JPS6128291B2 - - Google Patents

Info

Publication number
JPS6128291B2
JPS6128291B2 JP7124479A JP7124479A JPS6128291B2 JP S6128291 B2 JPS6128291 B2 JP S6128291B2 JP 7124479 A JP7124479 A JP 7124479A JP 7124479 A JP7124479 A JP 7124479A JP S6128291 B2 JPS6128291 B2 JP S6128291B2
Authority
JP
Japan
Prior art keywords
cracking
stress
test
test piece
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7124479A
Other languages
Japanese (ja)
Other versions
JPS55163431A (en
Inventor
Masahisa Aoyanagi
Susumu Hioki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7124479A priority Critical patent/JPS55163431A/en
Publication of JPS55163431A publication Critical patent/JPS55163431A/en
Publication of JPS6128291B2 publication Critical patent/JPS6128291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は定変位試験による材料の割れ感受性の
標価方法に関するものであり、特に応力除去焼な
まし割れ感受性の試験方法に係るものである。 溶接によつて生じた残留応力の軽減や、熱影響
部の組識の改善を目的として応力除去焼なまし処
理(以後、SR処理という。)が広く行われてい
る。しかし、C,Si,Mn,P,S,Cu,Mo,
Al,Ti,V,No,B等を含有する低合金鋼及び
高合金鋼をSR処理すると、溶接熱影響部粗粒域
に割れ(以後、SR割れという。)が発生すること
があり、溶接施工上問題となることが多かつた。
そこで、このようなSR処理に伴つて発生する割
れを防止するために、まず鋼材の割れに対する感
受性を明確にしておく必要がある。このSR割れ
の感受性を試験する従来の方法を以下に示す。 第1図は曲げによつて拘束力を負荷する方法で
あり、1はU字状に曲げられた母材、2は溶接金
属、3は溶接熱影響部、4は溶接熱影響部粗粒域
に設けた切欠きである。母材1の開放端側はボル
ト5によつて拘束されており、この状態にて500
〜750℃でSR処理を行うことにより、SR割れを
再現するものである。 第2図は開先加工した母材6に試験ビード7を
置いた後、拘束ビード8を所定のパス数置くこと
によつて拘束力を負荷し、その後、SR処理を行
い、SR割れを再現する方法である。 第3図および第4図は母材を、H型に抜いて開
先を設けた試験片9に加工し、この開先部に溶接
ビード10を置いて、その熱収縮によるひずみを
試験片9全体で拘束するものである。この拘束力
は、試験片の形状を種々に変えることによつて任
意の値とすることができる。そして、この試験片
をSR処理し、SR割れを再現するものである。 第5図は母材に溶接熱影響部粗粒域を付与した
後、コンパクトタイプ試験片11を作製し、これ
に矢印A方向への荷重の付与によつて定ひずみを
負荷し、その状態でSR処理することによつてSR
割れを再現する方法である。ここで、SR処理の
際に発生する試験片及び試験機の熱膨張による初
期のひずみの変化は、荷重を種々変化させること
によつて、その値を一定に保持するものである。 SR割れに関与する主な因子としては化学成
分、溶接熱影響部の組識、結晶粒度などの冶金学
的因子と、拘束応力、応力緩和特性などの力学的
因子があり、これらの因子を定量的に把握するこ
とがSR割れ感受性を評価する上で非常に重要で
ある。しかし、従来技術においては力学的因子の
定量的評価に特に問題があつた。すなわち、第1
図に示す方法ではSR割れを評価するパラメータ
として曲げ変位量を用いているが、これは本試験
法固有の値である。この値を応力や応力拡大係数
などの一般的なパラメータで表わすことは試験片
の形状からして困難である。 第2図に示す方法では力学的パラメータとして
角変位量を用いているが、この値も本試験片固有
の値である。また、この試験法では一般にSR割
れ発生の起点となりやすい止端部にストレインゲ
ージ等を貼ることによつて、一般的なパラメータ
である残留応力による評価が可能となる。しか
し、溶接部には普通未溶着部が存在し、この部分
での応力集中によつてSR割れが発生することも
多い。したがつて、止端部における残留応力の値
がかならずしも割れを評価するパラメータにはな
り得ない。 第3図および第4図に示す方法では力学的パラ
メータとして拘束度を用いている。この値は試験
片の形状だけで決まる量である。しかし、SR割
れを評価する場合、溶接入熱、冷却速度、止端部
の形状と応力集中等の溶接施工条件にかかわる因
子によつてSR割れの発生が大きく左右されるた
め、拘束度だけでSR割れを評価することはでき
ない。またこの場合、止端部の残留応力をパラメ
ータとすることは可能であるが、第2図に示す方
法と同様、未溶着部での応力集中の評価が不可能
である。このように、実際に溶接ビードを置い
て、その熱影響部でSR割れを再現する方法で
は、熱影響部の組織や結晶粒度などの冶金学的因
子は満足されるが、力学的因子の評価に難点が多
い。特に、SR割れは止端部での切欠きや、未溶
着部における応力集中によつて発生するため、切
欠き部の応力集中を正確に把握できるような試験
方法が要求される。この点に関し、第5図に示す
方法は母材に溶接熱影響部粗粒域の模擬熱履歴を
付与した後、コンパクトタイプ試験片を作製し、
荷重を負荷した状態でSR処理を行つてSR割れを
再現する方法であり、パラメータとして、開口変
位、応力拡大係数など、割れの発生や伝播を評価
するに適した量で評価することが可能である。し
かし、この試験法で実際の溶接部と同様な定変位
状態における応力緩和特性を再現するためには、
SR処理の昇温時及び保持時の試験片や試験機の
熱膨張による熱ひずみを確実に消去できる試験機
でなければならない。しかし、熱膨張による微小
な変位によつて発生する大きな応力変動を消去す
るには非常に複雑な制御装置が必要であり、高価
なものとなつてしまう。 本発明は材料の定ひずみ状態でのき裂の発生を
定量的に評価するに際し、問題となる温度変化に
伴つて生ずるひずみ量の変動を試験片自体で消去
して、常に定ひずみ状態を維持することを目的と
する応力除去焼なまし割れの感受性試験方法に関
するものである。 本発明は、試験材料から第6図に示すように切
欠き12を有する試験片13を作製し、この試験
片13の切欠き12に同種材または異種材のクサ
ビ14を打込むことによつて所定の定ひずみ量を
付与するもので、このため、試験環境の温度変
化、もしくは環境温度を任意に変化させたことに
よつて生ずる熱膨張量は、最初試験片13に付与
したひずみ量には影響を及ぼさず、厳密な定ひず
み試験を簡便に行うことができるものである。こ
の場合、試験片13の大きさ及び長さの比率など
は特に制約はない。また、クサビ14の打込みに
よつて付与したひずみ量はクサビ14の打込み
量、またはクラツク先端開口変位量をコンタクト
ストレインメータ等で測定することによつて定量
化することが可能である。そしてこの値から、割
れの発生や伝播を最適に評価できる開口変位量や
応力拡大係数を容易に求めることができる。さら
にクラツク先端の半径を大きくした場合、応力を
パラメータとして割れ感受性を評価することが可
能となる。 溶接施工時のSR割れ感受性を求めた一実施例
により、本発明をさらに詳細に説明する。まず、
表1に示すような化学成分を有する鋼材につい
て、高周波加熱等で溶接熱影響部粗粒域の熱履歴
を付与した。
The present invention relates to a method for evaluating the cracking susceptibility of materials using a constant displacement test, and more particularly to a method for testing the stress relief annealing cracking susceptibility. Stress relief annealing treatment (hereinafter referred to as SR treatment) is widely used for the purpose of reducing residual stress caused by welding and improving the structure of the heat affected zone. However, C, Si, Mn, P, S, Cu, Mo,
When low-alloy steel and high-alloy steel containing Al, Ti, V, No, B, etc. are subjected to SR treatment, cracks (hereinafter referred to as SR cracks) may occur in the coarse grain region of the weld heat affected zone. There were many problems during construction.
Therefore, in order to prevent cracks that occur with such SR treatment, it is first necessary to clarify the susceptibility of steel materials to cracks. The conventional method for testing susceptibility to SR cracking is shown below. Figure 1 shows a method of applying restraining force by bending, where 1 is the base material bent into a U-shape, 2 is the weld metal, 3 is the weld heat affected zone, and 4 is the coarse grain area of the weld heat affected zone. It is a notch made in the. The open end side of the base material 1 is restrained by bolts 5, and in this state 500
SR cracking is reproduced by performing SR treatment at ~750℃. Figure 2 shows that after placing a test bead 7 on a beveled base material 6, a restraining force is applied by placing a restraining bead 8 a predetermined number of passes, and then SR treatment is performed to reproduce SR cracking. This is the way to do it. In FIGS. 3 and 4, the base material is punched into an H-shape to form a test piece 9 with a groove, a weld bead 10 is placed in the groove, and the strain due to heat shrinkage is absorbed into the test piece 9. It is a total restraint. This restraining force can be set to an arbitrary value by variously changing the shape of the test piece. This test piece is then subjected to SR treatment to reproduce SR cracking. Figure 5 shows that a compact type specimen 11 is prepared after a welding heat-affected zone coarse-grained region is imparted to the base metal, a constant strain is applied to this by applying a load in the direction of arrow A, and in that state SR SR by processing
This is a method to reproduce cracks. Here, the initial strain change due to thermal expansion of the test piece and testing machine that occurs during the SR treatment is kept constant by varying the load. The main factors involved in SR cracking include metallurgical factors such as chemical composition, structure of the weld heat affected zone, and grain size, and mechanical factors such as confinement stress and stress relaxation characteristics.These factors can be quantified. It is very important to understand this in order to evaluate the SR cracking susceptibility. However, in the prior art, there was a particular problem in quantitative evaluation of mechanical factors. That is, the first
The method shown in the figure uses bending displacement as a parameter for evaluating SR cracking, but this is a value unique to this test method. It is difficult to express this value in terms of general parameters such as stress and stress intensity factor due to the shape of the test piece. The method shown in FIG. 2 uses the amount of angular displacement as a mechanical parameter, but this value is also unique to this test piece. In addition, in this test method, by attaching a strain gauge or the like to the toe, which is generally a likely starting point for SR cracking, it is possible to evaluate using residual stress, which is a common parameter. However, there is usually an unwelded part in the weld, and SR cracking often occurs due to stress concentration in this part. Therefore, the value of residual stress at the toe cannot necessarily be used as a parameter for evaluating cracking. The methods shown in FIGS. 3 and 4 use the degree of restraint as a mechanical parameter. This value is determined only by the shape of the test piece. However, when evaluating SR cracking, the occurrence of SR cracking is greatly influenced by factors related to welding conditions such as welding heat input, cooling rate, toe shape and stress concentration, and so the degree of restraint alone is not sufficient. It is not possible to evaluate SR cracking. In this case, it is possible to use the residual stress at the toe as a parameter, but as with the method shown in FIG. 2, it is impossible to evaluate stress concentration at the unwelded part. In this way, the method of actually placing a weld bead and reproducing SR cracking in its heat-affected zone satisfies metallurgical factors such as the structure and grain size of the heat-affected zone, but it is difficult to evaluate mechanical factors. There are many difficulties. In particular, SR cracking occurs due to notches at the toe and stress concentration in unwelded areas, so a test method that can accurately determine stress concentration at the notch is required. Regarding this point, the method shown in Fig. 5 involves providing a simulated thermal history of the weld heat-affected zone coarse-grained region to the base metal, and then producing a compact type test piece.
This is a method of reproducing SR cracking by performing SR processing under a load, and it is possible to evaluate using parameters such as opening displacement and stress intensity factor that are suitable for evaluating the occurrence and propagation of cracks. be. However, in order to reproduce the stress relaxation characteristics under a constant displacement state similar to that of an actual weld using this test method, it is necessary to
The testing machine must be able to reliably eliminate thermal strain caused by thermal expansion of the test piece and testing machine during heating and holding during SR treatment. However, in order to eliminate large stress fluctuations caused by minute displacements due to thermal expansion, a very complicated control device is required, resulting in an expensive device. When quantitatively evaluating the occurrence of cracks in a material under a constant strain state, the present invention eliminates fluctuations in the amount of strain that occur due to temperature changes using the test piece itself, thereby constantly maintaining a constant strain state. This paper relates to a stress relief annealing cracking susceptibility test method for the purpose of In the present invention, a test piece 13 having a notch 12 is prepared from a test material as shown in FIG. This applies a predetermined constant amount of strain. Therefore, the amount of thermal expansion caused by changes in the temperature of the test environment or by arbitrarily changing the environmental temperature will be different from the amount of strain initially applied to the test piece 13. It is possible to easily perform a strict constant strain test without any adverse effects. In this case, there are no particular restrictions on the size and length ratio of the test piece 13. Further, the amount of strain imparted by driving the wedge 14 can be quantified by measuring the driving amount of the wedge 14 or the amount of displacement of the crack tip opening using a contact strain meter or the like. From this value, the amount of opening displacement and stress intensity factor that can optimally evaluate the occurrence and propagation of cracks can be easily determined. Furthermore, when the radius of the crack tip is increased, it becomes possible to evaluate cracking susceptibility using stress as a parameter. The present invention will be explained in more detail using an example in which SR cracking susceptibility during welding work was determined. first,
For steel materials having chemical components as shown in Table 1, the thermal history of the coarse grain region of the weld heat affected zone was imparted by high frequency heating or the like.

【表】 この材料から長さ32mm、幅28mm、厚さ10mmのブ
ロツクに、幅2mm、長さ16mmの切欠きを入れた試
験片を作製した。ここで、切欠き先端半径は0.1
mmである。この試験片に厚さ1.5〜2.5mm、幅12mm
のクサビを打込んで表2に示す応力拡大係数を付
与した。
[Table] A test piece was prepared from this material by making a block 32 mm long, 28 mm wide, and 10 mm thick with a notch 2 mm wide and 16 mm long. Here, the notch tip radius is 0.1
mm. This specimen has a thickness of 1.5-2.5mm and a width of 12mm.
The stress intensity factor shown in Table 2 was given by driving a wedge into the specimen.

【表】 これらの試験片に600℃で3時間保持のSR処理
を施す。この結果、付与した応力拡大係数が高い
試験片では、切欠き層にSR割れが発生した。こ
のSR割れの長さと応力拡大係数の関係を第7図
に示す。これより、SR割れは材料によつて特定
の応力拡大係数で発生し、その長さは応力拡大係
数と一次比例の関係にあることなどから、鋼材の
割れ感受性を定量的に把握することができた。 本発明の試験方法によれば、従来から用いられ
てきた種々の方法とは異なり、定ひずみ状態にお
ける応力緩和特性を簡便に再現でき、かつ、材料
の割れ感受性を評価するに際し、特に重要な力学
的因子を適確に把握することが可能となる。
[Table] These test pieces were subjected to SR treatment at 600℃ for 3 hours. As a result, SR cracking occurred in the notch layer in the specimens with a high applied stress intensity factor. Figure 7 shows the relationship between the length of this SR crack and the stress intensity factor. From this, SR cracking occurs at a specific stress intensity factor depending on the material, and the length is linearly proportional to the stress intensity factor, so it is possible to quantitatively understand the cracking susceptibility of steel materials. Ta. According to the test method of the present invention, unlike various conventionally used methods, stress relaxation characteristics under a constant strain state can be easily reproduced, and the test method is able to easily reproduce stress relaxation characteristics in a constant strain state. This makes it possible to accurately grasp the relevant factors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は、材料の溶接割れ感受性を
試験する従来の方法を示すもので、第1図は曲げ
によつて拘束力を負荷する形式の試験方法を示す
正面図、第2図は試験材料を開先加工して、試験
ビードを置いた後に、拘束ビードを置くことによ
つて拘束力を負荷する形式の試験方法を示す斜視
図、第3図は試験材料をH型に加工した後、開先
部に溶接ビードを置いて、その熱収縮による応力
を試験片全体で拘速する形式の試験方法を示す正
面図、第4図は第3図の4−4線断面図、第5図
はコンパクトタイプ試験片を用いた割れ感受性試
験方法を示す正面図、第6図は本発明試験方法に
用いる試験片を示す正面図、第7図は本発明試験
方法によるSR割れの長さと応力拡大係数との関
係を示す図である。 12…切欠き、13…試験片、14…クサビ。
Figures 1 to 5 show the conventional method of testing the weld cracking susceptibility of materials. Figure 1 is a front view showing a test method in which a restraining force is applied by bending, and Figure 2 Figure 3 is a perspective view showing a test method in which a restraining force is applied by placing a restraining bead after the test material is grooved and a test bead is placed. After that, a weld bead is placed on the groove part, and the stress due to the thermal contraction is restrained throughout the test piece. Figure 5 is a front view showing the crack susceptibility test method using a compact type test piece, Figure 6 is a front view showing the test piece used in the test method of the present invention, and Figure 7 is the length and length of SR cracks according to the test method of the present invention. FIG. 3 is a diagram showing the relationship with stress intensity factor. 12...notch, 13...test piece, 14...wedge.

Claims (1)

【特許請求の範囲】[Claims] 1 材料の割れに対する感受性を評価するに際
し、切欠きを有する試験片に同種材または異種材
のクサビを打込むことによつて定ひずみ量を付与
し、その後、所定の環境中で定変位試験すること
を特徴とする応力除去焼なまし割れ感受性試験方
法。
1. When evaluating the susceptibility of materials to cracking, a constant amount of strain is applied by driving a wedge of the same or different material into a test piece with a notch, and then a constant displacement test is performed in a specified environment. A stress relief annealing cracking susceptibility testing method characterized by:
JP7124479A 1979-06-08 1979-06-08 Sensibility testing method of stress removal annealing crack Granted JPS55163431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124479A JPS55163431A (en) 1979-06-08 1979-06-08 Sensibility testing method of stress removal annealing crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124479A JPS55163431A (en) 1979-06-08 1979-06-08 Sensibility testing method of stress removal annealing crack

Publications (2)

Publication Number Publication Date
JPS55163431A JPS55163431A (en) 1980-12-19
JPS6128291B2 true JPS6128291B2 (en) 1986-06-30

Family

ID=13455080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124479A Granted JPS55163431A (en) 1979-06-08 1979-06-08 Sensibility testing method of stress removal annealing crack

Country Status (1)

Country Link
JP (1) JPS55163431A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190686A (en) * 1983-04-13 1984-10-29 Niles Parts Co Ltd Driving circuit for master slave clock
US8186875B2 (en) * 2008-09-14 2012-05-29 Nuovo Pignone S.P.A. Method for determining reheat cracking susceptibility
JP6271403B2 (en) * 2013-12-03 2018-01-31 三菱日立パワーシステムズ株式会社 Reheat cracking sensitivity evaluation method and reheat cracking suppression method

Also Published As

Publication number Publication date
JPS55163431A (en) 1980-12-19

Similar Documents

Publication Publication Date Title
McEvily et al. The role of cross-slip in brittle fracture and fatigue
Luo et al. Experimental investigation on the heterogeneous ratchetting of SUS301L stainless steel butt weld joint during uniaxial cyclic loading
Vervynckt et al. Characterization of the austenite recrystallization by comparing double deformation and stress relaxation tests
Haggag et al. Structural integrity evaluation based on an innovative field indentation microprobe
Ju et al. Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method
McParlan et al. Hydrogen cracking in weld metals
DE4018759A1 (en) METHOD FOR DETERMINING THE RELATIVE HEAT INFLUENCE OF STEEL
JPS6128291B2 (en)
Mills Heat-to-heat variations in the fracture toughness of austenitic stainless steels
Lawrence Jr et al. Fatigue crack initiation and propagation in high-yield-strength steel weld metal
Chaouadi et al. Crack Resistance Curve Measurement With Miniaturized CT Specimen
Sun et al. Fatigue experimental analysis and numerical simulation of FSW joints for 2219 Al–Cu alloy
MIKI et al. Initiation and propagation of fatigue cracks in partially-penetrated longitudinal welds
Dobi et al. Determination of the tensile properties of specimens with small dimensions
Seo et al. Effect of grain boundary ferrite on susceptibility to cold cracking in high-strength weld metal
JP3920961B2 (en) Evaluation method of remaining life of low alloy steel
Quesnel et al. The response of high-strength low alloy steel to cyclic plastic deformation
Conle Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen
JPH08240516A (en) Test piece with uniform residual stress and its manufacture
Clark Applicability of the K ISCC concept to very small defects
Radziminski et al. Low cycle fatigue of butt weldments of HY-100 (t) and HY-130 (t) steel
James et al. Fatigue crack propagation behavior of Type 316 (16-8-2) weldments at elevated temperature
Tikhonov et al. Method of testing gear wheels in impact bending
SU143588A1 (en) Test method for welded specimens of titanium and its alloys
Haggag et al. Nondestructive detection and assessment of damage in aging aircraft using a novel stress-strain microprobe system