JP3934916B2 - Stretchable nonwoven fabric and method for producing the same - Google Patents
Stretchable nonwoven fabric and method for producing the same Download PDFInfo
- Publication number
- JP3934916B2 JP3934916B2 JP2001340946A JP2001340946A JP3934916B2 JP 3934916 B2 JP3934916 B2 JP 3934916B2 JP 2001340946 A JP2001340946 A JP 2001340946A JP 2001340946 A JP2001340946 A JP 2001340946A JP 3934916 B2 JP3934916 B2 JP 3934916B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- nonwoven fabric
- elastic
- fibers
- latent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4358—Polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、伸縮性不織布に関する。より詳しくは、風合いがよく、柔軟性と複数方向(縦・横・斜め)への伸縮性とを有し、伸縮を繰り返しても伸縮性が劣化せず、さらに、厚みが均一である伸縮性不織布とその製造方法に関する。
【0002】
【従来の技術】
従来より、不織布に伸縮性を付与する様々な技術が提案されている。
【0003】
こうした技術として、まず、ゴム系の弾性繊維を主体に伸縮性不織布を製造する技術が知られている。例えば、特公昭43−26578号公報や特開平3−19952号公報には、ポリウレタン弾性繊維を互いに交絡させることにより伸縮性不織布とする技術が示されている。また、特開平10−25621号公報には、スルホン酸金属塩と膠着防止剤を含有させたポリエステル系弾性繊維を湿式抄紙法により伸縮性不織布とする技術が示されている。
【0004】
これらの技術で得られる伸縮性不織布では、ゴム系の弾性繊維を主体としているため、伸縮性および伸長回復率が高く、伸縮を繰り返しても伸縮性の劣化が少ない。しかしながら、肌触りがゴムらしい粘着性を帯びたべたつき感のあるものとなり、風合いが劣るため、直接肌に触れる衣類や衛材用途への使用が困難となる。
【0005】
次に、ポリエステルやポリプロピレン等からなる捲縮繊維を交絡させて伸縮性不織布を製造する技術が知られている。例えば、特開平2−91217号公報や特開平5−171555号公報には、カード法で成形された潜在捲縮繊維からなるウエブを機械的に交絡させた後、熱処理することにより捲縮を発現させて伸縮性不織布を得る技術が示されている。
【0006】
これらの技術で得られる伸縮性不織布は、風合いこそ改善されるが、伸縮を繰り返した場合、機械的な交絡が外れ、伸縮性が低下する問題がある。また、これらの技術では、ウェブの成形にカード法が使用されており、繊維が縦方向に配向されやすい結果、不織布の伸縮は縦方向のみ有効である。したがって、包材として球体等を包む場合には、曲面追随性に劣るといった問題がある。
【0007】
そして、この問題を解決し得るものとして、例えば特開平8−260313号公報や特開平11−61617号公報には、ウェブをクロスレイヤー等により直交させる技術が開示されている。しかし、この技術では、伸縮を繰り返した場合の伸縮性低下は解消されず、また、ウェブを積層させるため、目付が高くなり、柔軟性に欠けるといった問題がある。
【0008】
さらには、不織布と伸縮性部材とを接合させて伸縮性不織布を製造する技術が知られている。特開平8−188950号公報には、上下二層のウェブの間に弾性伸縮部材を介在させた積層体に高圧水の噴射処理を施す技術が示されている。
【0009】
この技術で得られる伸縮性不織布では、不織布の風合いが改善され、伸縮の方向性や伸縮を繰り返した場合の伸縮特性も改善される。しかし、ウェブ層間に弾性伸縮部材を介在させるため、厚みが不均一となり、この厚みを均一にする場合には、不織布の目付を高くしなければならず、柔軟性に欠けるといった問題が起こる。さらに、一旦ウェブを成形した後、弾性伸縮部材を介在させるため、工程が複雑となり、品質管理や製造コスト面でロスが大きい。
【0010】
【発明が解決しようとする課題】
それゆえに、本発明の目的は、風合いがよく、柔軟性と複数方向(縦・横・斜め)への伸縮性とを有し、伸縮を繰り返しても伸縮性が劣化せず、さらに、厚みが均一である伸縮性不織布を提供することであり、また、そのような伸縮性不織布の製造方法を提供することである。
【0011】
【課題を解決するための手段】
第1の発明は、弾性繊維(12)と、弾性繊維 (12) の軟化点よりも低い温度で加熱されることにより捲縮を発現する潜在捲縮繊維(14)と、弾性繊維(12)との交絡点,潜在捲縮繊維(14) との交絡点或いは弾性繊維 (12) 及び潜在捲縮繊維 (14) との交絡点で接合する繊維状バインダー(16)とを備える伸縮性不織布(10)であって、繊維状バインダー (16) は、鞘部 (16x) と芯部 (16y) とを有し、鞘部 (16x) の融点が潜在捲縮繊維 (14) の捲縮発現温度よりも低いことを特徴とする伸縮性不織布 (10)である。
【0012】
第2の発明は、弾性繊維(12)と潜在捲縮繊維(14)とを備える伸縮性不織布(10)の製造方法であって、弾性繊維(12)との交絡点,潜在捲縮繊維(14)との交絡点或いは弾性繊維 (12) 及び潜在捲縮繊維 (14)との交絡点を繊維状バインダー(16)で接合し、然る後、潜在捲縮繊維の捲縮を発現させる伸縮性不織布(10)の製造方法である。
【0013】
第1の発明の伸縮性不織布(10)および第2の発明で得られる伸縮性不織布(10)では、弾性繊維(12)と捲縮繊維(14)とが、その交絡点においてバインダー(16)を介して接合される。したがって、これらの繊維が短繊維であったとしても、機械的強度に優れ、目付が低い柔軟な不織布を実現できる。また、伸長回復性に優れる弾性繊維(12)と、捲縮により嵩高性と柔軟性を与える捲縮繊維(14)とが接合されるので、両者の利点を併有する不織布(10)を得ることができる。
【0014】
【発明の実施の形態】
図1および図2に示すように、本発明が適用された伸縮性不織布(10)は、それぞれがランダム配向された弾性繊維(12)、捲縮繊維(14)およびバインダー(16)を含む。
【0015】
弾性繊維(12)は、ポリウレタン弾性繊維等のような繊維自身がゴム状の弾性を有するものである。
【0016】
弾性繊維(12)の単糸繊度および長さは、製品強度および成形性の観点から決定され、単糸繊度は、0.5デシテックス以上でかつ40デシテックス以下であることが好ましく、より好ましくは、1デシテックス以上でかつ30デシテックス以下である。単糸繊度が0.5デシテックス未満の場合には、弾性繊維(12)の機械的強度が弱くなり、逆に、40デシテックスよりも大きい場合には、単位面積当たりのウェブを構成する弾性繊維(12)の数が少なくなり、いずれの場合も弾性繊維固有の伸長回復性能が発揮されにくくなるからである。
【0017】
一方、弾性繊維(12)の長さは、3mm以上でかつ50mm以下であることが好ましく、より好ましくは、5mm以上でかつ30mm以下である。繊維の長さが3mm未満の場合には、各繊維の分散性は良くなるが不織布の機械的強度が弱くなり、逆に、50mmより大きい場合には、不織布の機械的強度は強くなるがウェブ成形時に繊維を均一に分散させるのが困難になるからである。
【0018】
弾性繊維(12)の断面形状は、特に限定されるものではなく、図2に示すような円形断面であってもよいし、三角形や扁平等の異形断面であってもよい。
【0019】
なお、弾性繊維(12)としては、ポリウレタン弾性繊維の他に、ポリエーテル・エステル弾性繊維やポリアミド弾性繊維等を用いることができ、天然ゴム、合成ゴム、半合成ゴム等からなるいわゆるゴム糸を用いることもできる。また、これらの弾性繊維と他の有機合成樹脂との複合繊維または混合繊維を用いることもできる。
【0020】
ただし、伸長回復性能に優れた柔軟な不織布を得るためには、ポリウレタン弾性繊維(12)を用いることが好ましい。
【0021】
このようなポリウレタン弾性繊維としては、ソフトセグメントとしてコポリエステルジオール等の長鎖ジオールを主構成成分とし、ハードセグメントとしてジフェニルメタン−4,4ジイソシアネート等のジイソシアネートを主構成成分とし、鎖伸長剤として二官能性水素化合物を主構成成分とした、ポリエステル系弾性繊維や、ソフトセグメントとしてポリテトラメチレンエーテルグライコールを主構成成分とし、ハードセグメントとしてジフェニルメタン−4,4ジイソシアネートを主構成成分とし、鎖伸長剤として低分子量の二官能性水素化合物を主構成成分とした、ポリエーテル系弾性繊維等を挙げることができる。
【0022】
捲縮繊維(14)は、ポリエステル系繊維等を機械的に、もしくは、特定の繊維構造によって捲縮させて、繊維自体にコイルばね状の弾性を持たせたものである。
【0023】
捲縮繊維(14)の単糸繊度および長さは、製品機能、製品強度および成形性の観点から決定され、単糸繊度は、0.2デシテックス以上でかつ20デシテックス以下であることが好ましく、より好ましくは、0.5デシテックス以上でかつ10デシテックス以下である。捲縮繊維(14)の単糸繊度が0.2デシテックス未満の場合には、緻密で柔軟な不織布を得られるが、伸縮性は劣ったものとなり、逆に、20デシテックスより大きい場合には、伸縮性は有するが、剛直な風合いの劣った不織布となるからである。
【0024】
一方、捲縮繊維(14)の長さは、弾性繊維(12)の場合と同様の理由により、3mm以上でかつ50mm以下であることが好ましく、より好ましくは、5mm以上でかつ30mm以下である。
【0025】
捲縮繊維(14)の断面形状は、特に限定されるものではなく、図2に示すような円形断面であってもよいし、三角形や扁平等の異形断面であってもよい。
【0026】
なお、捲縮繊維(14)としては、ポリエステル系繊維の他に、ポリオレフィン系、アクリル系およびポリアミド系等の合成繊維や、トリアセテート繊維およびジアセテート繊維等の半合成繊維や、ビスコースレーヨン、銅アンモニアレーヨンおよびポリノジックレーヨン等の再生セルロース繊維や、綿、シルク、羊毛および麻等の天然繊維を用いることができる。つまり、如何なる繊維であっても、繊維糸条をクリンパー等に導いて機械的に捲縮をかけることにより捲縮(顕在捲縮)させることができるので、顕在捲縮繊維を用いる場合には、捲縮繊維(14)の種類は特に限定されない。
【0027】
ただし、伸縮性不織布(10)の製造工程における他繊維との混合性や、伸縮性不織布(10)の製品としての伸縮性・風合い・厚みの均一性等を向上させるためには、捲縮繊維(14)は、混合後の弛緩加熱処理によって捲縮を発現する潜在捲縮繊維であることが好ましく、潜在捲縮繊維を用いる場合には、繊維の種類が或る程度限定される。
【0028】
このような潜在捲縮繊維としては、たとえば、融点や粘度等の熱収縮特性値の異なる複数種類の熱可塑性重合体成分(ポリエステル系、ポリオレフィン系、アクリル系、ポリアミド系等)を、糸条の長さ方向に沿って並列に配置した構造(サイドバイサイド構造)のものや、これら複数種類の熱可塑性重合体成分(ポリエステル系、ポリオレフィン系、アクリル系、ポリアミド系等)を、糸繊維横断面において偏心芯鞘状に配置した構造のもの等が周知である。
【0029】
また、潜在捲縮繊維(14)においては、その捲縮発現温度が弾性繊維(12)の軟化点より低いことが好ましい。潜在捲縮繊維(14)の捲縮発現温度が弾性繊維(12)の軟化点より高ければ、潜在捲縮繊維(14)を加熱して捲縮を発現させる工程で、弾性繊維(12)の伸長回復性能が劣化するからである。
【0030】
このような潜在捲縮繊維(14)としては、高融点成分としてポリエチレンテレフタレート(14x)、低融点成分としてエチレンテレフタレート/イソフタル酸共重合体(14y)を主構成成分とするサイドバイサイド構造の潜在捲縮繊維(14)を挙げることができる。
【0031】
バインダー(16)は、ポリエステル系、ポリオレフィン系、アクリル系、ポリアミド系等の熱可塑性樹脂からなり、加熱溶融により流動化され、ウェブを構成する繊維の交絡点に移動され、冷却固化されることによりその交絡点を接合するものである。
【0032】
バインダー(16)の融点は、弾性繊維(12)の軟化点より低いことが好ましい。バインダー(16)の融点が弾性繊維(12)の軟化点より高ければ、バインダー(16)を加熱溶融させる工程で、弾性繊維(12)の伸長回復性能が劣化するからである。
【0033】
また、バインダー(16)は、加熱溶融により流動化されるものであればその機能を発揮し得るので、その形状は、特に限定されるものではなく、図1および図2に示した繊維状の他に、液体状または粉末状等であってもよい。
【0034】
ただし、繊維の交絡点を確実に接合するという観点からは、バインダー(16)の形状は、繊維状であることが好ましく、特に、低融点の熱可塑性樹脂で構成された鞘部(16x)と、鞘部(16x)より高融点の芯部(16y)とを備える芯鞘構造の繊維状バインダー(16)であることが好ましい。
【0035】
芯鞘構造の繊維状バインダー(16)を用いた場合には、以下の利点がある。つまり、繊維状バインダー(16)の加熱工程(繊維交絡点接合工程)で鞘部(16x)が溶融されると、溶融された鞘部(16x)の樹脂が、芯部(16y)の繊維に沿って移動し、表面張力によって繊維の交絡点(18)に集まる。そして、この樹脂が冷却固化されることにより繊維の交絡点が接合される。このため、鞘部(16x)の樹脂が平面状に広がることはなく、弾性繊維(12)や捲縮繊維(14)の伸縮性が阻害される心配はない。
【0036】
このような芯鞘構造の繊維状バインダー(16)としては、鞘部(16x)を低融点のエチレンテレフタレート/イソフタル酸共重合体で形成し、芯部(16y)を鞘部(16x)よりも高融点のポリエチレンテレフタレートで形成したものを挙げることができる。
【0037】
なお、繊維状バインダー(16)の横断面形状は、図2に示すように、鞘部(16x)と芯部(16y)とが同心円状に配置された形状であってもよいし、これらが偏心円状に配置された形状であってもよい(図示せず)。
【0038】
また、繊維状バインダー(16) の長さは、弾性繊維(12)および捲縮繊維(14)の場合と同様の理由により、3mm以上でかつ50mm以下であることが好ましく、より好ましくは、5mm以上でかつ30mm以下である。
【0039】
伸縮性不織布(10)の諸機能を有効に発揮させるためには、各構成繊維の配合率は、以下の範囲内であることが好ましい。
【0040】
すなわち、弾性繊維(12)の配合率は、3重量%以上でかつ50重量%以下であることが好ましく、より好ましくは、5重量%以上でかつ30重量%以下である。
【0041】
弾性繊維(12)の配合率が3重量%未満の場合には、弾性繊維(12)に固有の伸長回復性能が発揮されにくく、逆に、50重量%よりも多い場合には、肌触りがゴムらしい粘着性を帯びたべたつき感のあるものとなり、風合いが劣るようになるからである。
【0042】
また、捲縮繊維(14)の配合率は、40重量%以上でかつ80重量%以下であることが好ましく、より好ましくは、50重量%以上でかつ70重量%以下である。
【0043】
捲縮繊維(14)の配合率が40重量%未満の場合には、不織布の伸縮性が低下し、柔軟性の劣った硬い風合いの不織布となり、逆に、80重量%より多い場合には、伸縮性は有るが、機械的強度が弱くなるため、繰り返し伸縮させた際の伸長回復性能が低下するからである。
【0044】
さらに、バインダーの配合率は、10重量%以上でかつ50重量%以下であることが好ましく、より好ましくは、20重量%以上でかつ40重量%以下である。
【0045】
バインダーの配合率が10重量%未満の場合には、不織布の機械的強度が弱く、逆に、50重量%より多い場合には、機械的強度は上がるが伸縮性を阻害し、得られる不織布は硬く風合いが劣るからである。
【0046】
以上の配合割合に従って、弾性繊維(12)、捲縮繊維(14)およびバインダー(16)がランダムに配向されると、伸縮性不職布(10)は、縦・横・斜めの複数方向への伸縮が可能になる。
【0047】
伸縮性不織布(10)は、図3に示すような製造装置Aを用いて製造される。
【0048】
製造装置Aは、回転式装置(20)、ミキシングタンク(22)、マシンタンク(24)、短網抄紙機(26)、フェルト(28)、シリンダー型ドライヤー(30)、送りローラー(31)、加熱炉(32)、引き取りローラー(34)および巻取装置(36)等を含み、回転式装置(20)、ミキシングタンク(22)およびマシンタンク(24)で「繊維混合体調製工程」が実行され、短網抄紙機(26)で「ウェブ成形工程」が実行され、フェルト(28)およびシリンダー型ドライヤー(30)で「繊維交絡点接合工程」が実行される。そして、送りローラー(31)、加熱炉(32)および引き取りローラー(34)で「捲縮発現工程」が実行され、巻取装置(36)で「巻取工程」が実行される。
【0049】
以下には、製造装置Aを用いて伸縮性不織布(10)を製造する方法を説明する。ただし、以下の例では、捲縮繊維(14)として潜在捲縮繊維を用い、バインダー(16)として繊維状バインダーを用いるものとする。
【0050】
まず、「繊維混合体調製工程」では、弾性繊維(12)と潜在捲縮繊維(14)と繊維状バインダー(16)とが水中に投入され、これらがパルパー等の回転式装置(20)で混合されて繊維の離解・分散が行われ、濃度0.1〜3%程度の繊維混合体縣濁液(以下「混合体」という)が調製される。そして、この混合体が、ポンプにてミキシングタンク(22)およびマシンタンク(24)に順次移送される。
【0051】
続く「ウェブ成形工程」では、マシンタンク(24)内の混合体が、ポンプにて短網抄紙機(26)に設けられたワイヤー搬送帯(26a)に供給され、ワイヤー搬送帯(26a)上において脱水される。この工程により、混合体中の水が除去され、ワイヤー搬送帯(26a)上にウェブが形成される。混合体中の繊維は、先の工程において十分に混合されているので、ウェブの構成繊維は、図4(A)に示すように、複数方向でランダム配向されることになる。そして、ワイヤー搬送帯(26a)上のウェブが、ワイヤー搬送帯(26a)よりも表面平滑性が高いフェルト(28)上に転写される。
【0052】
次の「繊維交絡点接合工程」では、フェルト(28)上に転写されたウェブが、フェルト(28)よりも表面平滑性が高いシリンダー型ドライヤー(30)上に転写され、所定温度に加熱される。
【0053】
ウェブが加熱されると、それを構成する繊維状バインダー(16)が溶融され、溶融された樹脂が表面張力により繊維の交絡点(18)へ流動する。そして、ウェブがシリンダー型ドライヤー(30)から引き離されて冷却されると、溶融された樹脂が固化することにより交絡点(18)が接合される。したがって、「繊維交絡点接合工程」を経たウェブは、機械的強度が大幅に増大したものとなる。
【0054】
そして、「捲縮発現工程」では、ウェブが、送りローラー(31)により、赤外線や遠赤外線等の輻射熱を用いた加熱炉(32)へ供給される。加熱炉(32)内の温度は、弾性繊維(12)の軟化点より低く、かつ、潜在捲縮繊維(14)の捲縮が発現可能な温度に設定される。
【0055】
ここで、潜在捲縮繊維(14)に捲縮を発現させるためには、加熱炉(32)内のウェブが弛緩状態であることが好ましいため、ウェブに張力がかからないように送りローラー(31)と引き取りローラー(34)の周速が調整される。
【0056】
最後の「巻取工程」では、完成された伸縮性不織布(10)が巻取装置(36)により巻き取られる。
【0057】
なお、上述した各工程は、本発明を適用した一例に過ぎず、以下のような変更が加えられてもよい。
【0058】
すなわち、「繊維混合体調製工程」では、混合体中の各繊維の分散を助けるために、ノニオン中性ポリエーテル系分散剤や弱カチオン中性変性ポリエステル/ポリエーテル系分散剤等を繊維総重量に対して0.01重量%から10%の範囲で添加してもよいし、市販の水溶性粘剤を混合体重量に対して固形分換算で5ppmから50ppm添加してもよい。
【0059】
また、混合体を貯留するタンク(ミキシングタンク(22)およびマシンタンク(24))は、1基だけでもよいし、3基以上であってもよい。
【0060】
そして、「ウェブ成形工程」では、短網抄紙機に代えて、長網や円網等のような他の種類の抄紙機を用いるようにしてもよい。また、成形されたウェブを搬送するフェルト(28)の長さや数は、適宜変更されてもよく、フェルト(28)に代えて、1本以上のロールを用いるようにしてもよい。
【0061】
また、「ウェブ成形工程」と「繊維交絡点接合工程」との間に圧搾を行う「プレス工程」を別途設けてもよい。
【0062】
さらに、「繊維交絡点接合工程」では、シリンダー型ドライヤー(30)に代えて、エアドライヤー、エアスルードライヤー、赤外線ドライヤーまたはサクションドライヤー等のような他の種類の加熱装置を用いるようにしてもよい。
【0063】
また、「繊維交絡点接合工程」と「捲縮発現工程」とは、別の時間または場所で実行されてもよいし、これらの工程を一体化させて、繊維交絡点の接合と捲縮発現とを同時に行うようにしてもよい。
【0064】
また、「捲縮発現工程」と「巻取工程」との間に、カレンダーロール(図示せず)やエンボスロール(図示せず)等により伸縮性不織布(10)の風合いや表面性を調整する「調整工程」を別途設けてもよい。
【0065】
また、「繊維混合体調製工程」および「ウェブ成形工程」では、水に代えてエタノールなどの他の液体を分散媒として用いるようにしてもよい。
【0066】
さらに、「繊維混合体調製工程」および「ウェブ成形工程」では、分散媒に水を用いる湿式法に代えて、分散媒に空気などの気体を用いる乾式法が採用されてもよい。この場合、「繊維混合体調製工程」では、解繊機(図示せず)により各繊維の離解および分散が行われ、混綿機(図示せず)により各繊維の混合体が調製される。一方、「ウェブ成形工程」では、ランダムカード機により各繊維が複数方向にランダム配向される。
【0067】
(実施例)
以下に、実施例をあげて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
【0068】
なお、実施例および比較例における物性は、以下の方法で測定した。
(1)目付:JIS L−1096に準じて測定した。
(2)厚み:JIS L−1096に準じて測定した。
(3)引張強度:JIS P−8113に準じて測定した。
(4)CD/MD比:不織布中の繊維配向性を示す指標である。製品流れに沿った縦方向(MD)の引張強度と、これに直交する横方向(CD)の引張強度について、横(CD)強度を縦(MD)強度で割り、その比で表した。
(5)伸長回復率:伸縮を繰り返した後の残存伸縮性を示す指標である。インストロン試験機で15%、5回の伸長回復を与えた後の試験片について、再度インストロン試験機で伸度(%)を測定し、これを伸長回復を与える前の伸度で割り、百分率(%)で表した。
【0069】
(実施例1)
弾性繊維として、単糸繊度が7デシテックス、繊維長さが6mm、軟化点が約180℃のポリウレタン弾性繊維(東レ・デュポン株式会社製の「ライクラ(登録商標)」,品番T−127C)を準備し、捲縮繊維として、単糸繊度が1.7デシテックス、繊維長さが5mm、捲縮発現温度が約140℃以上の潜在捲縮ポリエステル繊維(ユニチカファイバー株式会社製のT81)を準備し、バインダーとして、単糸繊度が1.1デシテックス、繊維長さが3mm、鞘部の融点が約110℃のポリエステル芯鞘バインダー繊維(ユニチカファイバー株式会社製の「メルティー(登録商標)」,品番4080)を準備した。
【0070】
そして、ポリウレタン弾性繊維5重量%と、潜在捲縮ポリエステル繊維65重量%と、ポリエステル芯鞘バインダー繊維30重量%とを、パルパーを用いて水中に均一分散させ、PAM系粘剤(三井サイテック株式会社製の「マイレジン(登録商標)」,品番R10L)を混合体重量に対して10ppm、変成ポリエステル/エーテル系分散剤(竹本油脂株式会社製のMDP−002)を繊維総重量に対して1%添加し、繊維濃度約0.5%の混合体を調製した。
【0071】
続いて、この混合体を短網抄紙機により繊維が複数方向でランダムに配向するように抄造し、次いで、表面温度が120度のシリンダー型ドライヤーで加熱して、目付22g/m2のウェブを得た。
【0072】
そして、ウェブを弛緩状態にし、これを160℃に設定された赤外線ヒーターに通過させて捲縮を発現させ、その後、線圧10kgf/cmに設定されたフラットローラーで処理して伸縮性不織布を得た。得られた伸縮性不織布の特性を表1に示す。
【0073】
(実施例2)
ポリウレタン弾性繊維の配合率を10重量%とし、潜在捲縮ポリエステル繊維の配合率を60重量%とした以外は、実施例1と同じ条件にして、伸縮性不織布を得た。得られた不織布の特性を表1に示す。
【0074】
(実施例3)
ポリウレタン弾性繊維の配合率を20重量%とし、潜在捲縮ポリエステル繊維の配合率を50重量%とした以外は、実施例1と同じ条件にして、伸縮性不織布を得た。得られた不織布の特性を表1に示す。
【0075】
(比較例)
比較例では、弾性繊維を配合せずに不織布を形成した。
【0076】
すなわち、捲縮繊維として、単糸繊度が1.7デシテックス、繊維長さが5mm、捲縮発現温度が約140℃以上の潜在捲縮ポリエステル繊維(ユニチカファイバー株式会社製のT81)を準備し、バインダーとして、単糸繊度が1.1デシテックス、繊維長さが3mm、鞘部の融点が約110℃のポリエステル芯鞘バインダー繊維(ユニチカファイバー株式会社製の「メルティー(登録商標)」,品番4080)を準備した。
【0077】
そして、潜在捲縮ポリエステル繊維70重量%と、ポリエステル芯鞘バインダー繊維30重量%とを、パルパーを用い水中に均一分散させ、実施例1と同じ製法で伸縮性不織布を得た。得られた不織布の特性を表1に示す。
【0078】
【表1】
表1より、実施例1〜3で得られた各伸縮性不織布は、比較例で得られた不織布に比べて、縦横の両方向の伸長回復率が極めて高くなり、複数方向における伸縮性に優れた不織布となることがわかる。
【0079】
なお、比較例では、伸長回復率が縦(MD)49.9%、横(CD)45.6%と低く、伸縮性不織布としては不適である。
【0080】
【発明の効果】
本発明によれば、弾性繊維と捲縮繊維との交絡点をバインダーにより接合するようにしているので、風合いがよく、柔軟性に優れ、伸縮を繰り返しても伸縮性が劣化しない伸縮性不織布を得ることができる。
【0081】
また、弾性繊維と捲縮繊維とがランダム配向されるようにすると、複数方向において伸縮性を得ることができ、球体等に対する曲面追随性を向上させることができる。したがって、洋服の芯地、外用薬の基布、ワイピングクロス、包装材等のような伸縮性の必要な用途に好適な伸縮性不織布を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の伸縮性不織布を示す斜視図である。
【図2】図1におけるIIA−IIA線拡大断面図およびIIIA−IIIA線拡大断面図である。
【図3】伸縮性不織布の製造装置を示す模式図である。
【図4】(A)加熱前のウェブおよび(B)加熱後のウェブを示す図解図である。
【符号の説明】
(10)…伸縮性不織布
(12)…弾性繊維
(14)…捲縮繊維
(16)…繊維状バインダー[0001]
[Industrial application fields]
The present invention relates to a stretchable nonwoven fabric. More specifically, it has a good texture, has flexibility and elasticity in multiple directions (vertical, horizontal, and diagonal), does not deteriorate even when it is repeatedly expanded and contracted, and has a uniform thickness. It is related with a nonwoven fabric and its manufacturing method.
[0002]
[Prior art]
Conventionally, various techniques for imparting stretchability to a nonwoven fabric have been proposed.
[0003]
As such a technique, first, a technique for manufacturing a stretchable nonwoven fabric mainly using rubber-based elastic fibers is known. For example, Japanese Patent Publication No. 43-26578 and Japanese Patent Laid-Open No. 3-19952 disclose a technique for forming a stretchable nonwoven fabric by interlacing polyurethane elastic fibers with each other. Japanese Patent Application Laid-Open No. 10-25621 discloses a technique in which a polyester elastic fiber containing a sulfonic acid metal salt and an anti-sticking agent is made into a stretchable nonwoven fabric by a wet papermaking method.
[0004]
The stretchable nonwoven fabric obtained by these techniques is mainly composed of rubber-based elastic fibers, and thus has a high stretchability and a high recovery rate of stretch. However, the touch becomes sticky and sticky like rubber, and the texture is inferior, making it difficult to use for clothing and sanitary materials that directly touch the skin.
[0005]
Next, a technique for producing a stretchable nonwoven fabric by interlacing crimped fibers made of polyester, polypropylene, or the like is known. For example, in Japanese Patent Laid-Open No. 2-91217 and Japanese Patent Laid-Open No. 5-171555, a web made of latent crimped fibers formed by the card method is mechanically entangled and then subjected to heat treatment to express crimps. A technique for obtaining a stretchable nonwoven fabric is shown.
[0006]
The stretchable nonwoven fabric obtained by these techniques is improved in texture, but when it is repeatedly stretched, there is a problem that mechanical entanglement is lost and the stretchability is lowered. In these techniques, the card method is used for forming the web, and the fibers are easily oriented in the longitudinal direction. As a result, the expansion and contraction of the nonwoven fabric is effective only in the longitudinal direction. Therefore, when a sphere or the like is wrapped as a packaging material, there is a problem that the curved surface followability is inferior.
[0007]
In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 8-260313 and Japanese Patent Application Laid-Open No. 11-61617 disclose a technique for making a web orthogonal by a cross layer or the like. However, this technique does not eliminate a decrease in stretchability when repeated stretching and webs are laminated, resulting in problems such as increased basis weight and lack of flexibility.
[0008]
Furthermore, a technique for manufacturing a stretchable nonwoven fabric by joining a nonwoven fabric and a stretchable member is known. Japanese Patent Application Laid-Open No. 8-188950 discloses a technique for performing a high-pressure water injection process on a laminate in which an elastic elastic member is interposed between two upper and lower webs.
[0009]
In the stretchable nonwoven fabric obtained by this technique, the texture of the nonwoven fabric is improved, and the stretch directionality and the stretch properties when the stretch is repeated are also improved. However, since the elastic elastic member is interposed between the web layers, the thickness becomes non-uniform, and in order to make this thickness uniform, there is a problem that the basis weight of the nonwoven fabric must be increased and the flexibility is lacking. Furthermore, since the elastic stretchable member is interposed after the web is once formed, the process becomes complicated, and the loss is large in terms of quality control and manufacturing cost.
[0010]
[Problems to be solved by the invention]
Therefore, the object of the present invention is good in texture, has flexibility and elasticity in multiple directions (vertical, horizontal, and diagonal), and does not deteriorate even when it is repeatedly expanded and contracted. It is to provide a stretchable nonwoven fabric that is uniform, and to provide a method for producing such a stretchable nonwoven fabric.
[0011]
[Means for Solving the Problems]
A first aspect of the present invention is an elastic fiber (12), and latent crimp fibers expressing crimp by heating at a temperature lower than the softening point of the elastic fibers (12) (14), elastic fibers (12) intertwined points between the latent crimped fibers entangled points or elastic fibers (14) (12) and the latent crimp fiber (14) fibrous binder for bonding with interlacing point (16) and the elastic nonwoven fabric comprising ( 10) The fibrous binder (16) has a sheath part (16x) and a core part (16y), and the melting point of the sheath part (16x) is the crimp expression temperature of the latent crimped fiber (14). It is an elastic nonwoven fabric (10) characterized by being lower than the above.
[0012]
2nd invention is a manufacturing method of the elastic nonwoven fabric (10) provided with an elastic fiber (12) and a latent crimp fiber (14) , Comprising: An entanglement point with an elastic fiber (12) , a latent crimp fiber ( 14) or the elastic fiber (12) and the entangled point with the latent crimped fiber (14) are joined with a fibrous binder (16), and then the expansion or contraction that causes the crimped latent fiber to develop. This is a method for producing a conductive nonwoven fabric (10).
[0013]
In the stretchable nonwoven fabric (10) of the first invention and the stretchable nonwoven fabric (10) obtained by the second invention, the elastic fiber (12) and the crimped fiber (14) are bonded at the entanglement point (16). It is joined via. Therefore, even if these fibers are short fibers, a flexible nonwoven fabric having excellent mechanical strength and low basis weight can be realized. Further, since the elastic fiber (12) excellent in stretch recovery property and the crimped fiber (14) which gives bulkiness and flexibility by crimping are joined, a nonwoven fabric (10) having both advantages can be obtained. Can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 1 and 2, the stretchable nonwoven fabric (10) to which the present invention is applied includes elastic fibers (12), crimped fibers (14), and a binder (16) that are randomly oriented.
[0015]
The elastic fiber (12) is such that the fiber itself, such as polyurethane elastic fiber, has rubber-like elasticity.
[0016]
The single yarn fineness and length of the elastic fiber (12) are determined from the viewpoint of product strength and moldability, and the single yarn fineness is preferably 0.5 dtex or more and 40 dtex or less, more preferably, 1 dtex or more and 30 dtex or less. When the single yarn fineness is less than 0.5 decitex, the mechanical strength of the elastic fiber (12) is weak, and conversely, when it is larger than 40 decitex, the elastic fiber constituting the web per unit area ( This is because the number of 12) is reduced, and in any case, the stretch recovery performance inherent to the elastic fiber is hardly exhibited.
[0017]
On the other hand, the length of the elastic fiber (12) is preferably 3 mm or more and 50 mm or less, more preferably 5 mm or more and 30 mm or less. When the fiber length is less than 3 mm, the dispersibility of each fiber is improved, but the mechanical strength of the nonwoven fabric is weakened. Conversely, when the fiber length is larger than 50 mm, the mechanical strength of the nonwoven fabric is increased but the web is strong. This is because it becomes difficult to uniformly disperse the fibers during molding.
[0018]
The cross-sectional shape of the elastic fiber (12) is not particularly limited, and may be a circular cross-section as shown in FIG. 2 or an irregular cross-section such as a triangle or a flat shape.
[0019]
As the elastic fiber (12), in addition to the polyurethane elastic fiber, a polyether / ester elastic fiber, a polyamide elastic fiber, or the like can be used, and a so-called rubber thread made of natural rubber, synthetic rubber, semi-synthetic rubber, or the like is used. It can also be used. Also, composite fibers or mixed fibers of these elastic fibers and other organic synthetic resins can be used.
[0020]
However, in order to obtain a flexible nonwoven fabric excellent in elongation recovery performance, it is preferable to use polyurethane elastic fibers (12).
[0021]
As such a polyurethane elastic fiber, a long-chain diol such as a copolyester diol as a main constituent component as a soft segment, a diisocyanate such as diphenylmethane-4,4 diisocyanate as a main constituent component, and a bifunctional as a chain extender As a chain extender, a polyester-based elastic fiber having a basic hydrogen compound as a main component, polytetramethylene ether glycol as a main component as a soft segment, and diphenylmethane-4,4 diisocyanate as a main component as a hard segment Examples thereof include polyether elastic fibers having a low molecular weight bifunctional hydrogen compound as a main constituent.
[0022]
The crimped fiber (14) is obtained by crimping a polyester fiber or the like mechanically or with a specific fiber structure to give the fiber itself elasticity like a coil spring.
[0023]
The single yarn fineness and length of the crimped fiber (14) are determined from the viewpoint of product function, product strength and moldability, and the single yarn fineness is preferably 0.2 dtex or more and 20 dtex or less, More preferably, it is 0.5 dtex or more and 10 dtex or less. When the single fiber fineness of the crimped fiber (14) is less than 0.2 dtex, a dense and flexible nonwoven fabric can be obtained, but the stretchability is inferior, and conversely, when it is greater than 20 dtex, This is because the nonwoven fabric has elasticity but is inferior in rigid texture.
[0024]
On the other hand, the length of the crimped fiber (14) is preferably 3 mm or more and 50 mm or less, more preferably 5 mm or more and 30 mm or less, for the same reason as in the case of the elastic fiber (12). .
[0025]
The cross-sectional shape of the crimped fiber (14) is not particularly limited, and may be a circular cross-section as shown in FIG. 2 or an irregular cross-section such as a triangle or a flat shape.
[0026]
The crimped fibers (14) include polyester fibers, synthetic fibers such as polyolefins, acrylics and polyamides, semi-synthetic fibers such as triacetate fibers and diacetate fibers, viscose rayon, copper Regenerated cellulose fibers such as ammonia rayon and polynosic rayon, and natural fibers such as cotton, silk, wool and hemp can be used. In other words, any fiber can be crimped (approached crimp) by guiding the fiber yarn to a crimper or the like and mechanically crimping it. The kind of crimped fiber (14) is not particularly limited.
[0027]
However, in order to improve the mixability with other fibers in the production process of the stretchable nonwoven fabric (10) and the stretchability, texture and thickness uniformity of the stretchable nonwoven fabric (10) as a product, (14) is preferably a latently crimped fiber that develops crimps by a relaxation heating treatment after mixing, and when using latently crimped fibers, the types of fibers are limited to some extent.
[0028]
Such latent crimped fibers include, for example, a plurality of types of thermoplastic polymer components (polyester, polyolefin, acrylic, polyamide, etc.) having different heat shrinkage characteristic values such as melting point and viscosity, A structure arranged side by side along the length direction (side-by-side structure) and these multiple types of thermoplastic polymer components (polyester, polyolefin, acrylic, polyamide, etc.) are eccentric in the cross section of the yarn fiber The thing of the structure arrange | positioned at core-sheath shape is known.
[0029]
In the latent crimped fiber (14), it is preferable that the crimp expression temperature is lower than the softening point of the elastic fiber (12). If the crimping temperature of the latent crimped fiber (14) is higher than the softening point of the elastic fiber (12), the process of heating the latent crimped fiber (14) to develop the crimp in the elastic fiber (12) This is because the elongation recovery performance deteriorates.
[0030]
Such a latent crimped fiber (14) has a side-by-side structure latent crimp mainly composed of polyethylene terephthalate (14x) as a high melting point component and ethylene terephthalate / isophthalic acid copolymer (14y) as a low melting point component. Mention may be made of the fibers (14).
[0031]
The binder (16) is made of a polyester resin, a polyolefin resin, an acrylic resin, a polyamide resin, etc., fluidized by heating and melting, moved to the entanglement point of the fibers constituting the web, and cooled and solidified. The entanglement point is joined.
[0032]
The melting point of the binder (16) is preferably lower than the softening point of the elastic fiber (12). This is because if the melting point of the binder (16) is higher than the softening point of the elastic fiber (12), the stretch recovery performance of the elastic fiber (12) deteriorates in the step of heating and melting the binder (16).
[0033]
In addition, the binder (16) can exert its function as long as it is fluidized by heating and melting, so the shape thereof is not particularly limited, and the fibrous shape shown in FIG. 1 and FIG. In addition, it may be liquid or powder.
[0034]
However, from the viewpoint of reliably joining the entanglement points of the fibers, the shape of the binder (16) is preferably fibrous, and in particular, the sheath (16x) made of a low-melting thermoplastic resin. A fibrous binder (16) having a core-sheath structure including a core (16y) having a higher melting point than the sheath (16x) is preferable.
[0035]
The use of the core-sheath fibrous binder (16) has the following advantages. That is, when the sheath part (16x) is melted in the heating process (fiber entanglement point joining process) of the fibrous binder (16), the melted resin of the sheath part (16x) becomes the fiber of the core part (16y). Move along and gather at the fiber entanglement point (18) by surface tension. And the entanglement point of a fiber is joined by cooling and solidifying this resin. For this reason, the resin of the sheath part (16x) does not spread in a planar shape, and there is no concern that the stretchability of the elastic fiber (12) or the crimped fiber (14) is hindered.
[0036]
As the fibrous binder (16) having such a core-sheath structure, the sheath part (16x) is formed of a low melting point ethylene terephthalate / isophthalic acid copolymer, and the core part (16y) is formed more than the sheath part (16x). Examples thereof include those formed of high melting point polyethylene terephthalate.
[0037]
The cross-sectional shape of the fibrous binder (16) may be a shape in which the sheath (16x) and the core (16y) are arranged concentrically as shown in FIG. The shape may be arranged in an eccentric circle (not shown).
[0038]
The length of the fibrous binder (16) is preferably 3 mm or more and 50 mm or less, more preferably 5 mm, for the same reason as in the case of the elastic fiber (12) and the crimped fiber (14). Above and below 30 mm.
[0039]
In order to effectively exhibit the various functions of the stretchable nonwoven fabric (10), the blending ratio of each constituent fiber is preferably within the following range.
[0040]
That is, the blending ratio of the elastic fiber (12) is preferably 3% by weight or more and 50% by weight or less, more preferably 5% by weight or more and 30% by weight or less.
[0041]
When the blending ratio of the elastic fiber (12) is less than 3% by weight, the stretch recovery performance inherent to the elastic fiber (12) is hardly exhibited. Conversely, when the blending ratio is more than 50% by weight, the touch is rubber. This is because it becomes sticky and sticky, and the texture becomes inferior.
[0042]
The blending ratio of the crimped fiber (14) is preferably 40% by weight or more and 80% by weight or less, more preferably 50% by weight or more and 70% by weight or less.
[0043]
When the blending ratio of the crimped fibers (14) is less than 40% by weight, the stretchability of the nonwoven fabric is lowered, and the nonwoven fabric has a hard texture with poor flexibility. Conversely, when the blending ratio is more than 80% by weight, This is because, although it has stretchability, the mechanical strength is weakened, so that the stretch recovery performance when repeatedly stretched is lowered.
[0044]
Furthermore, the blending ratio of the binder is preferably 10% by weight or more and 50% by weight or less, more preferably 20% by weight or more and 40% by weight or less.
[0045]
When the blending ratio of the binder is less than 10% by weight, the mechanical strength of the nonwoven fabric is weak, and conversely, when it exceeds 50% by weight, the mechanical strength increases but the stretchability is inhibited. This is because it is hard and inferior in texture.
[0046]
When the elastic fibers (12), the crimped fibers (14) and the binder (16) are randomly oriented according to the above blending ratio, the stretchable unwoven cloth (10) is oriented in a plurality of longitudinal, lateral and diagonal directions. Can be expanded and contracted.
[0047]
The stretchable nonwoven fabric (10) is manufactured using a manufacturing apparatus A as shown in FIG.
[0048]
The manufacturing apparatus A includes a rotary device (20), a mixing tank (22), a machine tank (24), a short net paper machine (26), a felt (28), a cylinder dryer (30), a feed roller (31), Including the heating furnace (32), take-up roller (34), winding device (36), etc., the `` fiber mixture preparation process '' is executed in the rotary device (20), mixing tank (22) and machine tank (24) Then, the “web forming step” is executed by the short net paper machine (26), and the “fiber entanglement step” is executed by the felt (28) and the cylinder dryer (30). Then, the “crimping process” is executed by the feed roller (31), the heating furnace (32), and the take-up roller (34), and the “winding process” is executed by the winding device (36).
[0049]
Below, the method to manufacture an elastic nonwoven fabric (10) using the manufacturing apparatus A is demonstrated. However, in the following example, latent crimped fibers are used as the crimped fibers (14), and a fibrous binder is used as the binder (16).
[0050]
First, in the “fiber mixture preparation step”, the elastic fiber (12), the latent crimped fiber (14), and the fibrous binder (16) are put into water, and these are rotated by a rotary device (20) such as a pulper. The fibers are mixed and disaggregated and dispersed to prepare a fiber mixture suspension (hereinafter referred to as “mixture”) having a concentration of about 0.1 to 3%. Then, this mixture is sequentially transferred to the mixing tank (22) and the machine tank (24) by a pump.
[0051]
In the subsequent `` web forming process '', the mixture in the machine tank (24) is supplied to the wire transport band (26a) provided in the short net paper machine (26) by a pump, Is dehydrated. By this step, water in the mixture is removed, and a web is formed on the wire transport band (26a). Since the fibers in the mixture are sufficiently mixed in the previous step, the constituent fibers of the web are randomly oriented in a plurality of directions as shown in FIG. Then, the web on the wire conveyance band (26a) is transferred onto the felt (28) having a higher surface smoothness than the wire conveyance band (26a).
[0052]
In the next “fiber entanglement joining step”, the web transferred onto the felt (28) is transferred onto a cylinder dryer (30) having a surface smoothness higher than that of the felt (28) and heated to a predetermined temperature. The
[0053]
When the web is heated, the fibrous binder (16) constituting the web is melted, and the melted resin flows to the fiber entanglement point (18) by surface tension. When the web is pulled away from the cylinder dryer (30) and cooled, the melted resin is solidified to join the entanglement points (18). Therefore, the web that has undergone the “fiber entanglement bonding step” has greatly increased mechanical strength.
[0054]
In the “crimp expression step”, the web is supplied by the feed roller (31) to the heating furnace (32) using radiant heat such as infrared rays or far infrared rays. The temperature in the heating furnace (32) is set to a temperature that is lower than the softening point of the elastic fiber (12) and that allows the latent crimped fiber (14) to be crimped.
[0055]
Here, in order to express the crimp in the latent crimped fiber (14), it is preferable that the web in the heating furnace (32) is in a relaxed state, and therefore the feed roller (31) so that the web is not tensioned. And the peripheral speed of the take-up roller (34) is adjusted.
[0056]
In the final “winding step”, the completed stretchable nonwoven fabric (10) is wound by the winding device (36).
[0057]
In addition, each process mentioned above is only an example to which this invention is applied, and the following changes may be added.
[0058]
That is, in the “fiber mixture preparation step”, a nonionic neutral polyether-based dispersant, a weak cation neutral modified polyester / polyether-based dispersant, etc. are added to the total weight of the fiber in order to assist the dispersion of each fiber in the mixture. May be added in the range of 0.01 wt% to 10%, or a commercially available water-soluble adhesive may be added in an amount of 5 ppm to 50 ppm in terms of solid content with respect to the weight of the mixture.
[0059]
Further, the number of tanks (mixing tank (22) and machine tank (24)) for storing the mixture may be one, or three or more.
[0060]
In the “web forming step”, another type of paper machine such as a long net or a circular net may be used instead of the short net paper machine. Further, the length and number of the felt (28) for conveying the formed web may be appropriately changed, and one or more rolls may be used in place of the felt (28).
[0061]
Moreover, you may provide separately the "press process" which squeezes between a "web shaping | molding process" and a "fiber entanglement point joining process."
[0062]
Furthermore, in the “fiber entanglement point joining step”, instead of the cylinder-type dryer (30), other types of heating devices such as an air dryer, an air-through dryer, an infrared dryer, or a suction dryer may be used.
[0063]
In addition, the “fiber entanglement point joining step” and the “crimp expression step” may be executed at different times or places, and these steps are integrated to join the fiber entanglement point and crimp appearance. May be performed simultaneously.
[0064]
In addition, the texture and surface properties of the stretchable nonwoven fabric (10) are adjusted by a calender roll (not shown), an emboss roll (not shown), etc. between the “crimp expression step” and the “winding step”. An “adjustment step” may be provided separately.
[0065]
Further, in the “fiber mixture preparation step” and the “web forming step”, other liquids such as ethanol may be used as a dispersion medium instead of water.
[0066]
Furthermore, in the “fiber mixture preparation step” and the “web molding step”, a dry method using a gas such as air as the dispersion medium may be employed instead of the wet method using water as the dispersion medium. In this case, in the “fiber mixture preparation step”, each fiber is disaggregated and dispersed by a defibrating machine (not shown), and a mixture of each fiber is prepared by a blending machine (not shown). On the other hand, in the “web forming step”, each fiber is randomly oriented in a plurality of directions by a random card machine.
[0067]
(Example)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
[0068]
In addition, the physical property in an Example and a comparative example was measured with the following method.
(1) Weight per unit area: Measured according to JIS L-1096.
(2) Thickness: Measured according to JIS L-1096.
(3) Tensile strength: Measured according to JIS P-8113.
(4) CD / MD ratio: an index indicating fiber orientation in the nonwoven fabric. For the tensile strength in the machine direction (MD) along the product flow and the tensile strength in the transverse direction (CD) perpendicular to this, the transverse (CD) strength was divided by the longitudinal (MD) strength and expressed as a ratio.
(5) Elongation recovery rate: an index indicating the remaining stretchability after repeated stretch. For the specimen after giving 15% elongation recovery 5 times with an Instron testing machine, the elongation (%) was measured again with the Instron testing machine, and this was divided by the elongation before giving the extension recovery, Expressed as a percentage (%).
[0069]
Example 1
Polyurethane elastic fiber (“Lycra (registered trademark)” manufactured by Toray DuPont, product number T-127C) having a single yarn fineness of 7 dtex, a fiber length of 6 mm, and a softening point of about 180 ° C. is prepared as an elastic fiber. As a crimped fiber, a latent crimped polyester fiber (T81 manufactured by Unitika Fiber Co., Ltd.) having a single yarn fineness of 1.7 dtex, a fiber length of 5 mm, and a crimp expression temperature of about 140 ° C. or more is prepared. As a binder, a polyester core-sheath binder fiber having a single yarn fineness of 1.1 dtex, a fiber length of 3 mm, and a sheath melting point of about 110 ° C. (“Melty (registered trademark)” manufactured by Unitika Fiber Co., Ltd., product number 4080) Prepared.
[0070]
Then, 5% by weight of polyurethane elastic fiber, 65% by weight of latently crimped polyester fiber, and 30% by weight of polyester core-sheath binder fiber are uniformly dispersed in water using a pulper, and a PAM-based adhesive (Mitsui Cytec Co., Ltd.). "Myresin (Registered Trademark)", product number R10L) made from 10ppm of the weight of the mixture, and modified polyester / ether dispersant (MDP-002 made by Takemoto Yushi Co., Ltd.) added at 1% of the total fiber weight A mixture having a fiber concentration of about 0.5% was prepared.
[0071]
Subsequently, the mixture was made with a short paper machine so that the fibers were randomly oriented in a plurality of directions, and then heated with a cylinder dryer having a surface temperature of 120 degrees to form a web having a basis weight of 22 g / m 2 . Obtained.
[0072]
Then, the web is brought into a relaxed state, and this is passed through an infrared heater set at 160 ° C. to develop crimps, and then treated with a flat roller set at a linear pressure of 10 kgf / cm to obtain a stretchable nonwoven fabric. It was. The properties of the resulting stretchable nonwoven fabric are shown in Table 1.
[0073]
(Example 2)
A stretchable nonwoven fabric was obtained under the same conditions as in Example 1 except that the blending ratio of the polyurethane elastic fiber was 10% by weight and the blending ratio of the latent crimped polyester fiber was 60% by weight. Table 1 shows the properties of the obtained nonwoven fabric.
[0074]
(Example 3)
A stretchable nonwoven fabric was obtained under the same conditions as in Example 1 except that the blending ratio of the polyurethane elastic fibers was 20% by weight and the blending ratio of the latent crimped polyester fibers was 50% by weight. Table 1 shows the properties of the obtained nonwoven fabric.
[0075]
(Comparative example)
In the comparative example, a nonwoven fabric was formed without blending elastic fibers.
[0076]
That is, as a crimped fiber, a single crimped fineness of 1.7 decitex, a fiber length of 5 mm, a latent crimped polyester fiber having a crimp expression temperature of about 140 ° C. or more (T81 manufactured by Unitika Fiber Co., Ltd.), As a binder, a polyester core-sheath binder fiber having a single yarn fineness of 1.1 dtex, a fiber length of 3 mm, and a sheath melting point of about 110 ° C. (“Melty (registered trademark)” manufactured by Unitika Fiber Co., Ltd., product number 4080) Prepared.
[0077]
Then, 70% by weight of latent crimped polyester fiber and 30% by weight of polyester core-sheath binder fiber were uniformly dispersed in water using a pulper, and an elastic nonwoven fabric was obtained by the same production method as in Example 1. Table 1 shows the properties of the obtained nonwoven fabric.
[0078]
[Table 1]
From Table 1, each stretchable nonwoven fabric obtained in Examples 1 to 3 has an extremely high elongation recovery rate in both the longitudinal and lateral directions, and is excellent in stretchability in a plurality of directions, compared to the nonwoven fabric obtained in the comparative example. It turns out that it becomes a nonwoven fabric.
[0079]
In the comparative example, the elongation recovery rate is as low as 49.9% in the vertical direction (MD) and 45.6% in the horizontal direction (CD), which is not suitable as a stretchable nonwoven fabric.
[0080]
【The invention's effect】
According to the present invention, since the entanglement point between the elastic fiber and the crimped fiber is joined by the binder, a stretchable nonwoven fabric that has a good texture, excellent flexibility, and does not deteriorate stretchability even after repeated stretches. Obtainable.
[0081]
In addition, when the elastic fibers and the crimped fibers are randomly oriented, stretchability can be obtained in a plurality of directions, and curved surface followability to a sphere or the like can be improved. Therefore, it is possible to obtain a stretchable nonwoven fabric suitable for uses requiring stretchability, such as clothes interlining, a base cloth for external medicine, a wiping cloth, and a packaging material.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a stretchable nonwoven fabric according to an embodiment of the present invention.
2 is an enlarged sectional view taken along line IIA-IIA and an enlarged sectional view taken along line IIIA-IIIA in FIG.
FIG. 3 is a schematic view showing an apparatus for producing a stretchable nonwoven fabric.
FIG. 4 is an illustrative view showing (A) a web before heating and (B) a web after heating.
[Explanation of symbols]
(10)… Elastic nonwoven fabric
(12)… elastic fiber
(14)… Crimp fiber
(16)… Fibrous binder
Claims (8)
前記繊維状バインダーは、鞘部と芯部とを有し、前記鞘部の融点が前記潜在捲縮繊維の捲縮発現温度よりも低いことを特徴とする伸縮性不織布。 Intertwined points of the elastic fibers, and latent crimp fibers expressing crimp by heating at a temperature lower than the softening point of the elastic fibers, the previous SL intertwined points of the elastic fibers, the latent Mekuchijimi繊Wei or the a elastic fibers and the latent crimp fibers and stretched or squeezed nonwoven Ru and a fibrous binder for bonding with entangled points of
The said fibrous binder has a sheath part and a core part, The melting | fusing point of the said sheath part is lower than the crimp expression temperature of the said latent crimp fiber, The elastic nonwoven fabric characterized by the above-mentioned .
(b)前記混合体からシート状のウェブを形成し、(B) forming a sheet-like web from the mixture,
(c)前記ウェブを加熱することにより前記繊維状バインダーの鞘部を溶融させて、前記弾性繊維との交絡点,前記潜在捲縮繊維との交絡点或いは前記弾性繊維及び前記潜在捲縮繊維との交絡点を接合し、然る後、(C) The sheath of the fibrous binder is melted by heating the web, and the entanglement point with the elastic fiber, the entanglement point with the latent crimped fiber, or the elastic fiber and the latent crimped fiber After joining the confounding points,
(d)前記ウェブを加熱することにより前記潜在捲縮繊維の捲縮を発現させる、伸縮性不織布の製造方法。(D) A method for producing a stretchable nonwoven fabric, wherein the crimp of the latent crimped fiber is expressed by heating the web.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340946A JP3934916B2 (en) | 2001-11-06 | 2001-11-06 | Stretchable nonwoven fabric and method for producing the same |
CNB028221974A CN100445450C (en) | 2001-11-06 | 2002-11-05 | Nonwoven fabric and method of manufacture |
KR1020047006759A KR100894599B1 (en) | 2001-11-06 | 2002-11-05 | Nonwoven fabric and method of manufacture |
DE60206957T DE60206957T2 (en) | 2001-11-06 | 2002-11-05 | NONWOVEN AND MANUFACTURING PROCESS |
EP02802858A EP1448824B1 (en) | 2001-11-06 | 2002-11-05 | Nonwoven fabric and method of manufacture |
PCT/US2002/035496 WO2003040452A1 (en) | 2001-11-06 | 2002-11-05 | Nonwoven fabric and method of manufacture |
HK05108159.5A HK1076132A1 (en) | 2001-11-06 | 2005-09-16 | Nonwoven fabric and method of manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340946A JP3934916B2 (en) | 2001-11-06 | 2001-11-06 | Stretchable nonwoven fabric and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147670A JP2003147670A (en) | 2003-05-21 |
JP3934916B2 true JP3934916B2 (en) | 2007-06-20 |
Family
ID=19155073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001340946A Expired - Fee Related JP3934916B2 (en) | 2001-11-06 | 2001-11-06 | Stretchable nonwoven fabric and method for producing the same |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1448824B1 (en) |
JP (1) | JP3934916B2 (en) |
KR (1) | KR100894599B1 (en) |
CN (1) | CN100445450C (en) |
DE (1) | DE60206957T2 (en) |
HK (1) | HK1076132A1 (en) |
WO (1) | WO2003040452A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1567700B1 (en) * | 2002-11-21 | 2007-10-24 | INVISTA Technologies S.à.r.l. | High stretch recovery non-woven fabric and process for preparing |
TWI306129B (en) | 2003-01-24 | 2009-02-11 | Mitsui Chemicals Inc | Fiber mixture, stretch nonwoven fabric comprising the same, and production method for the stretch nonwoven fabric |
US7850660B2 (en) | 2003-12-19 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Implantable medical device with simultaneous attachment mechanism and method |
DE10338196A1 (en) * | 2003-08-20 | 2005-05-12 | Reifenhaeuser Masch | Process for producing a nonwoven fabric |
JP4683957B2 (en) * | 2005-02-25 | 2011-05-18 | 花王株式会社 | Non-woven |
JP4566142B2 (en) * | 2005-03-09 | 2010-10-20 | 花王株式会社 | Non-woven |
US7357985B2 (en) | 2005-09-19 | 2008-04-15 | E.I. Du Pont De Nemours And Company | High crimp bicomponent fibers |
JP2007152774A (en) * | 2005-12-06 | 2007-06-21 | Hyuei-Ron Hyuan | Method and apparatus for manufacture of formed elastomer |
US8518841B2 (en) | 2006-08-04 | 2013-08-27 | Kuraray Co., Ltd. | Stretchable nonwoven fabric and tape |
EA015784B1 (en) * | 2006-12-08 | 2011-12-30 | Юни-Чарм Корпорейшн | Stretchable nonwoven fabric, absorbent article and method of producing absorbent article |
US20120065283A1 (en) * | 2010-09-14 | 2012-03-15 | Sabic Innovative Plastics Ip B.V. | Reinforced thermoplastic articles, compositions for the manufacture of the articles, methods of manufacture, and articles formed therefrom |
CN104540988B (en) * | 2012-08-08 | 2017-12-15 | 大和纺控股株式会社 | Adhesive-bonded fabric, the sheet material for absorbent article and use its absorbent article |
DE102013008402A1 (en) * | 2013-05-16 | 2014-11-20 | Irema-Filter Gmbh | Nonwoven fabric and process for producing the same |
KR200479150Y1 (en) * | 2013-09-30 | 2015-12-24 | 프로테우스(주) | Indoor bike type exercising apparatus |
WO2016033226A1 (en) | 2014-08-26 | 2016-03-03 | Curt G. Joa, Inc. | Apparatus and methods for securing elastic to a carrier web |
WO2016118614A1 (en) * | 2015-01-21 | 2016-07-28 | Primaloft, Inc. | Migration resistant batting with stretch and methods of making and articles comprising the same |
RU2735609C1 (en) * | 2017-04-28 | 2020-11-05 | Кимберли-Кларк Ворлдвайд, Инк. | Foamed fibrous sheets with crimped staple fibers |
CN109943980B (en) * | 2017-12-20 | 2021-02-23 | 财团法人纺织产业综合研究所 | Non-woven fabric structure and manufacturing method thereof |
WO2019148156A1 (en) | 2018-01-29 | 2019-08-01 | Curt G. Joa, Inc. | Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product |
US11925538B2 (en) | 2019-01-07 | 2024-03-12 | Curt G. Joa, Inc. | Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product |
US11173072B2 (en) | 2019-09-05 | 2021-11-16 | Curt G. Joa, Inc. | Curved elastic with entrapment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3407461A (en) * | 1966-11-29 | 1968-10-29 | Monsanto Co | Method for preparing nonwoven substrates |
US4426420A (en) * | 1982-09-17 | 1984-01-17 | E. I. Du Pont De Nemours And Company | Spunlaced fabric containing elastic fibers |
EP0125494B1 (en) * | 1983-05-13 | 1992-01-02 | Kuraray Co., Ltd. | Entangled fibrous mat having good elasticity and production thereof |
JPH0762302B2 (en) * | 1986-07-03 | 1995-07-05 | 株式会社クラレ | Fiber entangled body and its manufacturing method |
DE69127162T2 (en) * | 1990-05-28 | 1998-02-12 | Teijin Ltd | UPHOLSTERY MATERIAL AND ITS PRODUCTION |
US5302443A (en) * | 1991-08-28 | 1994-04-12 | James River Corporation Of Virginia | Crimped fabric and process for preparing the same |
US5935879A (en) * | 1994-09-21 | 1999-08-10 | Owens Corning Fiberglas Technology, Inc. | Non-woven fiber mat and method for forming same |
US5540976A (en) * | 1995-01-11 | 1996-07-30 | Kimberly-Clark Corporation | Nonwoven laminate with cross directional stretch |
JP3592842B2 (en) * | 1996-07-08 | 2004-11-24 | 帝人ファイバー株式会社 | Polyester elastic fiber and stretchable wet nonwoven fabric comprising the same |
US6372343B1 (en) * | 2000-01-07 | 2002-04-16 | Teijin Limited | Crimped polyester fiber and fibrous structure comprising the same |
-
2001
- 2001-11-06 JP JP2001340946A patent/JP3934916B2/en not_active Expired - Fee Related
-
2002
- 2002-11-05 CN CNB028221974A patent/CN100445450C/en not_active Expired - Fee Related
- 2002-11-05 KR KR1020047006759A patent/KR100894599B1/en not_active IP Right Cessation
- 2002-11-05 EP EP02802858A patent/EP1448824B1/en not_active Expired - Lifetime
- 2002-11-05 DE DE60206957T patent/DE60206957T2/en not_active Expired - Lifetime
- 2002-11-05 WO PCT/US2002/035496 patent/WO2003040452A1/en active IP Right Grant
-
2005
- 2005-09-16 HK HK05108159.5A patent/HK1076132A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE60206957T2 (en) | 2006-08-03 |
WO2003040452A1 (en) | 2003-05-15 |
EP1448824A1 (en) | 2004-08-25 |
KR100894599B1 (en) | 2009-04-24 |
EP1448824B1 (en) | 2005-10-26 |
HK1076132A1 (en) | 2006-01-06 |
KR20050043743A (en) | 2005-05-11 |
CN1599814A (en) | 2005-03-23 |
CN100445450C (en) | 2008-12-24 |
JP2003147670A (en) | 2003-05-21 |
DE60206957D1 (en) | 2005-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3934916B2 (en) | Stretchable nonwoven fabric and method for producing the same | |
KR100460474B1 (en) | Durable spunlaced fabric or nonwoven fabric, and a process for forming the same | |
US5789328A (en) | Bulky nonwoven fabric and method for producing the same | |
US3595731A (en) | Bonded non-woven fibrous materials | |
ES2528660T3 (en) | Method for manufacturing a particularly soft and three-dimensional nonwoven and nonwoven obtained in this way | |
KR101976155B1 (en) | Fibrous Nonwoven Fabric For Mask Pack | |
JPH03137257A (en) | Perforated nonwoven fabric produced from a plurality of melt blow microfibers | |
JPH07863B2 (en) | Elastic nonwoven fabric and method for producing the same | |
JPH0226972A (en) | Nonwoven fibrous fluid entangled non-elastic conform material and formation thereof | |
JP5309270B1 (en) | Multi-layer fiber structure | |
EP1292729B1 (en) | Non woven textile structure incorporating stabilized filament assemblies | |
JP5309268B1 (en) | Multi-layer fiber structure | |
JP2007056417A (en) | Artificial leather base and method for producing the same | |
JP2008285433A (en) | Cosmetic-impregnated skin-covering sheet and method for producing the same | |
JP5625027B2 (en) | Cosmetic impregnated skin covering sheet and method for producing the same | |
JP2001521846A (en) | Durable and absorbent spunlace fabric structure | |
JP6698405B2 (en) | Batting | |
JP3217630B2 (en) | Stretchable nonwoven fabric and method for producing the same | |
JP2004149933A (en) | Stetchable nonwoven fabric | |
JPH1136141A (en) | Bulky conjugate fiber, and fibrous form using the same | |
WO2016194773A1 (en) | Fiber sheet | |
EP1444076A1 (en) | Diaphanous nonwoven fabrics with improved abrasive performance | |
JP3212051B2 (en) | Long fiber non-woven fabric | |
JPH04281057A (en) | Stretchable non-woven fabric and its production | |
JP2989249B2 (en) | High strength ultrafine fiber nonwoven fabric and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040705 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040819 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3934916 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |