挿通される石
英パイプ72にコイル状に巻き付けられた加熱抵抗線71に
より加熱されて分解し、この分解により発生したラジカ
ルが反応生成物として基板3に堆積し、薄膜を形成す
る。なお、図において、符号6は加熱抵抗線71からの半
径方向熱放射を遮蔽するとともに加熱抵抗線71からの反
応槽1内への不純物の拡散を防止するための遮蔽筒、8
はガス導入管51, 52, 53それぞれの温度を、各化合物ガ
スを最適温度で解離・分解させる温度に制御するための
温度センサであり、石英パイプ72と加熱抵抗線71とから
なる巻線ヒータ7と、遮蔽筒6と、温度センサ8とで化
合物ガスを最適温度で分解させるためのガス分解用ヒー
タユニットの装置本体側が構成される。
FIG. 7 shows a vapor phase growth apparatus constructed based on Japanese Patent Application No. 2-9799 as an example of this kind of vapor phase growth apparatus. Inside a reaction tank 1 formed as a vacuum vessel and having a carrier gas inlet 11 and a gas exhaust port 12, a substrate heater 2 for keeping the mounted substrate 3 at a predetermined high temperature is arranged. A plurality of compound gases each containing one component in the thin film formed on the surface of the substrate 3, for example, silane (SiH 4 ), diborane (B 2 H 6 ), methane (CH 4 )
Gas introduction pipes 51, 52, 53 for feeding
Extend from the gas inlets 41, 42, 43 formed in the ceiling plate of the vacuum vessel 4 provided in the upper part of the reaction tank 1 through the ceiling plate of the reaction tank 1 into the reaction tank 1. Each compound gas is blown onto the substrate 3 from the introduction tube. These compound gases are heated and decomposed by the heating resistance wire 71 wound in a coil shape around the quartz pipe 72 through which the gas introduction pipes 51, 52, and 53 are inserted, and radicals generated by the decomposition are converted as reaction products. The thin film is deposited on the substrate 3 to form a thin film. In the drawing, reference numeral 6 denotes a shielding tube for shielding the heat radiation in the radial direction from the heating resistance wire 71 and preventing diffusion of impurities from the heating resistance wire 71 into the reaction tank 1.
Is a temperature sensor for controlling the temperature of each of the gas introduction pipes 51, 52, 53 to a temperature at which each compound gas is dissociated and decomposed at an optimum temperature, and is a wound heater comprising a quartz pipe 72 and a heating resistance wire 71. 7, the shielding cylinder 6, and the temperature sensor 8 constitute a device body side of a gas decomposition heater unit for decomposing a compound gas at an optimum temperature.

【0004】[0004]

【発明が解決しようとする課題】このように、化合物ガ
スを最適温度で分解し、分解時の状態を保持して基板に
到達させようとすると、基板表面近傍にガス分解用ヒー
タユニットのガス加熱ヒータ (上述の例では巻線ヒータ
7)が配置されることになり、このガス加熱ヒータから
照射される赤外線などの熱線により基板温度が上昇し、
基板加熱ヒータ(2) のみによる基板温度の独立制御がで
きないほか、基板上に堆積した薄膜の組成が変化してし
まい、問題となっていた。
As described above, when the compound gas is decomposed at the optimum temperature, and it is attempted to reach the substrate while maintaining the decomposition state, the gas heating of the gas decomposition heater unit is performed near the substrate surface. A heater (the winding heater 7 in the above example) is disposed, and the substrate temperature rises due to heat rays such as infrared rays emitted from the gas heater,
Independent control of the substrate temperature by only the substrate heater (2) cannot be performed, and the composition of the thin film deposited on the substrate changes, which is a problem.

【0005】この発明の目的は、基板温度を基板加熱ヒ
ータのみにより、独立して所定温度に制御することがで
き、かつ、最適温度条件で分解した化合物ガスの分解生
成物が基板上に堆積してなる薄膜の組成を変化させるこ
とのない気相成長装置の構成を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to control a substrate temperature independently to a predetermined temperature only by a substrate heater, and to deposit a decomposition product of a compound gas decomposed under an optimum temperature condition on the substrate. An object of the present invention is to provide a configuration of a vapor phase growth apparatus that does not change the composition of a thin film.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、反応槽内に配された基板表面
への薄膜形成時に該反応槽内へ導入される, 薄膜成分を
含む化合物ガスを加熱, 分解するガス加熱ヒータを備え
たガス分解用ヒータユニットと、基板を所定の高温に保
つ基板加熱ヒータとを備えた気相成長装置を、ガス加熱
ヒータと基板との間に基板をガス加熱ヒータからの熱照
射から遮蔽する熱遮蔽手段が設けられた装置とするもの
とする。
In order to solve the above problems, the present invention provides a compound containing a thin film component, which is introduced into a reaction tank when a thin film is formed on the surface of a substrate disposed in the reaction tank. A gas phase growth apparatus comprising a gas decomposition heater unit having a gas heater for heating and decomposing gas and a substrate heater for keeping the substrate at a predetermined high temperature is provided. It is assumed that the apparatus is provided with heat shielding means for shielding heat irradiation from the gas heater.

