JPH0234606Y2 - - Google Patents
Info
- Publication number
- JPH0234606Y2 JPH0234606Y2 JP14651783U JP14651783U JPH0234606Y2 JP H0234606 Y2 JPH0234606 Y2 JP H0234606Y2 JP 14651783 U JP14651783 U JP 14651783U JP 14651783 U JP14651783 U JP 14651783U JP H0234606 Y2 JPH0234606 Y2 JP H0234606Y2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen concentration
- probe
- detection
- electrolyte
- detection element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000001301 oxygen Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 31
- 239000000523 sample Substances 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 7
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 7
- 239000004568 cement Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910002078 fully stabilized zirconia Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Description
本案は酸素濃度測定装置即ち溶融金属、溶融ス
ラグ、若しくはガス雰囲気中に浸漬して、その酸
素濃度を標準極と測定側電極間に生ずる起電力を
基に測定する装置の改良に係り、その目的とする
ところは起電力値を高精度で安定に、かつ応答速
度を早くなして測定可能となすことによつて正
確、迅速な酸素濃度測定を行うことにある。
元来この種の酸素濃度測定装置においては、
1)再現性を向上させる為に常に同時の材料によ
つて同等の酸素濃淡電池を構成することが必要で
あり、2)応答速度を早めて測定作業の迅速化と
プローブ外装構成の簡略化によつてコスト低減化
を計る為に検出素子の電解質に安定化度の高い材
質を用いて当該検出素子の熱容量を小さくなして
酸素濃淡電池の電気化学的並びに熱的平衡を速く
すること、更には3)測定可能な酸素濃度範囲が
大であること、例えば製鋼工程においては数ppm
から数百ppmまでの酸素濃度範囲に適用し得るこ
とが要求されている。
そこで従来の酸素濃度測定装置における検出素
子としては第4図に示すタブレツト型の場合電解
質に安全安定化ジルコニアを用い、これを石英支
持管に融着固定して構成されるが、融着状態即ち
融着度が全周に亘つて一定でないことから測定時
に電解質の離脱を生じ、或は低酸素濃度域で融着
部の酸素透過が大となり、また石英(SiO2)の
解離により電解質表面付近の酸素濃度が変化する
など正確な濃度測定が行えないという問題があ
り、一方第5図に示すタンマン型は一端閉管とな
した電解質管を部分安定化ジルコニアにて形成す
ることによつて上記したタブレツト型の場合の融
着部分を原因とする問題は解決される。しかも乍
ら部分安定化ジルコニアは電子伝導の影響が大き
いことから測定に際して電子伝導補正を行わねば
ならずこの補正値が誤差要因となり、部分安定化
ジルコニアを用いていることから電気化学的並び
に熱的平衡に時間を要し応答速度を遅くする原因
となつていた。
一方金属リードの先端部に標準極及び電解質を
溶射によつて層成し、電解質として完全安定化ジ
ルコニアを用いた溶射型の検出素子の場合には全
体をコンパクトにすることができることから測定
起電力に対する補正の必要がなく、電気化学的並
びに熱的平衡が早く応答速度も上記した第5図の
タンマン型検出素子に比べて1〜2秒早くなる。
しかし乍ら素子全体が電池としての働きを持つこ
とから、この検出素子をプローブ検出部に組込ん
で溶融金属例えば溶鋼中に浸漬した場合素子固定
用バインダー、吸着水分或は吸着酸素等がプロー
ブ先端の耐火セメントの端面からガスとして発生
して、酸素濃淡電池を構成する素子と溶鋼の界面
を乱して、測定起電力値を不安定にし、しかも酸
素発生の場合溶鋼中の酸素濃度が素子周辺で一時
的に高くなることから測定誤差原因となるのであ
る。
本案は以上の従来の酸素濃度検出素子の欠点、
問題点を解決すべく考案したもので溶射型の検出
素子を改良して応答速度を更に早めるとともに測
定値の安定性と精度の向上を計るものであり、そ
の要旨とするところは酸素濃度検出素子のプロー
ブへの固定端側を高温状態で安定かつ熱伝導の良
好な耐火物層によつて被覆して素子の先端部分に
のみ標準極及び電解質層を設けた点にある。
以下添附図面にて本案の酸素濃度測定装置を説
明すれば、第1図に示すようにプローブ先端検出
部1に酸素濃度検出素子2、測定側電極3及び測
温素子4を耐火セメント5にて固定して検出部端
面1から突出させて設けてなり、酸素濃度検出素
子2はMo又はW等からなる金属リード6の突出
先端部にCr−Cr2O3又はMo−MoO2等の金属−
金属酸化物を溶射成層して標準極7を形成し、こ
の標準極を完全に被覆して完全安定化ジルコニア
例えZrO2・CaO又はZrO2・Y2O3、或いは酸素イ
オン伝導度の大きなThO2・Y2O3等を溶射成層し
て固体電解質8を設け、この固体電解質8から検
出部端面1′より所定寸法耐火セメント5内へは
入つた位置までの金属リード6に、高温状態下で
安定であり、しかも熱伝導の良好な耐火物例えば
Al2O3,MgO,CaO溶射成層して耐火物層9を設
けてなり、このように酸素検出素子2のプローブ
Pへの固定端側を熱伝導の良好な耐火物層9で被
覆することによつて標準極7の熱平衡を早め、ひ
いては応答を迅速となすことができるばかりでな
くプローブ先端の検出部端面1′から酸素等のガ
スが吹き出してもこれによつて測定値が不安定と
なつたり誤差を生ずることのないように考慮して
いる。
この耐火物層9についての実験として、直径
The purpose of this project is to improve an oxygen concentration measuring device, that is, a device that is immersed in molten metal, molten slag, or gas atmosphere and measures its oxygen concentration based on the electromotive force generated between the standard electrode and the measuring electrode. The purpose of this method is to accurately and quickly measure oxygen concentration by making it possible to measure electromotive force values with high accuracy and stability, and with a fast response speed. Originally, in this type of oxygen concentration measuring device,
1) In order to improve reproducibility, it is necessary to always construct an equivalent oxygen concentration battery using the same materials, and 2) To speed up the response speed, speed up measurement work and simplify the probe exterior configuration. Therefore, in order to reduce costs, it is desirable to use a highly stabilized material for the electrolyte of the detection element to reduce the heat capacity of the detection element, thereby speeding up the electrochemical and thermal equilibrium of the oxygen concentration battery. 3) The measurable oxygen concentration range is wide, for example several ppm in the steel manufacturing process.
It is required to be applicable to the oxygen concentration range from 100 ppm to several hundred ppm. Therefore, in the case of the tablet-type detection element in the conventional oxygen concentration measuring device shown in Fig. 4, safety stabilized zirconia is used as the electrolyte, which is fused and fixed to a quartz support tube. Because the degree of fusion is not constant over the entire circumference, the electrolyte may separate during measurement, or oxygen permeation through the fused portion may increase in low oxygen concentration areas, and quartz (SiO 2 ) may dissociate, causing the electrolyte to separate near the surface of the electrolyte. On the other hand, the Tamman type shown in Fig. 5 has the problem of not being able to accurately measure the oxygen concentration due to changes in the oxygen concentration of The problems caused by the fused parts in the case of the tablet type are solved. Moreover, since partially stabilized zirconia has a large effect on electron conduction, electron conduction correction must be performed during measurement, and this correction value becomes an error factor. This takes time for equilibrium, which slows down the response speed. On the other hand, in the case of a thermal spray type detection element in which a standard electrode and electrolyte are layered on the tip of a metal lead by thermal spraying, and fully stabilized zirconia is used as the electrolyte, the entire structure can be made compact, so the measured electromotive force is There is no need for correction for the electrochemical and thermal equilibrium, and the response speed is 1 to 2 seconds faster than the above-mentioned Tammann type detection element shown in FIG.
However, since the entire element functions as a battery, when this detection element is incorporated into the probe detection part and immersed in molten metal, such as molten steel, the binder for fixing the element, adsorbed moisture, adsorbed oxygen, etc. will be absorbed at the tip of the probe. The gas is generated from the end face of the refractory cement and disturbs the interface between the elements that make up the oxygen concentration battery and the molten steel, making the measured electromotive force value unstable. This temporarily increases the temperature, which causes measurement errors. This proposal addresses the above-mentioned drawbacks of conventional oxygen concentration detection elements.
It was devised to solve the problem and improves the thermal spray type detection element to further speed up the response speed and improve the stability and accuracy of the measured value. The fixed end of the element to the probe is coated with a refractory layer that is stable at high temperatures and has good heat conduction, and the standard electrode and electrolyte layer are provided only at the tip of the element. The oxygen concentration measuring device of the present invention will be explained below with reference to the attached drawings. As shown in FIG. The oxygen concentration detection element 2 is fixedly provided so as to protrude from the end face 1 of the detection part.
The standard electrode 7 is formed by thermal spraying a metal oxide, and this standard electrode is completely coated with fully stabilized zirconia, such as ZrO 2 · CaO or ZrO 2 · Y 2 O 3 , or ThO with high oxygen ion conductivity. A solid electrolyte 8 is provided by thermally spraying 2.Y 2 O 3, etc., and from this solid electrolyte 8, the metal lead 6 from the detection part end face 1' to the position where it enters the refractory cement 5 of a predetermined size is heated under high temperature conditions. Refractories that are stable and have good heat conduction, such as
The refractory layer 9 is provided by thermal spraying Al 2 O 3 , MgO, CaO, and thus the fixed end side of the oxygen detection element 2 to the probe P is coated with the refractory layer 9 having good heat conduction. This not only speeds up the thermal equilibrium of the standard electrode 7 and speeds up the response, but also prevents the measurement value from becoming unstable even if gas such as oxygen blows out from the detection end face 1' at the tip of the probe. This is done to ensure that no errors occur. As an experiment regarding this refractory layer 9, the diameter
【表】
以上の実験例によれば耐火物層9を設けること
によつて応答性を高め、測定精度を高め得ること
は無論、当該耐火物層9の検出部端面1′からの
長さを10mm以上となすことによつて安定した測定
波形が得られるのである。
一方本案の実施例としては第2図に示すように
標準極7と固体電解質8を金属リード6の検出部
端面1′からの突出部分全域に形成することは無
論、端面1′より内側の耐火セメント5内位置ま
で至らせて構成した場合には前記した耐火物層9
は図示の如く耐火セメント5内から所定の突出長
さにかけて固体電解質8を外嵌して設けられ酸素
濃度測定の検知部としての機能は耐火物層9にて
被覆されない先端部の標準極7固体電解質8で作
用するようになすことも可能である。
尚第1図中において10は保護キヤツプ、11
はセラミツクハウジング、12は紙管、13は耐
熱管、14は熱電対素線を示している。
以上のようになる本案の酸素濃度測定装置によ
れば酸素濃度検出素子2を金属リード6に標準極
7、固定電解質8を溶射成層して構成することに
よつてコンパクトとなし、もつて標準極7の電気
化学的平衡並びに熱的平衡を迅速になして測定時
の応答性を高め得るだけでなく、検出部端面1′
から突出する素子2の固定側端部を、高温で安定
な高熱伝導性の耐火物層9にてプローブ検出部の
耐火セメント5内位置に至るまで被覆したことに
よつて酸素濃淡電池による検知部を素子2の先端
部のみに限定してプローブ検出端から離隔させ、
もつてプローブ検出端面から酸素その他のガスが
出ても、これによる素子の検知部への悪影響を防
止若しくは少なくすることができるので測定波形
を安定に保ち、測定精度の低下を来たす心配がな
く、又当該耐火物層は熱伝導性良好な材質からな
るので標準極の熱平衡を遅らせるおそれもないの
である。[Table] According to the above experimental example, by providing the refractory layer 9, it is possible to improve the response and measurement accuracy, and also to increase the length of the refractory layer 9 from the end surface 1' of the detection part. A stable measurement waveform can be obtained by making it 10 mm or more. On the other hand, as an embodiment of the present invention, as shown in FIG. In the case where it is configured to reach the position inside the cement 5, the above-mentioned refractory layer 9
As shown in the figure, a solid electrolyte 8 is fitted over a predetermined protruding length from within the refractory cement 5, and the function as a detection part for oxygen concentration measurement is provided by the standard electrode 7 solid at the tip that is not covered with the refractory layer 9. It is also possible to work with an electrolyte 8. In Fig. 1, 10 is a protective cap, and 11 is a protective cap.
1 is a ceramic housing, 12 is a paper tube, 13 is a heat-resistant tube, and 14 is a thermocouple wire. According to the oxygen concentration measuring device of the present invention as described above, the oxygen concentration detection element 2 is constructed by thermally spraying the standard electrode 7 and the fixed electrolyte 8 on the metal lead 6, thereby making it compact. Not only can the electrochemical equilibrium and thermal equilibrium of 7 be quickly achieved to improve the responsiveness during measurement, but also the detection part end face 1'
By covering the fixed side end of the element 2 protruding from the probe with a highly thermally conductive refractory layer 9 that is stable at high temperatures up to the position within the refractory cement 5 of the probe detection section, the detection section using an oxygen concentration battery is is limited to only the tip of element 2 and separated from the probe detection end,
Even if oxygen or other gases come out from the probe detection end face, the adverse effect of this on the sensing part of the element can be prevented or reduced, so the measured waveform can be kept stable and there is no need to worry about deterioration in measurement accuracy. Furthermore, since the refractory layer is made of a material with good thermal conductivity, there is no risk of delaying the thermal equilibrium of the standard electrode.
第1図は本案の酸素濃度測定装置の実施例を示
す要部断面図、第2図は他実施例を示す検出素子
の断面図、第3図は従来の溶射型検出素子と本案
における検出素子を用いた場合の起電力値の比較
実験結果を示すグラフである。第4図、第5図、
第6図は夫々従来の酸素濃度測定装置における酸
素濃度検出素子の構成を示す断面図である。
P……プローブ、1……検出部、2……酸素濃
度検出素子、3……測定側電極、4……測温素
子、5……耐火セメント、6……金属リード、7
……標準極、8……固定電解質、9……耐火物
層、10……保護キヤツプ、11……ハウジン
グ、12……紙管、13……耐熱管、14……熱
電対素線。
Fig. 1 is a cross-sectional view of essential parts showing an embodiment of the oxygen concentration measuring device of the present invention, Fig. 2 is a cross-sectional view of a detection element showing another embodiment, and Fig. 3 is a conventional thermal spray type detection element and a detection element of the present invention. 3 is a graph showing the results of a comparative experiment of electromotive force values when using . Figure 4, Figure 5,
FIG. 6 is a sectional view showing the configuration of an oxygen concentration detection element in a conventional oxygen concentration measuring device. P...Probe, 1...Detection unit, 2...Oxygen concentration detection element, 3...Measurement side electrode, 4...Temperature measurement element, 5...Fireproof cement, 6...Metal lead, 7
... Standard electrode, 8 ... Fixed electrolyte, 9 ... Refractory layer, 10 ... Protective cap, 11 ... Housing, 12 ... Paper tube, 13 ... Heat-resistant tube, 14 ... Thermocouple wire.
Claims (1)
られる金属リードの先端部に標準極と固体電解質
を溶射層成し、固体電解質から検出部端面までを
熱伝導性良好な耐火物層にて被覆して構成される
酸素濃度検出素子を有することを特徴とする酸素
濃度測定装置。 A standard electrode and a solid electrolyte are thermally sprayed on the tip of a metal lead that protrudes from the end surface of the detection section at the tip of the probe, and the area from the solid electrolyte to the end surface of the detection section is covered with a refractory layer with good thermal conductivity. An oxygen concentration measuring device characterized by having an oxygen concentration detection element composed of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14651783U JPS6053053U (en) | 1983-09-20 | 1983-09-20 | Oxygen concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14651783U JPS6053053U (en) | 1983-09-20 | 1983-09-20 | Oxygen concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6053053U JPS6053053U (en) | 1985-04-13 |
JPH0234606Y2 true JPH0234606Y2 (en) | 1990-09-18 |
Family
ID=30326107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14651783U Granted JPS6053053U (en) | 1983-09-20 | 1983-09-20 | Oxygen concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6053053U (en) |
-
1983
- 1983-09-20 JP JP14651783U patent/JPS6053053U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6053053U (en) | 1985-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3959764A (en) | Gas analyzing element | |
US4902400A (en) | Gas sensing element | |
US3630874A (en) | Device for determining the activity of oxygen in molten metals | |
US4964736A (en) | Immersion measuring probe for use in molten metals | |
US4980044A (en) | Oxygen sensor having a flat plate element and heater | |
GB2031156A (en) | Solid electrolyte sensors for determining the oxygen content of gases | |
JPS5927861B2 (en) | oxygen detector | |
JPS6147376B2 (en) | ||
JP4646167B2 (en) | Exhaust gas sensor | |
JPH0418261B2 (en) | ||
JPH0234606Y2 (en) | ||
US5435901A (en) | Electrochemical measuring sensor | |
JPH0471464B2 (en) | ||
US3809639A (en) | Solid electrolyte compact for probe used in quantitative determination of gas dissolved in molten metal | |
KR20010020319A (en) | Probe for detection of the concentration of various elements in molten metal | |
JPH0467912B2 (en) | ||
JPH0112191Y2 (en) | ||
JPH0446206Y2 (en) | ||
JPH0558135B2 (en) | ||
JPH0241580Y2 (en) | ||
JPH0628687Y2 (en) | Continuous oxygen concentration measuring device | |
JPS5935805Y2 (en) | Oxygen concentration detection element in molten metal | |
Janke | A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts | |
JPH0249470B2 (en) | ||
JPH032850Y2 (en) |