JPH0235330A - Method for forming specimen whose creep life consumption rate is known - Google Patents

Method for forming specimen whose creep life consumption rate is known

Info

Publication number
JPH0235330A
JPH0235330A JP18481788A JP18481788A JPH0235330A JP H0235330 A JPH0235330 A JP H0235330A JP 18481788 A JP18481788 A JP 18481788A JP 18481788 A JP18481788 A JP 18481788A JP H0235330 A JPH0235330 A JP H0235330A
Authority
JP
Japan
Prior art keywords
rupture
consumption rate
time
test piece
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18481788A
Other languages
Japanese (ja)
Other versions
JPH0670606B2 (en
Inventor
Akira Hori
堀 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP18481788A priority Critical patent/JPH0670606B2/en
Publication of JPH0235330A publication Critical patent/JPH0235330A/en
Publication of JPH0670606B2 publication Critical patent/JPH0670606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To form a specimen whose life consumption rate is known efficiently in a short time by performing creep rupture tests under the nonuniform state of temperature in the axial direction of the parallel part of a test piece. CONSTITUTION:Temperature distribution is continuously changed in the axial direction of the parallel part of a test piece. Under this state, creep rupture tests are conducted. Then, the test piece is ruptured at the part of the highest temperature. The rupture time (creep rupture life) at the part of the highest temperature is obtained. In the creep rupture behavior of the same material, load stress corresponds to a Larson-Miller parameter in a one-to-one basis. Therefore, the Larson-Miller parameter becomes equal to the value of the part of the highest temperature at each part (temperature is different) of the test piece in the creep rupture test. The used time is the rupture time in the creep rupture test at all parts of the test piece. Thus, the creep life consumption rate (=used time/rupture time) of each part can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、高温環境下で使用される構造材のクリープ
寿命消費率を推測するのに必要不可欠である寿命消費率
が既知である試料を短時間で効率的に作成することがで
きるクリープ寿命消費率が既知の試料の作成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention is applicable to a sample whose lifetime consumption rate is known, which is essential for estimating the creep life consumption rate of structural materials used in high-temperature environments. The present invention relates to a method for preparing a sample with a known creep life consumption rate that can be efficiently prepared in a short time.

「従来の技術」 高温環境下で使用される構造材は使用中にクリープ破断
する恐れがあり、このため、たとえば、長′時間使用さ
れた石油精製化学プラントなどの加熱炉あるいは反応炉
等では、1年に1回程度その構]34Aのクリープ寿命
消費率を調査し安全性を担保しでいる。
"Prior Art" Structural materials used in high-temperature environments may undergo creep rupture during use. The creep life consumption rate of 34A is investigated to ensure safety.

しかして、その借逓]Δ自体のクリープ破断試験からク
リープ寿命消費率を知るために(」、供試料の採11’
l :F;、1−び試験に多大の労力と時間を要する。
Therefore, in order to know the creep life consumption rate from the creep rupture test of Δ itself,
1: F;, 1- and testing require a great deal of effort and time.

そこで、その構造材と同−祠ネ4の試験片を用いて種々
のクリープ寿命消費率が既知である試ネ−1を作成し、
これらの試1i:lを用しビζクリープ寿命消費率と硬
さあろい(」7u流抵抗値等どの関係を予め調へておき
、このデータとその構造材を調査して得られた硬さある
い(」電流抵抗値等とを比較してその構造材の]I命消
費率を4CCatllしている。
Therefore, test pieces 1 of which various creep life consumption rates are known were created using test pieces of the same material as the structural material.
Using these test 1i:l, the relationship between Biζ creep life consumption rate and hardness assorted ('7u flow resistance value, etc.) was determined in advance, and the hardness obtained by investigating this data and the structural material. The life consumption rate of the structural material is calculated by comparing it with the current resistance value, etc.

ところで、従来、このようなりリープ寿命消費>43が
既知である試料(」、試験片の平行部全体を均にある一
定の温度’l’、(’C)に保持しながら、ある一定の
応力σ1(kgf/mm’)を負荷して行うクリープ破
断試験を、あるl’!Jlfil t ](h r )
で中断することにより作成されている。ここで、この試
別の使用時間はt、(hr)であるので、この試験片と
同一材料の他の試験片を月1いノークリープ破断試験に
おいて得られノご破断時間がり、(hr)であったとす
るど、この試11 tJ、 寿命消費率−使用時間/破断時間−t+/l。
By the way, in the past, a sample ('') with a known leap life consumption of >43, was applied to a certain stress while uniformly holding the entire parallel part of the test piece at a certain temperature 'l', ('C). A creep rupture test is carried out with a load of σ1 (kgf/mm').
It is created by interrupting. Here, since the usage time of this test is t, (hr), the rupture time of this test piece and another test piece of the same material obtained in a monthly no-creep rupture test is t, (hr). Assuming that this test was 11 tJ, life consumption rate - usage time/rupture time - t+/l.

の試ネ:lということになる。The test result is: l.

「発明が解決しようとする課題−1 しかしながら、」1記のような方法では、作成に長時間
を要するにもかかイつらず、作成された試料の寿命消費
率が一定であるので、種々の寿命消費率の試料を得るた
めには、多数の試験片について」1記のクリープ試験を
行なう必要かあった。このため、多大の労力と時間を必
要とした。
``Problem to be Solved by the Invention-1'' However, although the method described in 1. takes a long time to prepare, the lifetime consumption rate of the prepared sample is constant, so it is difficult to solve various problems. In order to obtain a lifetime consumption rate sample, it was necessary to conduct the creep test described in ``1'' on a large number of test specimens. This required a great deal of effort and time.

また、」1記の方法で得られた使用時間t、の試料の寿
命消費率の計算に用いる破断時間t 2fJ他の試験片
の破断時間であるので、算出された寿命消費率に(J試
験片間の破断時間のばらつきによる誤差が含まれて1.
まうという欠点があった。
In addition, since the rupture time t used to calculate the life consumption rate of the sample with the usage time t obtained by the method described in 1.2fJ is the rupture time of another test piece, the calculated life consumption rate (J test 1. Includes errors due to variations in fracture time between pieces.
There was a drawback to it.

この発明は、」1記事情に鑑みなされたしので、その目
的とするところは、寿命消費率が既知である試料を短時
間で効率的にかつより正確な)i命消費率を持つように
作成することかできるクリープ寿命消費率が既知の試オ
ニlの作成方法を提供することにある。
The present invention has been made in view of the circumstances described in item 1.The purpose of this invention is to efficiently convert a sample whose life consumption rate is known to have a life consumption rate that is more accurate and efficient in a short time. The object of the present invention is to provide a method for creating a test specimen whose creep life consumption rate is known.

1課題を解決するための手段−1 」−記[」的を達成するために、この発明(j1クリー
プ破断試験の同一試験片においては、応力と破断11j
Jのラーマン・ミラーパラメータとかl対Iの対応をす
ることに5’t ll したしので、試験片平行部の軸
線方向の温度を不均一な状態としてクリープ破断試験を
行うごどにより試1i1を作成ケることを特徴とり一ろ
ちのである。
1 Means for Solving Problems-1 In order to achieve the objective described in ``-1'', this invention (in the same test piece for the j1 creep rupture test, stress and rupture 11j
Since we decided to make the correspondence between the Raman-Miller parameters of J and I versus I, we carried out test 1i1 by performing a creep rupture test with the temperature in the axial direction of the parallel part of the specimen being non-uniform. It is unique in that it can be created.

[作用 」 この発明において(」、試験片平行部をその軸線方向に
連続的に変化した1M1度分布の状態にしてクリープ破
断試験を行うと、最高温度部で破断し、ごれにより最高
温度部の破断時間(クリープ破断寿命)か得られろ。
[Function] In this invention, when a creep rupture test is carried out on the parallel part of a specimen in a state with a 1M1 degree distribution that changes continuously in the axial direction, the specimen ruptures at the highest temperature part, and due to dirt, the highest temperature part Find the rupture time (creep rupture life) of

このクリープ破断ノミ命(j、/lS度ど破断時間の関
数であるラーマン・ミラーパラメータPて表すことかで
きる。
This creep rupture chisel life (j, /lS) can be expressed as the Raman-Miller parameter P, which is a function of the rupture time.

1〕−1’ ((!ogL iC) x l 0ここで
、T、温度(K ) [、破断時間(1〕r) C材料定数 同−月利のクリープ破断挙動においては、負荷応力と破
断時のラーマン・ミラーパラメータとは、I対Iの対応
をケるので、」1記クリープ破断試験においては試験片
の各部分(温度が異なる)においてラーマン・ミラーパ
ラメータは」−記最高’/M4度部の値ど同じとなる。
1]-1' ((!ogL iC) x l 0 where, T, temperature (K) [, rupture time (1]r) The Raman-Miller parameters at the time have an I to I correspondence, so in the creep rupture test described in 1., the Raman-Miller parameters for each part of the test piece (at different temperatures) are ``-maximum''/M4 The value of the degree will be the same.

このことから、他の温度の部分の予想破断時間を、上記
ラーマン・ミラーパラメータの値から算出することがで
きる。
From this, it is possible to calculate the expected rupture time of the portions at other temperatures from the values of the Raman Miller parameters.

使用時間は試験片のすべての部分で上記クリープ破断試
験の破断時間であるので、各部分のクリープ寿命消費率
(−使用時間/破断時間)を求めることができる。
Since the usage time is the rupture time in the creep rupture test for all parts of the test piece, the creep life consumption rate (-usage time/rupture time) of each part can be determined.

このようにこの発明においては、1つの試験片から連続
的に変化した寿命消費率を持つ試料か得られる。
In this way, in the present invention, a sample having a lifetime consumption rate that varies continuously can be obtained from one test piece.

1一実施例 I 以下、この発明を2.25Cr−IMo鋼の試料の作成
に適用しノコ具体例に基ついて詳述する。
11 Example I Hereinafter, the present invention will be applied to the preparation of a sample of 2.25Cr-IMo steel, and a specific example of a saw will be described in detail.

2.250r−IMo鋼の試験片を用い、この試験片の
平行部を、ヒータの温度を軸線方向に沿って変えること
により、第1図に示すような軸線方向に連続的に変化し
たl、1.115度分布の状態にして、クリープ破断試
験をいくつかの応力について行った。
2. Using a test piece of 250r-IMo steel, the parallel part of this test piece was continuously changed in the axial direction as shown in Fig. 1 by changing the temperature of the heater along the axial direction. Creep rupture tests were conducted for several stresses with a 1.115 degree distribution.

試験の結果、応力の値に拘わらず最高温度部(667°
C)で破断した。
As a result of the test, the highest temperature part (667°
It broke at C).

応力3 、9 kgf/mm2を負荷した試験片を例に
とって説明すると、この試験片の破断時間は8859h
rであった。したがって、この試験片の応力39 kg
f/mm2に対するクリープ破断寿命は、677°Cで
885.9hrということになる。
Taking a test piece loaded with a stress of 3.9 kgf/mm2 as an example, the rupture time of this test piece is 8859 hours.
It was r. Therefore, the stress of this test piece is 39 kg
The creep rupture life for f/mm2 is 885.9 hr at 677°C.

これを、ラーマン・ミラーパラメータPで表すと、 P = T ((ogt十〇 )X ]  0ここで、
E’  温度(K) t 破断時間(hr ) C・+Aオ81定数 (2,25Cr−IMo[1Mに対 しては20 ) であるので、 P−(677−1−273)(Qog885.9+20
)l0 =21 80 となる。
Expressing this in terms of the Raman-Miller parameter P, P = T ((ogt 〇)X ] 0 where,
E' temperature (K) t rupture time (hr) C・+Ao81 constant (20 for 2,25Cr-IMo [1M), so P-(677-1-273) (Qog885.9+20
)l0 =21 80.

一定の材料(合金組成、ミクロ組織が同じである飼料)
のクリープ破断挙動においては、負荷応力と破断時のラ
ーソン・ミラーパラメータ(以下、寿命パラメータと称
する)とは、1対1の対応をすると言イツれている。こ
のことから、」1記試験片の平行部では応力が一定(3
,9kg1’/mm2)であるので、温度の値に拘わら
ず寿命パラメータ(J−定の値(21,80)となる。
Constant material (feed with the same alloy composition, microstructure)
In the creep rupture behavior of a steel, it is said that there is a one-to-one correspondence between the applied stress and the Larson-Miller parameter (hereinafter referred to as the life parameter) at the time of fracture. From this, it can be concluded that the stress is constant (3
, 9kg1'/mm2), the life parameter becomes the J-constant value (21, 80) regardless of the temperature value.

−1−記のことから、試験片の650°Cの部分(最低
温度の部分)の予想破断時間をt3とすると、(650
+273)(Qogt3+ 20)x I 021.8
0 となり、これより、t、、= 4156 brとなる。
-1-, if the expected rupture time of the 650°C part (lowest temperature part) of the test piece is t3, then (650°C
+273) (Qogt3+ 20)x I 021.8
0, and from this, t, , = 4156 br.

使用時間(」試験片のすへての部分で8859hrであ
るのて、温度650°Cの部分におθる寿命消費率は、 寿命消費率−使用時間/破断時間 885.9/4156 一〇 21 となる。
Since the usage time (') is 8859 hr in all parts of the test piece, the life consumption rate at the part where the temperature is 650°C is: Life consumption rate - usage time / rupture time 885.9/4156 10 21.

温度か高くなるに従って予想破断時間は短くなるので寿
命消費率は大きくなり最高温度の部分(破断点)でlと
なる。
As the temperature rises, the expected rupture time becomes shorter, so the life consumption rate increases and becomes 1 at the highest temperature (break point).

」1記により、第1図に示す温度分布に対応した0、2
1から1の間の連続的に変化した寿命消費率を持つ試料
が得られたことになる。
” 1, 0, 2 corresponding to the temperature distribution shown in Figure 1.
A sample with a lifetime consumption rate that varied continuously between 1 and 1 was obtained.

このようにして作成された試料は、その各部分について
硬ざあるいは電流抵抗値等を測定し、これらとクリープ
寿命消費率との関係を調べ、これらのデータと加熱炉等
の構造材を調査して得られたデータとを比較し、それら
の構造材の寿命消費率を推測することにより、それらの
構造相の安全性を確認するのに使用されろ。
The hardness or current resistance value of each part of the sample prepared in this way was measured, the relationship between these and the creep life consumption rate was investigated, and these data and structural materials such as heating furnaces were investigated. It can be used to confirm the safety of structural materials by comparing the data obtained with the above data and estimating the lifetime consumption rate of those structural materials.

「発明の効果」 以」二説明したように、この発明にあっては、つの試験
片で、その平行部の軸線方向に沿って、各部分の温度に
応じた異なる寿命消費率を有する試料が連続的に得られ
る。したがって、寿命消費率が既知である試料を従来よ
り短時間で効率的に作成することができる。
``Effects of the Invention'' As explained hereinafter, in the present invention, there are two specimens each having different lifetime consumption rates along the axial direction of the parallel parts depending on the temperature of each part. Obtained continuously. Therefore, a sample with a known lifetime consumption rate can be created more efficiently and in a shorter time than before.

また、破断時間がその試験片自体の破断時間であるので
、より正確な寿命消費率を算出することができる。
Furthermore, since the time to break is the time to break of the test piece itself, a more accurate life consumption rate can be calculated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を説明するための図である。 FIG. 1 is a diagram for explaining this invention.

Claims (1)

【特許請求の範囲】[Claims] 試験片平行部の軸線方向の温度を不均一な状態としてク
リープ破断試験を行うことを特徴とするクリープ寿命消
費率が既知の試料の作成方法。
A method for preparing a sample with a known creep life consumption rate, characterized in that a creep rupture test is performed with the temperature in the axial direction of the parallel part of the test piece being non-uniform.
JP18481788A 1988-07-25 1988-07-25 Creep life consumption method for continuously changing samples Expired - Lifetime JPH0670606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18481788A JPH0670606B2 (en) 1988-07-25 1988-07-25 Creep life consumption method for continuously changing samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18481788A JPH0670606B2 (en) 1988-07-25 1988-07-25 Creep life consumption method for continuously changing samples

Publications (2)

Publication Number Publication Date
JPH0235330A true JPH0235330A (en) 1990-02-05
JPH0670606B2 JPH0670606B2 (en) 1994-09-07

Family

ID=16159808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18481788A Expired - Lifetime JPH0670606B2 (en) 1988-07-25 1988-07-25 Creep life consumption method for continuously changing samples

Country Status (1)

Country Link
JP (1) JPH0670606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195314B1 (en) 1996-08-19 2001-02-27 Hitachi, Ltd. Objective lens driving device and optical disc apparatus using the same
CN108279174A (en) * 2018-02-06 2018-07-13 沈阳航空航天大学 A kind of detection method and device of the failure by shear temperature of material
CN113008677A (en) * 2021-03-02 2021-06-22 中南大学 Creep endurance prediction method of nickel-based superalloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195314B1 (en) 1996-08-19 2001-02-27 Hitachi, Ltd. Objective lens driving device and optical disc apparatus using the same
US6567352B1 (en) 1996-08-19 2003-05-20 Hitachi, Ltd. Objective lens driving device and optical disc apparatus using the same
US6680883B2 (en) 1996-08-19 2004-01-20 Hitachi, Ltd. Objective lens driving device and optical disc apparatus using the same
CN108279174A (en) * 2018-02-06 2018-07-13 沈阳航空航天大学 A kind of detection method and device of the failure by shear temperature of material
CN113008677A (en) * 2021-03-02 2021-06-22 中南大学 Creep endurance prediction method of nickel-based superalloy
CN113008677B (en) * 2021-03-02 2022-06-10 中南大学 Creep endurance prediction method of nickel-based superalloy

Also Published As

Publication number Publication date
JPH0670606B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Nikbin et al. Relevance of nonlinear fracture mechanics to creep cracking
Li et al. Influence of thermal shock damage on the flexure strength of alumina ceramic at different temperatures
JPH0235330A (en) Method for forming specimen whose creep life consumption rate is known
Nicholas et al. Predicting crack growth under thermo-mechanical cycling
Dassios et al. Intrinsic parameters in the fracture of carbon/carbon composites
KR100660209B1 (en) A measurement method of recrystallizing fraction for analyzing of hot rolling process
Wang et al. Influence of test methods on fracture toughness of a dental porcelain and a soda lime glass
Bošnjak et al. Bond performance of reinforcement in concrete after exposure to elevated temperatures
Hayhurst et al. Damage growth under nonproportional loading
Metcalfe et al. Effect of test specimen size on graphite strength
Edsinger et al. The effect of size, crack depth and strain rate on fracture toughness—temperature curves of a low activation martensitic stainless steel
RU2230630C1 (en) Method for determining optimal cutting speed
Domack Evaluation of K ISCC and da/dt Measurements for Aluminum Alloys Using Precracked Specimens
Attaoui et al. Quantitative analysis of crack shielding degradation during cyclic fatigue of alumina
Ferreira et al. Fatigue and creep in titanium grade 2
Kaufman et al. Creep cracking in 2219-T851 plate at elevated temperatures
JPH0210900B2 (en)
Staroselsky The express method of determining the fracture toughness of brittle materials
SU1317315A1 (en) Method of creep testing of specimens
Nonaka et al. CREEP-FATIGUE CRACK PROPAGATION BEHAVIOR IN 2 1/4Cr-1Mo STEEL FOR FAST BREEDER REACTOR
Miller et al. Increases in fatigue life caused by the introduction of rest periods
JPH07151662A (en) Creep life evaluation through temperature acceleration test
RU2257565C1 (en) Method of predicting wear resistance of hard-alloy cutting tools
Trantina Strengthening and proof testing of siliconised SiC
JPS6128291B2 (en)