【0007】そして、このような構成原理に基づく気相
成長装置の具体構成として、化合物ガスの反応槽内への
導入が、反応槽の壁面を貫通して反応槽内へ突き出たガ
ス導入管を通して行われるとともに、ガス分解用ヒータ
ユニットが、ガス加熱ヒータとして前記ガス導入管が挿
通される赤外線透過パイプに加熱抵抗線をコイル状に巻
き付けてなる巻線ヒータと, 該巻線ヒータを外側から筒
状に包囲して該巻線ヒータからの半径方向熱放射を遮蔽
するとともに該巻線ヒータからの反応槽内への不純物拡
散を防止する遮蔽筒と,該巻線ヒータの温度を検出する
温度センサとを備えてなり、かつ基板をガス加熱ヒータ
からの熱照射から遮蔽する熱遮蔽手段が、前記ガス導入
管を挿通可能なガス導入口が形成された,低熱伝導率材
料からなる板材からなり、巻線ヒータのガス導入管端面
側に取り付けられた装置構成とするか、化合物ガスの反
応槽内への導入が、反応槽の壁面を貫通して反応槽内へ
突き出たガス導入管を通して行われるとともに、ガス分
解用ヒータユニットが、ガス加熱ヒータとして前記ガス
導入管が挿通される2重円筒状の,内部空間が減圧状態
に保たれる容器内にコイル状に巻かれた加熱抵抗線を封
止してなる赤外線ヒータと, 該赤外線ヒータを外側から
筒状に包囲して該赤外線ヒータからの半径方向熱放射を
遮蔽する遮蔽筒と,該赤外線ヒータの温度を検出する温
度センサとを備えてなり、かつ基板をガス加熱ヒータか
らの熱照射から遮蔽する熱遮蔽手段が、前記ガス導入管
を挿通可能なガス導入口が形成された,低熱伝導材料か
らなる板材からなり、赤外線ヒータのガス導入管端側に
取り付けられた装置構成とするか、あるいは化合物ガス
の反応槽内への導入が、反応槽の壁面を貫通して反応槽
内へ突き出たガス導入管を通して行われるとともに、ガ
ス分解用ヒータユニットが、ガス加熱ヒータとして内壁
面が鏡面に形成され内部の熱を外部へ導出するための開
口が形成された空洞の内部に加熱抵抗線を内蔵してなり
反応槽の外部に配される空洞ヒータと,該空洞の前記開
口から外部へ向かう熱を反応槽の壁面を貫通して反応槽
内ガス導入管端面へ導く,内周面が熱の全反射面として
機能する導熱ロッドと,ガス導入管端面の温度を検出す
る温度センサとを備えてなり、導熱ロッドが基板をガス
加熱ヒータからの熱照射から遮蔽する熱遮蔽手段を兼ね
る装置構成とすれば好適である。
As a specific configuration of a vapor phase growth apparatus based on such a configuration principle, a compound gas is introduced into a reaction vessel through a gas introduction pipe which penetrates a wall surface of the reaction vessel and protrudes into the reaction vessel. The heating unit for gas decomposition is a gas heater, and a heating heater is formed by winding a heating resistance wire in a coil shape around an infrared transmitting pipe through which the gas introduction pipe is inserted as a gas heating heater. A shield tube enclosing in a shape to shield radial heat radiation from the coil heater and preventing diffusion of impurities from the coil heater into the reaction tank; and a temperature sensor for detecting the temperature of the coil heater Wherein the heat shielding means for shielding the substrate from heat irradiation from the gas heater is a plate made of a low thermal conductivity material having a gas inlet through which the gas inlet tube can be inserted. In this case, the compound gas is introduced into the reaction vessel through the gas introduction pipe that penetrates through the wall of the reaction vessel and protrudes into the reaction vessel. In addition, the heating unit for gas decomposition is a heating resistance wire wound in a coil shape in a double cylindrical container in which the gas introduction pipe is inserted as a gas heater and the internal space of which is kept in a reduced pressure state. An infrared heater that seals the infrared heater , a shielding cylinder that surrounds the infrared heater in a cylindrical shape from the outside to shield radial heat radiation from the infrared heater, and a temperature sensor that detects the temperature of the infrared heater. A heat shielding means for shielding the substrate from heat irradiation from the gas heater, comprising a plate made of a low heat conductive material and having a gas inlet through which the gas inlet tube can be inserted; The device is attached to the end of the gas introduction pipe, or the compound gas is introduced into the reaction vessel through the gas introduction pipe that penetrates the wall of the reaction vessel and protrudes into the reaction vessel. The decomposition heater unit has a built-in heating resistance wire inside a cavity with a mirror surface on the inner wall surface as a gas heater and an opening for drawing out the internal heat to the outside. A hollow heater to be heated, and a heat conducting rod whose inner peripheral surface functions as a total reflection surface for heat, which guides heat going from the opening of the cavity to the outside through the wall surface of the reaction tank to the end face of the gas introduction pipe in the reaction tank. And a temperature sensor for detecting the temperature of the end face of the gas introduction pipe, and it is preferable that the heat guide rod also serves as a heat shielding means for shielding the substrate from heat irradiation from the gas heater.

【0008】また、前記導熱ロッドを、内面に金めっき
を施した金属パイプを導熱路として構成すれば好適であ
る。さらに、熱遮蔽手段として、低熱伝導材料からなる
板材を用いる装置構成の場合は、該熱遮蔽手段が、基板
との対向面を凹に形成され、該凹部に前記ガス導入口が
形成されるとともに該凹部が、高周波電圧が印加される
多孔板もしくは網状板からなる電極板により覆われる装
置構成とすればさらに好適である。
It is preferable that the heat conducting rod is constituted by a metal pipe having an inner surface plated with gold as a heat conducting path. Further, in the case of an apparatus configuration using a plate made of a low heat conductive material as the heat shielding means, the heat shielding means is formed with a concave surface facing the substrate, and the gas inlet is formed in the concave portion. It is further preferable that the recess is covered with an electrode plate made of a perforated plate or a mesh plate to which a high-frequency voltage is applied.

【0009】[0009]

【作用】このように、ガス加熱ヒータと基板との間に基
板をガス加熱ヒータからの熱照射から遮蔽する熱遮蔽手
段が設けられた装置構成とすることにより、ガス加熱ヒ
ータから基板へ向かう熱が遮蔽され、基板がガス加熱ヒ
ータにより加熱されることがなくなるため、基板の温度
を基板加熱ヒータのみにより単独に制御することができ
る。また、基板上に堆積した薄膜へのガス加熱ヒータか
らの熱照射がなくなるため、加熱による薄膜組成の変化
が防止される。
As described above, the apparatus is provided with the heat shielding means for shielding the substrate from heat irradiation from the gas heater between the gas heater and the substrate. Is shielded and the substrate is no longer heated by the gas heater, so that the temperature of the substrate can be controlled solely by the substrate heater alone. Further, since the heat irradiation from the gas heater to the thin film deposited on the substrate is eliminated, a change in the thin film composition due to heating is prevented.

【0010】そして、このように構成される気相成長装
置を具体的に実現するため、化合物ガスの反応槽内への
導入を、反応槽の壁面を貫通して反応槽内へ突き出たガ
ス導入管を通して行い、ガス分解用ヒータユニットを、
ガス加熱ヒータとして前記ガス導入管が挿通される赤外
線透過パイプに加熱抵抗線を巻き付けてなる巻線ヒータ
と, 該巻線ヒータを外側から筒状に包囲して該巻線ヒー
タからの半径方向熱放射を遮蔽するとともに該巻線ヒー
タからの反応槽内への不純物拡散を防止する遮蔽筒と,
該巻線ヒータの温度を検出する温度センサとを用いて構
成するとともに、基板をガス加熱ヒータからの熱照射か
ら遮蔽する熱遮蔽手段を、前記ガス導入管を挿通可能な
ガス導入口が形成された, 低熱伝導率材料からなる板材
で形成し、これを巻線ヒータのガス導入管端面側に取り
付けるようにすると、板状の熱遮蔽手段を、化合物ガス
の基板方向への流出を妨げることなく、反応槽内で任意
の広さに設けることができ、熱遮蔽手段として反射板を
多重に用いる場合等と比べ、簡単な構造でかつ、化合物
ガスの分解生成物が付着した状態でも熱遮蔽を効果的に
行うことができる。
In order to specifically realize the vapor phase growth apparatus configured as described above, the compound gas is introduced into the reaction tank by introducing a gas that penetrates the wall of the reaction tank and protrudes into the reaction tank. Through the pipe, the heater unit for gas decomposition,
A coil heater formed by winding a heating resistance wire around an infrared transmitting pipe through which the gas introduction pipe is inserted as a gas heater; and a radial heat from the coil heater by surrounding the coil heater in a cylindrical shape from the outside. A shielding tube for shielding radiation and preventing diffusion of impurities from the coil heater into the reaction tank;
A gas inlet configured to use a temperature sensor for detecting the temperature of the coil heater and a heat shielding means for shielding the substrate from heat irradiation from the gas heater is formed so that the gas introduction pipe can be inserted therethrough. Further, when formed from a plate made of a material having a low thermal conductivity and attached to the end face of the gas introduction pipe of the coil heater, the plate-shaped heat shielding means can be used without obstructing the outflow of the compound gas toward the substrate. It can be provided in an arbitrary size in the reaction tank, and has a simple structure compared with the case where multiple reflectors are used as a heat shielding means, and can provide heat shielding even in a state where decomposition products of the compound gas are attached. It can be done effectively.

【0011】また、化合物ガスの反応槽内への導入を、
反応槽の壁面を貫通して反応槽内へ突き出たガス導入管
を通して行い、ガス分解用ヒータユニットを、ガス加熱
ヒータとして前記ガス導入管が挿通される2重円筒状
の,内部空間が減圧状態に保たれる容器内にコイル状に
巻かれた加熱抵抗線を封止してなる赤外線ヒータと,
赤外線ヒータを外側から筒状に包囲して該赤外線ヒータ
からの半径方向熱放射を遮蔽する遮蔽筒と,該赤外線ヒ
ータの温度を検出する温度センサとを用いて構成すると
ともに、基板をガス加熱ヒータからの熱照射から遮蔽す
る熱遮蔽手段を、前記ガス導入管を挿通可能なガス導入
口が形成された,低熱伝導材料からなる板材で構成し、
赤外線ヒータのガス導入管端面側に取り付けるようにす
ると、ガス加熱ヒータからの不純物ガスは、小形な2重
円筒状容器内に閉じ込められて反応槽内へは流出せず、
不純物ガス拡散防止が極めて確実に行われ、不純物ガス
が混入した状態での膜形成を確実に防止することができ
る。また、2重円筒状容器は、内部空間が加熱抵抗線へ
の非通電時には減圧状態に保たれているから、通電時の
温度上昇や不純物ガスの放出時にも容器内は比較的低圧
力に維持され、容器は肉厚を厚くすることなく比較的軽
量に形成することができ、遮蔽筒で不純物ガスの拡散を
防止する場合と比べ、装置コストの上昇分はわずかで済
む。
The introduction of the compound gas into the reaction tank is
The reaction is performed through a gas introduction pipe protruding into the reaction vessel through the wall of the reaction vessel, and the heater unit for gas decomposition is used as a gas heater, and a double cylindrical shape through which the gas introduction pipe is inserted. Heater that seals a heating resistance wire wound in a coil in a container that is kept at a constant temperature , and radially radiates heat from the infrared heater by surrounding the infrared heater in a cylindrical shape from outside. A gas inlet configured to include a shielding cylinder and a temperature sensor for detecting a temperature of the infrared heater, and a heat shielding means for shielding a substrate from heat irradiation from a gas heater; Formed of a plate made of a low thermal conductive material,
When the infrared heater is attached to the end face of the gas introduction pipe, the impurity gas from the gas heater is confined in a small double cylindrical container and does not flow out into the reaction tank.
Impurity gas diffusion can be extremely reliably prevented, and film formation in a state in which the impurity gas is mixed can be reliably prevented. In addition, since the inner space of the double cylindrical container is kept in a reduced pressure state when the heating resistance wire is not energized, the inside of the container is maintained at a relatively low pressure even when the temperature rises during energization or when impurity gas is released. In addition, the container can be formed relatively lightweight without increasing the wall thickness, and the increase in the apparatus cost is small compared to the case where the diffusion of the impurity gas is prevented by the shielding cylinder.

【0012】また、化合物ガスの反応槽内への導入を、
反応槽の壁面を貫通して反応槽内へ突き出たガス導入管
を通して行うとともに、ガス分解用ヒータユニットを、
ガス加熱ヒータとして内壁面が鏡面に形成され内部の熱
を外部へ導出するための開口が形成された空洞の内部に
加熱抵抗線を内蔵してなり反応槽の外部に配される空洞
ヒータと,該空洞の前記開口から外部へ向かう熱を反応
槽の壁面を貫通して反応槽内ガス導入管端面へ導く,内
周面が熱の全反射面として機能する導熱ロッドと,ガス
導入管端面の温度を検出する温度センサとを用いて構成
し、導熱ロッドが基板をガス加熱ヒータからの熱照射か
ら遮蔽する熱遮蔽手段を兼ねるようにすると、ガス加熱
ヒータから基板への熱照射が防止されるほか、加熱抵抗
線からの反応槽内への不純物ガス混入を完全に防止する
ことができ、膜質のより良好な薄膜を得ることができ
る。
The introduction of the compound gas into the reaction tank is
While performing through the gas introduction pipe that penetrates the wall of the reaction tank and protrudes into the reaction tank, the heater unit for gas decomposition is
A cavity heater having a built-in heating resistance wire inside a cavity in which an inner wall surface is formed as a mirror surface and an opening for drawing out internal heat to the outside as a gas heater, and which is disposed outside the reaction tank; A heat conducting rod having an inner peripheral surface functioning as a total reflection surface of heat, and a heat conducting rod for guiding heat from the opening of the cavity to the outside through the wall surface of the reaction vessel to the end face of the gas introduction pipe in the reaction vessel; When configured using a temperature sensor that detects the temperature and the heat conducting rod also serves as a heat shielding unit that shields the substrate from heat irradiation from the gas heater, heat irradiation from the gas heater to the substrate is prevented. In addition, it is possible to completely prevent impurity gas from being mixed into the reaction tank from the heating resistance wire, and to obtain a thin film having better film quality.

【0013】また、導熱ロッドを、内面に金めっきを施
した金属パイプを導熱路として構成すると、空洞ヒータ
からの熱が金属パイプ内の大気空間を伝わるため、導熱
ロッドの導熱性能と、熱遮蔽性能とが不変に維持され
る。
When the heat conducting rod is constituted by a metal pipe having an inner surface plated with gold as a heat conducting path, heat from the hollow heater is transmitted through the air space in the metal pipe. Performance is maintained unchanged.

【0014】さらに、熱遮蔽手段として、低熱伝導率材
料からなりガス導入管を挿通可能なガス導入口が形成さ
れた板材を用いる装置構成の場合、該板材が、基板との
対向面を凹に形成され、該凹部に前記ガス導入口が形成
されるとともに該凹部が、高周波電圧が印加される多孔
板もしくは網状板からなる電極板により覆われる装置構
成とすれば、この凹部に流入したガス導入管からの解離
・分解ガスが多孔板もしくは網状板からなる電極板から
一様なガス密度で流出し、かつこの流出した解離・分解
ガスに高周波電圧が印加されることになる。高周波電圧
を印加された解離・分解ガスはさらにプラズマ状態とな
り、解離・分解しないガスを直接プラズマ化する場合と
比べ、実施例の項で詳述するように、基板に堆積した薄
膜の光学バンドギャップがより小さくなる。従って、こ
の凹部の面積を、基板の面積に対応した大きさとするこ
とにより、より広い面積の基板に、特性のより良好な膜
を、より均一な厚さに形成することができる。
Further, in the case of an apparatus configuration using a plate made of a low thermal conductivity material and having a gas inlet through which a gas inlet tube can be inserted as the heat shielding means, the plate has a concave surface facing the substrate. If the gas introducing port is formed in the concave portion and the concave portion is covered with an electrode plate made of a perforated plate or a mesh plate to which a high-frequency voltage is applied, the gas introduction into the concave portion is introduced. The dissociated / decomposed gas from the tube flows out from the electrode plate formed of a perforated plate or a mesh plate at a uniform gas density, and a high-frequency voltage is applied to the dissociated / decomposed gas. The dissociation / decomposition gas to which the high-frequency voltage is applied further becomes a plasma state, and the optical band gap of the thin film deposited on the substrate is compared with the case where the gas that does not dissociation / decomposition is directly converted into plasma, as described in detail in the section of Examples. Becomes smaller. Accordingly, by setting the area of the concave portion to a size corresponding to the area of the substrate, a film having better characteristics and a more uniform thickness can be formed on a substrate having a larger area.

【0015】[0015]

【実施例】図1に本発明の第1の実施例を示す。図にお
いて、図7と同一の部材には同一符号が付されている。
化合物ガスを反応槽1内へ導入するためのガス導入管5
1,52, 53には、加熱温度が例えば600 ℃以上となる場合
には、金属管と耐熱磁器管とを接合したものが用いら
れ、反応槽1内が耐熱磁器管となるようにガス導入口4
1, 42, 43に取り付けられている。外部からガス導入管5
1, 52, 53に送り込まれた化合物ガスを熱分解するため
のガス加熱ヒータは、赤外線をよく透過する石英パイプ
72に加熱抵抗線71をコイル状に巻き付けた巻線ヒータ7
として形成され、コイルの高さは、与えられたガス流
量, ガス種のもとでそのガスが最適温度で、かつ最も効
率よく分解するような高さに設定される。遮蔽筒6は耐
熱磁器を用いて形成され、筒の内, 外周面に化合物ガス
の分解生成物が付着した状態でも、巻線ヒータ7から半
径方向外方へ放射される熱を効果的に遮蔽して、巻線ヒ
ータ7に供給される加熱電力がガス分解に効率よく消費
されるようにしている。各ガス導入管51, 52, 53に送り
込まれた化合物ガスをそれぞれ最適温度で分解するため
のガス分解用ヒータユニットは、上記巻線ヒータ7と,
遮蔽筒6と,巻線ヒータ7の温度を検出する温度センサ
8および図示されない温度コントローラとで構成され
る。
FIG. 1 shows a first embodiment of the present invention. In the drawing, the same members as those in FIG. 7 are denoted by the same reference numerals.
Gas inlet pipe 5 for introducing compound gas into reaction tank 1
When the heating temperature is, for example, 600 ° C. or more, a metal tube and a heat-resistant porcelain tube are used for 1,52,53, and gas is introduced so that the inside of the reaction tank 1 becomes a heat-resistant porcelain tube. Mouth 4
Attached to 1, 42, 43. External gas introduction pipe 5
The gas heater for thermally decomposing the compound gas sent to 1, 52, 53 is a quartz pipe that transmits infrared rays well.
Winding heater 7 with heating resistance wire 71 wound in a coil shape around 72
And the height of the coil is set so that the gas is decomposed at the optimum temperature and most efficiently under the given gas flow rate and gas type. The shielding cylinder 6 is formed by using heat-resistant porcelain, and effectively shields heat radiated outward from the coil heater 7 in the radial direction even when decomposition products of the compound gas adhere to the inner and outer peripheral surfaces of the cylinder. Thus, the heating power supplied to the winding heater 7 is efficiently consumed for gas decomposition. The gas decomposition heater unit for decomposing the compound gas sent to each of the gas introduction pipes 51, 52, and 53 at an optimum temperature respectively includes the above-described coil heater 7 and
It is composed of a shielding cylinder 6, a temperature sensor 8 for detecting the temperature of the coil heater 7, and a temperature controller (not shown).

【0016】巻線ヒータ7から基板へ向かう熱を遮蔽す
る熱遮蔽手段としての遮蔽板9には、ガス導入管51, 5
2, 53を挿通可能なガス導入口が形成された,ここではA
l2 3 からなる耐熱磁器板が用いられ、基板3への熱
照射を防止するに十分な広さを有し、巻線ヒータ7のガ
ス導入管端面側に、かつこれらのガス導入管がガス導入
口に挿入された状態に取り付けられる。
The heat from the wire heater 7 to the substrate is blocked.
The gas introduction pipes 51, 5
A gas inlet that can insert 2, 53 was formed.
lTwoO ThreeA heat-resistant porcelain plate made of
It is large enough to prevent irradiation,
Gas introduction pipes on the end face of the gas introduction pipe
It is attached while inserted in the mouth.

【0017】この耐熱磁器からなる遮蔽板9と前記耐熱
磁器からなる遮蔽筒6との当接面は、それぞれ研削加工
により平滑な平面に仕上げられ、図のように組み立てら
れた状態で実質密着状態に当接し、加熱抵抗線71からの
不純物ガスの反応槽1内への拡散を極小に抑える。
The contact surfaces of the shielding plate 9 made of heat-resistant porcelain and the shielding cylinder 6 made of the above-mentioned heat-resistant porcelain are each finished to a smooth flat surface by grinding, and are substantially in close contact with each other when assembled as shown in the figure. To minimize the diffusion of the impurity gas from the heating resistance wire 71 into the reaction tank 1.

【0018】本実施例の構成により、アルミのインゴッ
ト中に加熱抵抗線を鋳込んでなる基板加熱ヒータ2の上
面の温度Ta の, 巻線ヒータ7への通電開始後の時間変
化を測定した結果、図2に示すように、巻線ヒータ7へ
の通電開始前における高真空状態 (反応槽1内の圧力P
1 =1. 33×10-4〔Pa〕) での温度Taは、反応槽
1内へH2 100%のガスを反応槽内圧力がP2=13
3〔Pa〕となる流量で導入して巻線ヒータ7に通電した
後も最大温度変化ΔTa =5℃と、温度変化が極めて小
さくなることが確認された。
[0018] With the configuration of this example was measured in the upper surface of the temperature T a of the substrate heater 2 made by casting the heated resistance wire during ingot aluminum, a time change after the start of energization of the winding heater 7 As a result, as shown in FIG. 2, a high vacuum state (the pressure P
1 = 1. 33 × 10 -4 the temperature T a in [Pa]), the reactor pressure H 2 100% of the gas into the reaction vessel 1 is P 2 = 13
It was confirmed that the temperature change was extremely small, that is, the maximum temperature change ΔT a = 5 ° C. even after the flow was supplied at a flow rate of 3 [Pa] and the coil heater 7 was energized.

【0019】図3に本発明の第2の実施例を示す。この
実施例では、ガス加熱ヒータ10は、金属板を用いて形成
され内壁面が鏡面に仕上げられた空洞10b 内に、加熱抵
抗線として光源用フィラメントを真空容器内に封じ込ん
だ赤外線ランプを収納した空洞ヒータとして形成され、
反応槽1の外側にガス導入管51, 52, 53と同数配されて
いる。そして、ガス導入管51, 52, 53に送り込まれた各
化合物ガスをそれぞれ最適温度で分解するガス分解用ヒ
ータユニットは、空洞ヒータ10と,空洞10b に形成され
た開口から赤外線ランプの熱をガス導入管51, 52, 53の
それぞれ先端部へ導く, 金属パイプの内周面に金めっき
を施して赤外線の全反射面を形成させ、かつ先端が石英
栓により封止された導熱ロッド20と,ガス導入管51, 5
2, 53先端部の温度を検出する温度センサ8とで構成さ
れる。なお、空洞ヒータ10の空洞10b を内側に形成する
筐体10a 内へは、外部から冷却水が送り込まれ, 赤外線
ランプの熱による空洞10b 壁面の過大な温度上昇を防止
している。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the gas heater 10 houses an infrared lamp in which a filament for a light source is sealed in a vacuum vessel as a heating resistance wire in a cavity 10b formed by using a metal plate and having an inner wall surface mirror-finished. Formed as a hollow heater,
The same number of gas introduction pipes 51, 52, 53 are arranged outside the reaction tank 1. The gas decomposition heater unit that decomposes each compound gas sent to the gas introduction pipes 51, 52, and 53 at an optimum temperature respectively uses the cavity heater 10 and an opening formed in the cavity 10b to generate heat from the infrared lamp. A heat conducting rod 20, which is guided to the distal end of each of the introduction pipes 51, 52, and 53, is provided with a gold plating on an inner peripheral surface of the metal pipe to form a total reflection surface of infrared rays, and a distal end of which is sealed with a quartz plug. Gas inlet pipe 51, 5
The temperature sensor 8 detects the temperature at the tip. In addition, cooling water is sent from the outside into the housing 10a which forms the cavity 10b of the cavity heater 10 inside, thereby preventing an excessive rise in temperature of the wall surface of the cavity 10b due to heat of the infrared lamp.

【0020】ガス分解用ヒータユニットをこのように構
成すると、導熱ロッドの内周面が赤外線の全反射面を構
成しているため、基板への赤外線照射が防止され、ガス
加熱ヒータによる基板の加熱が避けられるため、基板の
温度制御を基板加熱ヒータのみにより容易に行うことが
できる。加えて、加熱抵抗線の通電, 昇温による不純物
が反応槽内へ混入することがなく、膜質のより良好な薄
膜を基板上に形成することができる。
When the heater unit for gas decomposition is configured in this manner, since the inner peripheral surface of the heat conducting rod constitutes a total reflection surface of infrared rays, irradiation of infrared rays to the substrate is prevented, and heating of the substrate by the gas heater is prevented. Therefore, the substrate temperature can be easily controlled only by the substrate heater. In addition, impurities due to heating and heating of the heating resistance wire are not mixed into the reaction tank, and a thin film having better film quality can be formed on the substrate.

【0021】図4に本発明の第3の実施例を示す。図に
おいて、図1と同一の部材には同一符号を付して説明を
省略する。ガス分解用ヒータユニット73のガス加熱ヒー
タは、内部空間が減圧状態に保たれる, ここでは石英か
らなる2重円筒状容器74内にコイル状に巻かれた加熱抵
抗線71を封止した赤外線ヒータ70として構成され、その
中央部をガス導入管51,52, 53が軸方向に挿通する。基
板9を赤外線ヒータ70からの熱照射から遮蔽する遮蔽板
19は耐熱磁器で作られ、基板3との対向面が凹に形成さ
れている。この凹部は、多数の細孔が一様に分布した多
孔板もしくは細かい網目が一様に形成された網状板から
なる電極板20により覆われ、この電極板20に、電流導入
端子16を介して、高周波電源15が接続されている。
FIG. 4 shows a third embodiment of the present invention. In the figure, the same members as those in FIG. The gas heater of the gas decomposition heater unit 73 has an internal space kept in a depressurized state. Here, an infrared ray in which a heating resistance wire 71 wound in a coil shape in a double cylindrical container 74 made of quartz is sealed. It is configured as a heater 70, and gas introduction pipes 51, 52, 53 are inserted in the center thereof in the axial direction. A shielding plate for shielding the substrate 9 from heat irradiation from the infrared heater 70
19 is made of heat-resistant porcelain, and the surface facing the substrate 3 is formed concave. This concave portion is covered with an electrode plate 20 composed of a perforated plate or a mesh plate in which fine meshes are uniformly formed, in which a large number of fine pores are uniformly distributed. , A high frequency power supply 15 is connected.

【0022】膜形成時にガス導入管51, 52, 53を通して
反応槽1内へ送り込まれる化合物ガスは、赤外線ヒータ
70により、それぞれの最適温度で解離・分解されて遮蔽
板19の凹部に流入し、さらに電極板20を通過して一様な
ガス密度で流出する。この流出した解離・分解ガスは、
電極板20と基板3との間の高周波電界中でプラズマ状態
となり、基板加熱ヒータ2により所定の高温に加熱され
た基板3の表面に薄膜を形成する。
The compound gas fed into the reaction tank 1 through the gas introduction pipes 51, 52, 53 during film formation is supplied to an infrared heater.
Due to 70, they are dissociated and decomposed at their respective optimum temperatures, flow into the recesses of the shielding plate 19, and further pass through the electrode plate 20 and flow out at a uniform gas density. The released dissociated / decomposed gas is
In a high-frequency electric field between the electrode plate 20 and the substrate 3, a plasma state is established, and a thin film is formed on the surface of the substrate 3 heated to a predetermined high temperature by the substrate heater 2.

【0023】このように、予め熱分解した化合物ガスを
プラズマ化してa−Si:H膜を形成した場合の光学バン
ドギャップ値Eg(eV)を図5に示す。基板加熱温度TS
を220 ℃一定に維持し、赤外線ヒータ70の温度TP を変
化させると、TP =300 ℃以上で光学バンドギャップ値
が急速に小さくなり、赤外線ヒータの温度TP =500℃
において光学バンドギャップ値Egが1.68eVという低い
値が得られる。これに対し、従来の高周波プラズマCV
Dのように、化合物ガスを予め熱分解せず、直接プラズ
マ化する場合には、形成されたa−Si:H膜の光学バン
ドギャップ値Egは、図6に示すように、基板温度TS
=220 ℃において、図5における赤外線ヒータ温度TP
=300 ℃以下での値と略等しく、光学バンドギャップ値
Egをこれ以下に下げるためには、基板温度TS を220
℃以上に上げなければならない。従来は、低い光学バン
ドギャップ値Egを得るために基板温度TS を高く設定
してきたが、a−Si:H膜は基板温度TS =200 ℃〜25
0 ℃で最も膜質のよい薄膜が得られることから、基板温
度TS を高くするにも限界があり、このため、光学バン
ドギャップ値Egを低くするにも限界があった。
FIG. 5 shows the optical bandgap value Eg (eV) in the case where the a-Si: H film is formed by converting the previously decomposed compound gas into plasma. Substrate heating temperature T S
Was maintained at 220 ° C. constant, varying the temperature T P of the infrared heater 70, the optical band gap value T P = 300 ° C. or higher is rapidly reduced, the temperature T P = 500 ° C. Infrared heaters
, A low value of the optical band gap value Eg of 1.68 eV is obtained. In contrast, the conventional high-frequency plasma CV
As and D, without prior thermal decomposition of a compound gas, in the case of direct plasma was formed a-Si: optical band gap values Eg of the H film, as shown in FIG. 6, the substrate temperature T S
= 220 ° C., infrared heater temperature T P in FIG.
= 300 ° C. or lower. In order to lower the optical bandgap value Eg below this, the substrate temperature T S must be set to 220 ° C.
Must be raised above ℃. Conventionally, the substrate temperature T S has been set high in order to obtain a low optical band gap value Eg. However, in the case of the a-Si: H film, the substrate temperature T S = 200 ° C. to 25 ° C.
Since a thin film having the best film quality can be obtained at 0 ° C., there is a limit in increasing the substrate temperature T S , and therefore, there is a limit in decreasing the optical band gap value Eg.

【0024】[0024]

【発明の効果】本発明においては、気相成長装置を以上
のように構成したので、以下に記載する効果が得られ
る。
According to the present invention, since the vapor phase growth apparatus is configured as described above, the following effects can be obtained.

【0025】先ず、ガス加熱ヒータから基板へ向かう熱
が遮蔽され、基板がガス加熱ヒータにより加熱されるこ
とがなくなるため、基板の温度を基板加熱ヒータのみに
より単独に制御することができ、基板を所定の高温に保
つための温度制御が容易になる。同時に、基板上に堆積
した薄膜へのガス加熱ヒータからの熱照射がなくなるた
め、加熱による薄膜組成の変化が防止され、所期組成の
薄膜を確実に得ることができる。
First, since the heat from the gas heater to the substrate is shielded and the substrate is not heated by the gas heater, the temperature of the substrate can be controlled solely by the substrate heater alone. Temperature control for maintaining a predetermined high temperature becomes easy. At the same time, heat irradiation from the gas heater to the thin film deposited on the substrate is eliminated, so that a change in the thin film composition due to heating is prevented, and a thin film having an intended composition can be reliably obtained.

【0026】請求項1の装置では、板状の熱遮蔽手段
を、化合物ガスの基板方向への流出を妨げることなく、
反応槽内で任意の広さに設けることができ、熱遮蔽手段
として反射板を多重に用いる場合等と比べ、簡単な構造
でかつ、化合物ガスの分解生成物が付着した状態でも熱
遮蔽を効果的に行うことができ、しかも係る効果を安価
に実現することができる。
In the apparatus according to the first aspect, the plate-shaped heat shielding means is provided without obstructing the outflow of the compound gas toward the substrate.
It can be provided in an arbitrary size in the reaction tank, and has a simpler structure than the case where multiple reflectors are used as heat shielding means, and is effective in heat shielding even when decomposition products of compound gas are attached. This effect can be realized at a low cost.

【0027】請求項2の装置では、化合物ガスを熱分解
するための加熱抵抗線が、減圧された2重円筒状の密閉
容器内に封止されているため、加熱抵抗線から発生する
不純物ガスは密閉容器内に閉じ込められ、反応槽内へ拡
散することがなく、不純物ガスが混入した状態での膜形
成を確実に防止することができ、膜質の良好な薄膜を形
成することができる。また、加熱抵抗線は、熱分解され
た化合物ガスと接触しないため、化合物ガスとの反応に
よる寿命低下も確実に防止することができる。そして、
これらの効果を、請求項1の装置構成に対し、僅かなコ
スト上昇分で得ることができる。
According to the second aspect of the present invention, since the heating resistance wire for thermally decomposing the compound gas is sealed in a depressurized double cylindrical hermetic container, the impurity gas generated from the heating resistance wire is sealed. Is confined in a closed vessel, does not diffuse into the reaction tank, can reliably prevent film formation in a state in which impurity gas is mixed, and can form a thin film having good film quality. Further, since the heating resistance wire does not come into contact with the thermally decomposed compound gas, it is possible to reliably prevent the life from being shortened due to the reaction with the compound gas. And
These effects can be obtained with a slight increase in cost compared to the device configuration of the first aspect.

【0028】請求項3の装置では、ガス加熱ヒータから
基板への熱照射が防止されるほか、加熱抵抗線からの反
応槽内への不純物ガス混入を完全に防止することがで
き、膜質のより良好な薄膜を得ることができる。
In the apparatus according to the third aspect, in addition to preventing heat irradiation from the gas heater to the substrate, it is possible to completely prevent impurity gas from being mixed into the reaction tank from the heating resistance wire, thereby improving the film quality. A good thin film can be obtained.

【0029】請求項4の装置では、熱が金属パイプ内の
大気空間を伝わるため、導熱ロッドの導熱性能と、熱遮
蔽性能とが不変に維持され、ガス分解用ヒータユニット
の信頼性が高く維持される効果がある。
In the apparatus according to the fourth aspect, since heat is transmitted through the air space in the metal pipe, the heat conducting performance and the heat shielding performance of the heat conducting rod are maintained unchanged, and the reliability of the gas decomposition heater unit is maintained at a high level. Has the effect of being done.

【0030】請求項5の装置では、板状の熱遮蔽手段
が、基板との対向面を凹に形成され、該凹部にガス導入
口が形成されるとともに該凹部が、高周波電圧が印加さ
れる多孔板もしくは網状板からなる電極板により覆われ
るため、化合物ガスへの高周波電圧の印加が化合物ガス
を熱分解した後に行われ、例えば、a−Si:H膜を形
成する場合、従来のように予め熱分解されないH2(キ
ャリアガス)+Si24(化合物ガス)に直接高周波電
圧を印加する場合と比べ、光学バンドギャップ値の低い
膜を形成することができる。また、板状の熱遮蔽手段の
凹部を覆う電極板には多孔板もしくは網状板が用いられ
るから、凹部の面積を基板の面積に対応した大きさとす
ることにより、より広い面積に、特性のより良好な膜
を、より均一な厚さに形成することができ,装置の生産
性を上げることができる。
In the apparatus according to the fifth aspect, the plate-shaped heat shielding means is formed with a concave surface facing the substrate, a gas inlet is formed in the concave portion, and a high frequency voltage is applied to the concave portion. Since it is covered with an electrode plate made of a perforated plate or a mesh plate, application of a high-frequency voltage to the compound gas is performed after the compound gas is thermally decomposed. For example, when an a-Si: H film is formed, A film having a lower optical band gap value can be formed as compared with a case where a high-frequency voltage is directly applied to H 2 (carrier gas) + Si 2 H 4 (compound gas) which is not thermally decomposed in advance. In addition, since a perforated plate or a mesh plate is used as an electrode plate covering the concave portion of the plate-shaped heat shielding means, by setting the area of the concave portion to a size corresponding to the area of the substrate, a larger area can be obtained. A good film can be formed with a more uniform thickness, and the productivity of the device can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による気相成長装置構成の第1の実施例
を示すものであって、同図(b)は装置要部の縦断面図、
同図(a) は同図(b)のA−A線に沿う断面図
FIG. 1 shows a first embodiment of a vapor phase growth apparatus according to the present invention, and FIG. 1 (b) is a longitudinal sectional view of a main part of the apparatus.
FIG. 2A is a cross-sectional view taken along line AA in FIG.

【図2】図1に示す構成の気相成長装置における基板加
熱ヒータ上面温度の,ガス加熱ヒータ通電後の時間変化
を示す温度変化を示す線図
FIG. 2 is a diagram showing a temperature change showing a temporal change of a substrate heater upper surface temperature in a vapor phase growth apparatus having a configuration shown in FIG. 1 after energization of a gas heater;

【図3】本発明による気相成長装置構成の第2の実施例
を示す装置要部の縦断面図
FIG. 3 is a longitudinal sectional view of a main part of a vapor phase growth apparatus according to a second embodiment of the present invention.

【図4】本発明による気相成長装置構成の第3の実施例
を示すものであって、同図(b)は装置要部の縦断面図、
同図(a) は同図(b) のA−A線に沿う断面図
FIG. 4 shows a third embodiment of the vapor phase growth apparatus according to the present invention, wherein FIG. 4 (b) is a longitudinal sectional view of a main part of the apparatus,
FIG. 2A is a sectional view taken along the line AA in FIG.

【図5】図4に示す構成の気相成長装置を用いて形成し
たa−Si:H膜の光学バンドギャップ値のガス加熱ヒー
タ (赤外線ヒータ) 温度依存性を、基板加熱温度を220
℃一定に維持して求めた線図
FIG. 5 shows the temperature dependence of the optical band gap value of the a-Si: H film formed using the vapor phase growth apparatus having the structure shown in FIG.
Diagram obtained at a constant temperature of ℃

【図6】予め熱分解しない化合物ガスに直接高周波電圧
を印加してプラズマ化して形成したa−Si:H膜の光学
バンドギャップ値の基板温度依存性を示す線図
FIG. 6 is a diagram showing the substrate temperature dependence of the optical band gap value of an a-Si: H film formed by applying a high-frequency voltage directly to a compound gas that has not been thermally decomposed in advance to form a plasma.

【図7】気相成長装置構成の一例を示すものであって、
同図(b) は装置要部の縦断面図、同図(a) は同図(b) の
B−B線に沿う断面図
FIG. 7 shows an example of a vapor phase growth apparatus configuration,
FIG. 2B is a longitudinal sectional view of a main part of the apparatus, and FIG. 2A is a sectional view taken along line BB in FIG.

【符号の説明】[Explanation of symbols]

1 反応槽 2 基板加熱ヒータ 3 基板 6 遮蔽筒 7 巻線ヒータ 8 温度センサ 9 遮蔽板(熱遮蔽手段) 15 高周波電源 19 遮蔽板(熱遮蔽手段) 20 電極板 51 ガス導入管 52 ガス導入管 53 ガス導入管 70 赤外線ヒータ 71 加熱抵抗線 72 石英パイプ(赤外線透過パイプ) 73 ガス分解用ヒータユニット 74 容器 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Substrate heater 3 Substrate 6 Shielding tube 7 Winding heater 8 Temperature sensor 9 Shielding plate (Heat shielding means) 15 High frequency power supply 19 Shielding plate (Heat shielding means) 20 Electrode plate 51 Gas introduction pipe 52 Gas introduction pipe 53 Gas introduction pipe 70 Infrared heater 71 Heating resistance wire 72 Quartz pipe (Infrared transmission pipe) 73 Heater unit for gas decomposition 74 Container

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応槽内に配された基板表面への薄膜形成
時に該反応槽内へ導入される,薄膜成分を含む化合物ガ
スを加熱,分解するガス加熱ヒータを備えたガス分解用
ヒータユニットと、基板を所定の高温に保つ基板加熱ヒ
ータとを備えた気相成長装置であって、ガス加熱ヒータ
と基板との間に基板をガス加熱ヒータからの熱照射から
遮蔽する熱遮蔽手段が設けられた気相成長装置におい
て、 化合物ガスの反応槽内への導入が、反応槽の壁面を貫通
して反応槽内へ突き出たガス導入管を通して行われると
ともに、ガス分解用ヒータユニットが、ガス加熱ヒータ
として前記ガス導入管が挿通される赤外線透過パイプに
加熱抵抗線をコイル状に巻き付けてなる巻線ヒータと,
該巻線ヒータを外側から筒状に包囲して該巻線ヒータか
らの半径方向熱放射を遮蔽するとともに該巻線ヒータか
らの反応槽内への不純物拡散を防止する遮蔽筒と,該巻
線ヒータの温度を検出する温度センサとを備えてなり、
かつ基板をガス加熱ヒータからの熱照射から遮蔽する熱
遮蔽手段が、前記ガス導入管を挿通可能なガス導入口が
形成された,低熱伝導率材料からなる板材からなり、巻
線ヒータのガス導入管端面側に取り付けられることを特
徴とする気相成長装置。
1. A gas decomposition heater unit having a gas heater for heating and decomposing a compound gas containing a thin film component, which is introduced into the reaction tank when a thin film is formed on the surface of a substrate disposed in the reaction tank. And a substrate heater for maintaining the substrate at a predetermined high temperature, wherein a heat shielding means for shielding the substrate from heat irradiation from the gas heater is provided between the gas heater and the substrate. In the vapor phase growth apparatus, the compound gas is introduced into the reaction tank through a gas introduction pipe penetrating through the wall of the reaction tank and protruding into the reaction tank, and the gas decomposition heater unit is used for gas heating. A winding heater formed by winding a heating resistance wire in a coil shape around an infrared transmitting pipe through which the gas introduction pipe is inserted as a heater;
A shield tube for surrounding the coil heater in a cylindrical shape from the outside to shield radial heat radiation from the coil heater and to prevent impurity diffusion from the coil heater into the reaction tank; A temperature sensor for detecting a temperature of the heater,
And a heat shielding means for shielding the substrate from heat irradiation from the gas heater, comprising a plate made of a low thermal conductivity material having a gas introduction port through which the gas introduction pipe can be inserted, A vapor phase growth apparatus attached to a tube end face side.
【請求項2】反応槽内に配された基板表面への薄膜形成
時に該反応槽内へ導入される,薄膜成分を含む化合物ガ
スを加熱,分解するガス加熱ヒータを備えたガス分解用
ヒータユニットと、基板を所定の高温に保つ基板加熱ヒ
ータとを備えた気相成長装置であって、ガス加熱ヒータ
と基板との間に基板をガス加熱ヒータからの熱照射から
遮蔽する熱遮蔽手段が設けられた気相成長装置におい
て、 化合物ガスの反応槽内への導入が、反応槽の壁面を貫通
して反応槽内へ突き出たガス導入管を通して行われると
ともに、ガス分解用ヒータユニットが、ガス加熱ヒータ
として前記ガス導入管が挿通される2重円筒状の,内部
空間が減圧状態に保たれる容器内にコイル状に巻かれた
加熱抵抗線を封止してなる赤外線ヒータと,該赤外線ヒ
ータを外側から筒状に包囲して該赤外線ヒータからの半
径方向熱放射を遮蔽するとともに該赤外線ヒータからの
反応槽内への不純物拡散を防止する遮蔽筒と,該赤外線
ヒータの温度を検出する温度センサとを備えてなり、か
つ基板をガス加熱ヒータからの熱照射から遮蔽する熱遮
蔽手段が、前記ガス導入管を挿通可能なガス導入口が形
成された,低熱伝導率材料からなる板材からなり、赤外
線ヒータのガス導入管端面側に取り付けられることを特
徴とする気相成長装置。
2. A gas decomposition heater unit having a gas heater for heating and decomposing a compound gas containing a thin film component, which is introduced into the reaction tank when a thin film is formed on the surface of a substrate disposed in the reaction tank. And a substrate heater for maintaining the substrate at a predetermined high temperature, wherein a heat shielding means for shielding the substrate from heat irradiation from the gas heater is provided between the gas heater and the substrate. In the vapor phase growth apparatus, the compound gas is introduced into the reaction tank through a gas introduction pipe penetrating through the wall of the reaction tank and protruding into the reaction tank, and the gas decomposition heater unit is used for gas heating. An infrared heater that seals a heating resistance wire wound in a coil shape in a container having a double cylindrical shape through which the gas inlet tube is inserted and whose internal space is kept in a reduced pressure state; From the outside A shielding tube that surrounds in a cylindrical shape to shield radial heat radiation from the infrared heater and prevents diffusion of impurities from the infrared heater into the reaction tank; and a temperature sensor that detects the temperature of the infrared heater. A heat shielding means for shielding the substrate from heat irradiation from the gas heater, comprising a plate made of a material having a low thermal conductivity and having a gas introduction port through which the gas introduction tube can be inserted; A gas phase growth apparatus attached to the end face of a gas introduction pipe.
【請求項3】反応槽内に配された基板表面への薄膜形成
時に該反応槽内へ導入される,薄膜成分を含む化合物ガ
スを加熱,分解するガス加熱ヒータを備えたガス分解用
ヒータユニットと、基板を所定の高温に保つ基板加熱ヒ
ータとを備えた気相成長装置であって、ガス加熱ヒータ
と基板との間に基板をガス加熱ヒータからの熱照射から
遮蔽する熱遮蔽手段が設けられた気相成長装置におい
て、 化合物ガスの反応槽内への導入が、反応槽の壁面を貫通
して反応槽内へ突き出たガス導入管を通して行われると
ともに、ガス分解用ヒータユニットが、ガス加熱ヒータ
として内壁面が鏡面に形成され内部の熱を外部へ導出す
るための開口が形成された空洞の内部に加熱抵抗線を内
蔵してなり反応槽の外部に配される空洞ヒータと,該空
洞の前記開口から外部へ向かう熱を反応槽の壁面を貫通
して反応槽内ガス導入管端面へ導く,内周面が熱の全反
射面として機能する導熱ロッドと,ガス導入管端面の温
度を検出する温度センサとを備えてなり、導熱ロッドが
基板をガス加熱ヒータからの熱照射から遮蔽する熱遮蔽
手段を兼ねることを特徴とする気相成長装置。
3. A gas decomposition heater unit having a gas heater for heating and decomposing a compound gas containing a thin film component, which is introduced into the reaction tank when a thin film is formed on the surface of a substrate disposed in the reaction tank. And a substrate heater for maintaining the substrate at a predetermined high temperature, wherein a heat shielding means for shielding the substrate from heat irradiation from the gas heater is provided between the gas heater and the substrate. In the vapor phase growth apparatus, the compound gas is introduced into the reaction tank through a gas introduction pipe penetrating through the wall of the reaction tank and protruding into the reaction tank, and the gas decomposition heater unit is used for gas heating. A hollow heater having a built-in heating resistance wire inside a cavity in which an inner wall surface is formed as a mirror surface and an opening for drawing out internal heat to the outside, and which is disposed outside the reaction tank; The opening of the A heat conducting rod whose inner peripheral surface functions as a total reflection surface of heat, and a temperature that detects the temperature of the end face of the gas introduction pipe. A gas phase growth apparatus comprising: a sensor; and a heat conducting rod also serving as a heat shielding means for shielding the substrate from heat irradiation from a gas heater.
【請求項4】請求項第3項に記載の気相成長装置におい
て、内周面が熱の全反射面として機能する導熱ロッド
は、金属パイプの内周に金めっきを施して形成されるこ
とを特徴とする気相成長装置。
4. A heat conducting rod according to claim 3, wherein the heat conducting rod whose inner peripheral surface functions as a total reflection surface of heat is formed by applying gold plating to the inner peripheral surface of the metal pipe. A vapor phase growth apparatus characterized by the above-mentioned.
【請求項5】請求項第1項または第2項に記載の気相成
長装置において、低熱伝導率材料からなりガス導入管を
挿通可能なガス導入口が形成される板状の熱遮蔽手段
は、基板との対向面を凹に形成され、該凹部に前記ガス
導入口が形成されるとともに該凹部が、高周波電圧が印
加される多孔板もしくは網状板からなる電極板により覆
われることを特徴とする気相成長装置。
5. The gas-phase growth apparatus according to claim 1, wherein the plate-shaped heat shielding means is formed of a low thermal conductivity material and has a gas inlet through which a gas inlet tube can be inserted. The surface facing the substrate is formed in a concave shape, the gas inlet is formed in the concave portion, and the concave portion is covered with an electrode plate made of a perforated plate or a mesh plate to which a high-frequency voltage is applied. Vapor phase growth equipment.
JP3255599A 1991-05-07 1991-10-03 Vapor phase growth equipment Expired - Fee Related JP2951769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255599A JP2951769B2 (en) 1991-05-07 1991-10-03 Vapor phase growth equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10106391 1991-05-07
JP3-101063 1991-05-07
JP3255599A JP2951769B2 (en) 1991-05-07 1991-10-03 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH0521363A JPH0521363A (en) 1993-01-29
JP2951769B2 true JP2951769B2 (en) 1999-09-20

Family

ID=26441986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255599A Expired - Fee Related JP2951769B2 (en) 1991-05-07 1991-10-03 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP2951769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097495A1 (en) * 2009-09-03 2011-04-28 Universal Display Corporation Organic vapor jet printing with chiller plate

Also Published As

Publication number Publication date
JPH0521363A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP5639104B2 (en) Deposition equipment
US20050133159A1 (en) Systems and methods for epitaxially depositing films on a semiconductor substrate
US5269848A (en) Process for preparing a functional thin film by way of the chemical reaction among active species and apparatus therefor
GB2175011A (en) Chemical vapor deposition
JPS6248753B2 (en)
JP2951769B2 (en) Vapor phase growth equipment
JP3145536B2 (en) Catalytic CVD equipment
JP2841243B2 (en) Deposition film forming apparatus by microwave plasma CVD method
JP2001358077A (en) Thin film forming device
EP0728850B1 (en) Quasi hot wall reaction chamber
JP2951798B2 (en) Vapor phase growth equipment
JPH11135442A (en) Method and apparatus for forming deposited film
JPH08274067A (en) Plasma generating device
KR20210022499A (en) Heat treatment method and heat treatment apparatus
JPS6239534B2 (en)
JPH05267183A (en) Semiconductor manufacturing device
US3340848A (en) Apparatus for producing purs semiconductor material
CN220012799U (en) Temperature control part and CVD reaction device
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPS61289623A (en) Vapor-phase reaction device
JPH0651908B2 (en) Method of forming thin film multilayer structure
JP2001015439A (en) Device and method for treating semiconductor wafer
JPS61170573A (en) Photo cvd device
JPS6357776A (en) Formation of deposited film
JP2015174775A (en) Production apparatus of carbon nanotube

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees