JPH0235061B2 - KASADAKASEIOJUSURUSENIKOZOTAI - Google Patents

KASADAKASEIOJUSURUSENIKOZOTAI

Info

Publication number
JPH0235061B2
JPH0235061B2 JP5512882A JP5512882A JPH0235061B2 JP H0235061 B2 JPH0235061 B2 JP H0235061B2 JP 5512882 A JP5512882 A JP 5512882A JP 5512882 A JP5512882 A JP 5512882A JP H0235061 B2 JPH0235061 B2 JP H0235061B2
Authority
JP
Japan
Prior art keywords
base material
branch
fibers
short
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5512882A
Other languages
Japanese (ja)
Other versions
JPS58174619A (en
Inventor
Teruo Akashi
Atsushi Kusanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP5512882A priority Critical patent/JPH0235061B2/en
Publication of JPS58174619A publication Critical patent/JPS58174619A/en
Publication of JPH0235061B2 publication Critical patent/JPH0235061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、柔軟性、暖かさ、嵩高性、圧縮回復
性にすぐれた新規な繊維構造体、殊に中綿用素材
として好適な繊維構造体に関する。 中綿というのは、一般的には、ふとん、座ぶと
ん、その他の繊維製品において、主に保温を目的
として布帛内部に包み込まれる素材であるが、従
来このような素材として種々のものが試みられて
きた。例えば、中綿用素材として特別に設計され
た繊維に捲縮や波形を付与したものがあるが、繰
返し使用により圧縮回復性が低下するという欠点
がある。他の例としては、繊維により内部の低密
度な球状体を作成し、中綿に用いるものである
が、繰返し使用により球状体が交絡破壊され効果
が減少する。さらに別の例として、複数の短繊維
を結合部位において集中一体化し、短繊維の非集
中端は膨化拡散した房状物として中綿に用いるも
のがあるが、このような中綿は繰返し使用により
房状物同仕の交絡、短繊維のもつ貫入性から、中
綿の嵩高性が低下してくる。 本発明者らは、このような欠点を解決した新規
な繊維構造体について研究した結果、本発明を完
成した。 すなわち、本発明は、高分子物質からなる点
状、線状又は面状基材上に、短繊維状物からなる
少なくとも2次分枝をもつ分岐単位が密集してい
る繊維構造体であつて、基材の横断面において少
なくとも2方向に分岐単位の形成が認められ、か
つ、分岐単位を形成する短繊維状物の一部は、他
の短繊維状物及び/又は基材と交叉結合して網目
構造を形成していることを特徴とする嵩高性を有
する繊維構造体に関するものである。 本発明を図面を用いて説明する。第1,2,3
図は本発明の繊維構造体のモデル図である。第1
図は基材1を点状としたもの、第2図は基材1を
線状、第3図は基材1を面状としたものであり、
基材1に、短繊維状物からなる1次分枝2が派生
し、1次分枝に2次分枝3が派生し、2次分枝に
3次分枝4が派生している。1次分枝に2、3、
……、n次分枝した1つの単体を分岐単位とい
う。5は分枝どうしの結合点であり、この結合に
より網目構造が形成されている。 本発明では、このような分岐単位が基材上に密
集している。 第4,5,6図は基材の横断面を示す図であ
る。第4図は点状物の、第5図は線状物の、第6
図は面状物のそれぞれの横断面である。第4図で
は3方向に、第5図では11方向に、第6図では2
方向に分岐単位の形成が認められる。 本発明で横断面とは、線状基材では長軸に対し
直角な断面を言い、面状基材では平面に対し直角
な断面を言い、点状基材では中心をとおる断面を
言う。 本発明の繊維構造体は、分岐単位が短繊維状物
からなつている為、適度の柔軟性、軽さを有して
いる。横断面で見ると分岐単位が少なくとも2方
向に形成されている為に嵩高性と圧縮機のすぐれ
た回復性が得られる。分岐単位が1方向にしか形
成されていない繊維構造体では、分岐単位の形成
されていない側では反撥性・嵩高性を示すことが
ないから、中綿として使用した場合、全体として
は反撥性・嵩高性が減少する。1方向のみしか分
岐単位を有しない面状基材の基材面同士が接した
場合には、本発明の繊維構造体と同様の作用効果
を奏するようにも思われるが、基材そのものは分
岐単位に比較すれば嵩高性が非常に小さいから、
全体としての嵩高性は大幅に低下する。 さらに、本発明の繊維構造体は、分岐単位を形
成する短繊維状物が他の短繊維状物と一部交叉結
合して網目構造を形成している。その為、網目構
造を全く形成していない場合に比べると、圧縮さ
れた場合に分岐単位の相互貫入が著しく妨げら
れ、反撥性・嵩高性の一層の向上が行なわれる。
又、網目構造は、相互貫入の有無と無関係に、そ
れ自体反撥性の大きな構造である。このような嵩
高性・反撥性は、中綿として衣料に充填した場合
極めて多くの空気を空隙部に保持することがで
き、保温性の極めて高いものが得られる。 本発明の効果をさらに一層発揮させる為には、
分枝の次数が大きくなる程短繊維状物は長さが短
く、かつ細くなつていくのが望ましい。 分枝の次数は、基材の形態によつても異なつて
くるが、少なくとも2以上である。それより少な
い場合、保温性、嵩高性、圧縮回復性が十分発揮
されない。基材が平面状の場合は次数が2でも効
果があるが、基材が線状又は点状の場合は、3以
上の次数であることが好ましい。勿論、1次分枝
のみの分岐単位が混じつていても差し支えない
し、次数の異なる分岐単位が混在していてもよ
い。 基材1への1次分枝は、実質的に基材の面に直
角であることが好ましい。多少の傾斜はかまわな
いが、分岐単位のない空間を避け性質のよい構造
体を得るには実質的に面に垂直にほぼ等しい間隔
で存在するのが好ましい。分子単位の位置は、千
鳥型、整列型、ランダム型のいずれでもよい。 基材が点状の場合は、丁度線香花火が火玉の周
囲に派生するように分枝していることが好まし
い。基材が線状の場合は、軸に直角な面を想定す
ると、分岐単位の方向は、360゜の全周にわたつて
いることが好ましい。基材が面状の場合は、本発
明の要件を満たす為には通常、両面に分岐単位が
存在する。このような構造体を細長く切断する
と、線状の基材を有する構造体となる。 本発明における基材は、基本的には繊維形態を
とり得る高分子物質ならばすべて該当する。すな
わち、天然繊維、人造繊維、合成繊維、半合成繊
維、炭素繊維、ガラス繊維等を含む。植毛する短
繊維も同様である。基材の形態には、点状、線
状、平面状のいずれもが含まれるが、ここで言
う、点、線、平面とは勿論幾何学でいう抽象概念
ではなく、点はある空間的拡がりを持つ球その他
の点状の塊を指し、線はある太さを持つ単糸、フ
イラメント糸、紡績糸、その他の繊維状物を指
し、平面とはある厚さを持つ織布、編布、不織
布、シート等を指す。基材として、例えばモノフ
イラメント、不織布が使用可能であると同様、紡
績糸、マルチフイラメント、スプリツトヤーン、
織物、編地、網状物、平面的に拡げられたトウ、
トツプ等を点状、線状、面状の形態で使用する。 基材、短繊維状物は、例えばポリアミド糸、ポ
リエステル糸、ポリアクリル糸等の合成繊維、レ
ーヨン等の再生繊維、羊毛等の天然繊維及びこれ
らの組み合わせにていずれも使用可能である。又
ガラス繊維も使用可能である。 線状基材の長さは1〜10cm程度が好ましく、こ
れより長い場合はふとんの中綿として繰返し使用
中、基材同士の絡み合いが生じ好ましくない。1
次分枝短繊維の長さは0.5〜3cmの範囲が好まし
く、2次分枝短繊維の長さは0.01〜0.3cm位が適
当である。但し、本発明において基材、1次短繊
維及び2次短繊維の長さは規定されない。何故な
ら本発明において種々の長さに変化することによ
り羽毛様特性を得ることは勿論のこと、羽毛様特
性以外の特性を得ることを妨げるものではないか
らである。同様理由により使用する繊維のデニー
ル、植毛密度も規定しない。 基材と繊維のなす角度は特に規定しないが、人
体へのフイツト性を良くする為、すなわち羽毛様
特性を付与する為、好ましくは30〜80゜が良い。 本発明の繊維構造体の製造方法の1例は次のと
おりである。 基材上に接着剤、例えばエポキシ系、ウレタン
系、クロロプレン系、酢酸ビニル系等の接着剤を
付与した後、静電植毛法等により短繊維状物を植
毛する。これが1次分枝である。次に、基布及び
1次分枝の両方に接着剤を付与して短繊維状物を
植毛する。このとき、主に1次分枝に植毛される
が、基布にも植毛される。一部の短繊維状物は、
1次分枝と基布の両方に接着し、本発明にいう交
叉結合による網目構造が形成される。次に、基
布、1次分枝及び2次分枝に接着剤を付与した
後、短繊維状物を静電植毛すれば3次分枝が形成
され、同時に新たな1次分枝、2次分枝も形成さ
れると共に、交叉結合が形成される。このとき、
基布、1次分枝への接着剤の付与のしかたを調節
することにより、これらの形成度合が調整され
る。 このような操作を繰返すことにより任意の次数
の分枝のものが得られる。他の例は針布起毛機等
により起毛された編織地、起毛された紡績糸を基
材とし、前記接着方法により2次、3次分枝を植
毛する方法もある。 このように構成される繊維構造体は、柔軟で保
温性が大きく、嵩高性を有すると共に圧縮回復性
がすぐれ、殊に、中綿用素材として有用である。 次に、実施例により本発明を具体的に説明す
る。 実施例 1 基材及び短繊維共にポリアミド系合成繊維から
なり、基材は130dモノフイラメントを使用し、
1次分枝は太さ25d 長さ10mm、2次分枝は15d
8mm、3次分枝は0.75d 1.2mmの短繊維とした。
接着剤にはアクリル酸エステル樹脂を使用し、基
材には連続的に接着剤溶液を含浸させ、ローラで
絞液した。短繊維からなる1次、2次分枝への接
着剤の付与は、接着剤を噴霧して行ない、短繊維
の植毛は静電植毛法によつた。 このようにして得られた製品は、130dのモノ
フイラメントに、短繊維の1、2、3次分枝が順
次派生し、短繊維同士の交叉結合による網目構造
をもつ構造体であり、基材の全周にわたり分岐単
位が派生していた。このものは嵩高性、反撥性が
あり、適当な柔らかさを有するものであつた。こ
のものの性能を第1表に示す。 比較例 1 実施例1に準じて基材上に1次分枝を形成し、
次に1次分枝に接着剤を付与して2次分枝を形成
し、2次分枝に接着剤を付与して3次分枝を形成
した。このものは130dのモノフイラメントに短
繊維の1、2、3次分枝が順次派生しているが、
短繊維同士の交叉結合による網目構造をもたない
ものであつた。このものの性能を第1表に示す。 実施例 2 経、緯共に5mm間隔の網目を有する150d 50フ
イラメントからなるポリエステル系合成繊維の網
状布帛を基材として、施例1と同一の1、2、3
次分枝を順次静電植毛法により基材の両面に植毛
した。得られた製品は施例1の物と同様嵩高性、
反撥性あり、適宜裁断することにより、保温材と
して衣料内部に縫い込むことが可能であり、又、
基材編目交点をほぼ中心に経及び緯方向に5mm間
隔に細断することにより、綿羽と同様な目的に使
用できる網目構造をもつた分枝状繊維構造体とな
つた。このものの性能を第1表に示す。 比較例 2 実施例2の基材上に、実施例1と同一の1、
2、3次分枝を順次静電植毛法により植毛した。
このとき、植毛は基材の片面のみに行なつた。
又、比較例1と同様に逐次的に植毛を行なつた。
結果を第1表に示す。 実施例 3 基材に、100℃の水蒸気で25%収縮する3dのア
クリルニトリル系合成繊維40%と3dの非収縮性
アクリルニトリル系合成繊維60%からなる36番手
双糸の紡績糸を使用し、100℃の水蒸気で収縮さ
せた後、針布起毛機にて起毛した。毛羽の長さは
3mm以下の毛羽を除いて平均15mmであつた。この
毛羽を1次分枝とし、実施例1と同一の2次分
枝、3次分枝を実施例1と同様に植毛した結果、
基材の全周にわたり分岐単位が派生しており、嵩
高性、反撥性ある網目構造をもつた分枝状繊維構
造体を得た。
The present invention relates to a novel fiber structure having excellent flexibility, warmth, bulk, and compression recovery properties, and particularly to a fiber structure suitable as a material for batting. Filling is generally a material that is wrapped inside the fabric of futons, cushions, and other textile products primarily for the purpose of retaining heat, and various types of such materials have been tried in the past. . For example, there are specially designed fibers that are crimped or corrugated as batting materials, but they have the disadvantage that their compression recovery properties decrease with repeated use. Another example is to create spherical bodies with low internal density from fibers and use them as batting, but repeated use causes the spherical bodies to be entangled and destroyed, reducing the effectiveness. Another example is a method in which a plurality of short fibers are concentrated and integrated at the binding site, and the non-concentrated ends of the short fibers are used as batting as tufts that are swollen and diffused. The bulkiness of the batting decreases due to the entanglement of the materials and the penetrating nature of the short fibers. The present inventors completed the present invention as a result of research on a new fiber structure that solved these drawbacks. That is, the present invention provides a fibrous structure in which branching units having at least secondary branches made of short fibers are densely packed on a dotted, linear or planar base material made of a polymeric substance. , the formation of branching units in at least two directions in the cross section of the base material, and a portion of the short fibrous substances forming the branching units cross-link with other short fibrous substances and/or the base material. The present invention relates to a bulky fiber structure characterized by forming a network structure. The present invention will be explained using the drawings. 1st, 2nd, 3rd
The figure is a model diagram of the fiber structure of the present invention. 1st
The figure shows the base material 1 in a dot shape, FIG. 2 shows the base material 1 in a linear shape, and FIG. 3 shows the base material 1 in a planar shape.
A primary branch 2 made of short fibrous material is derived from the base material 1, a secondary branch 3 is derived from the primary branch, and a tertiary branch 4 is derived from the secondary branch. 2, 3, in the primary branch
..., one n-order branched simplex is called a branching unit. Reference numeral 5 indicates a bonding point between branches, and a network structure is formed by this bonding. In the present invention, such branch units are densely packed on the substrate. 4, 5, and 6 are diagrams showing cross sections of the base material. Figure 4 shows a point-like object, Figure 5 shows a linear object, and Figure 6 shows a point-like object.
The figure shows a cross section of each sheet-like object. Figure 4 shows 3 directions, Figure 5 shows 11 directions, Figure 6 shows 2 directions.
Formation of branched units in the direction is observed. In the present invention, the cross section refers to a cross section perpendicular to the long axis in the case of a linear base material, a cross section perpendicular to the plane in the case of a planar base material, and a cross section passing through the center in the case of a dotted base material. The fibrous structure of the present invention has appropriate flexibility and lightness because the branch units are made of short fibrous materials. When viewed in cross section, the branch units are formed in at least two directions, providing bulkiness and excellent recovery performance of the compressor. A fiber structure in which branching units are formed only in one direction does not exhibit repellency or bulkiness on the side where branching units are not formed, so when used as batting, the fiber structure as a whole exhibits repulsion and bulkiness. gender decreases. When the base surfaces of planar base materials that have branching units in only one direction are in contact with each other, it seems to have the same effect as the fiber structure of the present invention, but the base material itself has branched units. Since the bulkiness is very small compared to the unit,
Overall bulkiness is significantly reduced. Further, in the fibrous structure of the present invention, short fibrous materials forming branch units are partially cross-linked with other short fibrous materials to form a network structure. Therefore, compared to the case where no network structure is formed at all, when compressed, the interpenetration of the branch units is significantly prevented, and the repellency and bulkiness are further improved.
Further, the network structure itself is a highly repulsive structure, regardless of the presence or absence of interpenetration. Such bulkiness and repellency make it possible to retain an extremely large amount of air in the voids when filled into clothing as batting, resulting in extremely high heat retention properties. In order to further demonstrate the effects of the present invention,
It is desirable that as the order of branching increases, the short fibrous material becomes shorter and thinner. The order of branching varies depending on the form of the base material, but is at least 2 or more. If the amount is less than that, heat retention, bulkiness, and compression recovery properties will not be sufficiently exhibited. If the base material is planar, it is effective even if the order is 2, but if the base material is linear or dotted, the order is preferably 3 or more. Of course, there is no problem even if branch units having only first-order branches are mixed, or branch units having different orders may be mixed. Preferably, the primary branching into the substrate 1 is substantially perpendicular to the plane of the substrate. A slight inclination is acceptable, but in order to avoid spaces without branching units and obtain a structure with good properties, it is preferable that they be substantially perpendicular to the surface and at approximately equal intervals. The positions of the molecular units may be staggered, aligned, or random. When the base material is in the form of dots, it is preferable that the base material is branched out just like a sparkler is branched out around a fireball. When the base material is linear, assuming a plane perpendicular to the axis, it is preferable that the direction of the branch unit extends over the entire 360° circumference. When the base material is planar, branch units are usually present on both sides in order to satisfy the requirements of the present invention. When such a structure is cut into long pieces, it becomes a structure having a linear base material. The base material in the present invention basically corresponds to any polymeric material that can take the form of fibers. That is, it includes natural fibers, man-made fibers, synthetic fibers, semi-synthetic fibers, carbon fibers, glass fibers, and the like. The same applies to the short fibers to be implanted. The shape of the base material includes any of the shapes of points, lines, and planes, but the terms "points, lines," and "planes" mentioned here are, of course, not abstract concepts in geometry, but points refer to a certain spatial spread. A line refers to a single yarn, filament yarn, spun yarn, or other fibrous material with a certain thickness, and a plane refers to a woven fabric, knitted fabric, or other fibrous material with a certain thickness. Refers to nonwoven fabrics, sheets, etc. As substrates it is possible to use, for example, monofilaments, non-woven fabrics, as well as spun yarns, multifilaments, split yarns,
Woven fabrics, knitted fabrics, net-like materials, flat tows,
Tops are used in the form of dots, lines, or areas. The base material and the short fibrous material may be, for example, synthetic fibers such as polyamide yarn, polyester yarn, or polyacrylic yarn, recycled fibers such as rayon, natural fibers such as wool, or combinations thereof. Glass fibers can also be used. The length of the linear base material is preferably about 1 to 10 cm; if it is longer than this, the base materials may become entangled with each other during repeated use as futon filling, which is undesirable. 1
The length of the secondary branched short fibers is preferably in the range of 0.5 to 3 cm, and the length of the secondary branched short fibers is suitably about 0.01 to 0.3 cm. However, in the present invention, the lengths of the base material, primary staple fibers, and secondary staple fibers are not specified. This is because, in the present invention, it is possible to obtain feather-like characteristics by varying the length, but it does not preclude obtaining characteristics other than feather-like characteristics. For the same reason, the denier and flocking density of the fibers used are not specified. Although the angle between the base material and the fibers is not particularly defined, it is preferably 30 to 80 degrees in order to improve the fit to the human body, that is, to impart feather-like characteristics. An example of the method for manufacturing the fiber structure of the present invention is as follows. After applying an adhesive such as an epoxy, urethane, chloroprene, or vinyl acetate adhesive onto the base material, short fibrous materials are flocked by electrostatic flocking or the like. This is the first branch. Next, an adhesive is applied to both the base fabric and the primary branches, and the short fibers are flocked. At this time, the fibers are mainly planted on the primary branches, but also on the base fabric. Some short fibrous materials are
It adheres to both the primary branch and the base fabric, forming a cross-linked network structure as referred to in the present invention. Next, after applying adhesive to the base fabric, primary branches, and secondary branches, short fibrous material is electrostatically flocked to form tertiary branches, and at the same time new primary branches, 2 Secondary branches are also formed and cross-links are formed. At this time,
The degree of formation of these can be adjusted by adjusting the method of applying adhesive to the base fabric and primary branches. By repeating such operations, branches of arbitrary order can be obtained. Another example is a method in which a knitted fabric raised by a needle cloth raising machine or the like or a raised spun yarn is used as a base material, and secondary and tertiary branches are flocked by the above-mentioned bonding method. The fiber structure constructed in this manner is flexible, has high heat retention properties, is bulky, and has excellent compression recovery properties, and is particularly useful as a material for batting. Next, the present invention will be specifically explained with reference to Examples. Example 1 Both the base material and short fibers are made of polyamide synthetic fibers, and the base material is made of 130d monofilament.
The primary branch is 25 d thick and 10 mm long, and the secondary branch is 15 d.
The short fiber was 8 mm, and the tertiary branch was 0.75 d 1.2 mm.
Acrylic acid ester resin was used as the adhesive, and the base material was continuously impregnated with the adhesive solution, and the liquid was squeezed out using a roller. The adhesive was applied to the primary and secondary branches made of short fibers by spraying the adhesive, and the short fibers were flocked by electrostatic flocking. The product obtained in this way has a structure in which first, second, and third-order branches of short fibers are sequentially derived from a 130 d monofilament, and has a network structure due to cross-linking of short fibers. Branching units were derived over the entire circumference. This material was bulky, resilient, and had appropriate softness. The performance of this product is shown in Table 1. Comparative Example 1 Primary branches were formed on the base material according to Example 1,
An adhesive was then applied to the primary branch to form a secondary branch, and an adhesive was applied to the secondary branch to form a tertiary branch. This is a 130d monofilament with 1st, 2nd, and 3rd branches of short fibers derived in sequence.
It did not have a network structure due to cross-linking of short fibers. The performance of this product is shown in Table 1. Example 2 The same fabrics 1, 2, and 3 as in Example 1 were prepared using a polyester synthetic fiber net fabric made of 150d 50 filaments having meshes at 5 mm intervals in both warp and weft as a base material.
The next branches were successively implanted on both sides of the base material using the electrostatic flocking method. The obtained product had bulkiness similar to that of Example 1,
It is repellent, and by cutting it appropriately, it can be sewn into clothing as a heat insulator.
By chopping the material into pieces at intervals of 5 mm in the warp and weft directions approximately at the base material stitch intersection, a branched fiber structure with a network structure that can be used for the same purpose as cotton feathers was obtained. The performance of this product is shown in Table 1. Comparative Example 2 On the base material of Example 2, the same 1 as in Example 1,
Second and third-order branches were successively transplanted by electrostatic flocking.
At this time, flocking was performed only on one side of the base material.
In addition, similar to Comparative Example 1, hair transplantation was carried out sequentially.
The results are shown in Table 1. Example 3 For the base material, a 36-count double-spun yarn consisting of 40% 3D acrylonitrile synthetic fiber that shrinks 25% with water vapor at 100°C and 60% 3D non-shrinkable acrylonitrile synthetic fiber was used. After shrinking with steam at 100°C, it was raised using a needle cloth raising machine. The average length of the fluff was 15 mm, excluding fluff that was less than 3 mm. This fluff was used as a primary branch, and the same secondary and tertiary branches as in Example 1 were implanted in the same manner as in Example 1. As a result,
A branched fiber structure was obtained in which branch units were derived all around the base material and had a bulky, repulsive network structure.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の点状基材に形成した繊維構造
体のモデル図、第2図は本発明の線状基材に形成
した繊維構造体のモデル図、第3図は本発明の面
状基材に形成した繊維構造体のモデル図である。
第4図は点状基材に形成した繊維構造体の横断面
図の例、第5図は線状基材に形成した繊維構造体
の横断面図の例、第6図は平面状基材に形成した
繊維構造体の横断面図の例を示す。 1……基材、2……1次分枝、3……2次分
枝、4……3次分枝、5……交叉結合。
Fig. 1 is a model diagram of a fibrous structure formed on a dotted base material of the present invention, Fig. 2 is a model diagram of a fibrous structure formed on a linear base material of the present invention, and Fig. 3 is an aspect of the present invention. FIG. 3 is a model diagram of a fibrous structure formed on a shaped base material.
Fig. 4 is an example of a cross-sectional view of a fibrous structure formed on a dotted base material, Fig. 5 is an example of a cross-sectional view of a fibrous structure formed on a linear base material, and Fig. 6 is an example of a cross-sectional view of a fibrous structure formed on a linear base material. An example of a cross-sectional view of a fiber structure formed in FIG. 1...Base material, 2...1st branch, 3...2nd branch, 4...3rd branch, 5...cross-linkage.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子物質からなる点状、線状又は面状基材
上に、短繊維状物からなる少なくとも2次分枝を
もつ分岐単位が密集している繊維構造体であつ
て、基材の横断面において少なくとも2方向に分
岐単位の形成が認められ、かつ、分岐単位を形成
する短繊維状物の一部は、他の短繊維状物及び/
又は基材と交叉結合して網目構造を形成している
ことを特徴とする嵩高性を有する繊維構造体。
1 A fibrous structure in which branching units having at least secondary branches made of short fibers are densely packed on a dotted, linear or planar base material made of a polymeric substance, which Formation of branching units is recognized in at least two directions on the surface, and a part of the short fibrous substances forming the branching units are separated from other short fibrous substances and/or
Or, a bulky fibrous structure characterized by being cross-linked with a base material to form a network structure.
JP5512882A 1982-04-02 1982-04-02 KASADAKASEIOJUSURUSENIKOZOTAI Expired - Lifetime JPH0235061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5512882A JPH0235061B2 (en) 1982-04-02 1982-04-02 KASADAKASEIOJUSURUSENIKOZOTAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5512882A JPH0235061B2 (en) 1982-04-02 1982-04-02 KASADAKASEIOJUSURUSENIKOZOTAI

Publications (2)

Publication Number Publication Date
JPS58174619A JPS58174619A (en) 1983-10-13
JPH0235061B2 true JPH0235061B2 (en) 1990-08-08

Family

ID=12990123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5512882A Expired - Lifetime JPH0235061B2 (en) 1982-04-02 1982-04-02 KASADAKASEIOJUSURUSENIKOZOTAI

Country Status (1)

Country Link
JP (1) JPH0235061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922816B1 (en) * 2007-10-24 2009-11-20 Michelin Soc Tech INTERNAL DEVICE HAVING A TIRE FOR REDUCING NOISE IN ROLLING.
KR101005038B1 (en) 2008-10-30 2010-12-30 전북대학교산학협력단 Nanofiber web with network structure and method of manufacturing the same

Also Published As

Publication number Publication date
JPS58174619A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
CA1295471C (en) Nonwoven thermal insulating batts
EP0028015B1 (en) A fur-like napped fabric and process for manufacturing same
KR840000580B1 (en) Fiber aggregates
JP3934916B2 (en) Stretchable nonwoven fabric and method for producing the same
US3071783A (en) Quilting and cushioning article of loosely-assembled, crimped, continuous synthetic organic filaments
EP0636727A1 (en) A non-woven fabric and method for producing the same
JP3138145B2 (en) Bulk nonwoven
JPS621027B2 (en)
JPH0235061B2 (en) KASADAKASEIOJUSURUSENIKOZOTAI
KR102487678B1 (en) Fiber sheet
JPH1136141A (en) Bulky conjugate fiber, and fibrous form using the same
JPS5846161A (en) Novel padding material and preparation thereof
JP4867429B2 (en) Manufacturing method of sheet-like material
US3377231A (en) Needled textile laminates and method for producing same
JPH10195745A (en) Composite nonwoven fabric and interlining cloth using the same
CN217298180U (en) Pile fabric
CN214188729U (en) Warm-keeping antibacterial anti-static knitted fabric
JPH07300733A (en) Compound yarn, fabric obtained therefrom and those preparation
KR860000833B1 (en) Wadding materials
JP3538462B2 (en) Non-woven towel with scuffed surface
JPH01310689A (en) Quilting cloth
JP2016220919A (en) Fiber sheet suppressing winding
JPS5911886A (en) New feather-like padding material
JP7043160B2 (en) Fiber sheet with excellent uneven fit
JPH06240554A (en) Laminated fiber structure material and its production