JPH0471464B2 - - Google Patents

Info

Publication number
JPH0471464B2
JPH0471464B2 JP59243258A JP24325884A JPH0471464B2 JP H0471464 B2 JPH0471464 B2 JP H0471464B2 JP 59243258 A JP59243258 A JP 59243258A JP 24325884 A JP24325884 A JP 24325884A JP H0471464 B2 JPH0471464 B2 JP H0471464B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
activity
molten metal
electrode
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59243258A
Other languages
Japanese (ja)
Other versions
JPS61142455A (en
Inventor
Minoru Sasabe
Yoshio Myashita
Kenzo Yamada
Tsutomu Usui
Yutaka Nakano
Keisuke Matsumura
Haruhiko Matsushige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP59243258A priority Critical patent/JPS61142455A/en
Publication of JPS61142455A publication Critical patent/JPS61142455A/en
Publication of JPH0471464B2 publication Critical patent/JPH0471464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4112Composition or fabrication of the solid electrolyte
    • G01N27/4114Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は溶融金属中の不純物元素、特に酸素
と化合できる不純物元素の活量測定方法とこれに
用いる測定プローブに関するものである。 近年鋼性状の高品質化が進むにつれ、その不純
物元素の管理が大きな問題となつてきているが、
従来溶融金属の段階でこれら不純物元素の測定を
精密に行い得る装置、方法は提案されていなかつ
た。 <発明の概要> 本発明はこの点に鑑み、特に溶鉄中の酸化と化
合できる不純物元素Mの活量αMを測定する方法
及びそのプローブを提供しようとするものであ
る。 第1図において、1は測定電極、2は標準電
極、3は電位差計である。標準電極2は固体電解
質4と基準物質5及び電極6とから構成されてお
り、基本的に従来の酸素センサと同じ構成であ
る。固体電解質4は高温で酸素イオン導電性を有
し、従来の酸素センサに用いることのできるもも
のであれば何でも良い。また基準物質5は基準と
なる酸素分圧を規定するためのものであり、同様
に従来の酸素センサに用いることのできるもので
あればどのような物質でも良い。 固体電解質4は、図の例では筒状に形成し、こ
の中に基準物質5を挿入接触させてある。そして
本発明の測定法においては固体電解質4の外側
に、元素Mの酸化物MOxの活量αMOxが一定の値
となるような物質の被覆7を施した上で測定電極
1と標準電極2の溶融金属α中に浸漬する。また
同時に熱電対等により溶融金属αの温度を測つて
おく。 この時電位差計3に表われる起電力EMFは式
で示される。 EMF=−1/4FRTlnPO2()/PO2() ……… ここでF:フアラデー定数、23.05(cal/mv/
mole) R:ガス定数、1.99(cal/deg/mole) T:溶融金属の絶対温度(K) PO2():標準極の酸素分圧(atm) PO2():溶融金属中の酸素分圧(atm) いま溶融金属中で測定対象とする酸素と化合で
きる不純物元素Mが式の平衡状態となつている
場合、その平衡定数KMは式で表わされる。 M+X/2O2()=MOx ……… KM=αMOx/αM・PX/2O2() ……… また式の反応の標準生成自由エネルギー
ΔGo M-MOxは、 ΔGo M-MOx=−RT lnKM ……… 但し、x:酸化物MOx1モルが生成するのに必
要な酸素原子Oのモル数 上記式をPO2()についてまとめ式に代入
すれば下記式が得られる。 EMF=RT/4F{1nPO2()−(1nα2/x MOx-1o−1nα2
/x
M−1nK2/x M)}……… ここでPO2()は標準電極2の基準物質Nとそ
の酸化物NOyにより決定される既知の値であり
式で表わされる。 Po2()=exp(2/y・ΔGoNOy/RT) ……… 但し、ΔGo N-NOy:基準物質の元素Nが
酸化して1モルのNOyが生成する時
の標準生成自由エネルギー y:酸化物NOyが1モル生成するのに必
要な酸素原子Oのモル数 式、を式に代入すると、 EMF=−1/4F(2/yΔGo N-NOy−2RT/x1nαM
Ox
+2RT/x1nαM−2/xΔGo M-MOx) ……… が得られる。 この式をαMについてまとめると αM=exp(−2xF/RT・EMF+1/RTΔGo M-MOx −x/y・1/RTΔGo N-NOy+1nαMOx) ……… ここで、固体電解質4の表面に被覆7を施すこ
とによりαMOxを一定の値とすることができる。 被覆7の物質としては例えば測定対象元素の純
酸化物MOxを用いれば1nαMOx=1とおける。 このように被覆7を施すことにより、αMOxを一
定の値とすることができるから、上記式と
EMFの測定により、不純物元素Mの活量αMを求
めることが可能となる。 なお、被覆7の物質として、測定対象元素毎に
好適と思われるものを下掲第1表に示した。
<Industrial Application Field> The present invention relates to a method for measuring the activity of an impurity element in molten metal, particularly an impurity element that can be combined with oxygen, and a measuring probe used therefor. As the quality of steel properties has improved in recent years, the management of impurity elements has become a major issue.
Conventionally, no apparatus or method has been proposed that can accurately measure these impurity elements at the stage of molten metal. <Summary of the Invention> In view of this point, the present invention provides a method for measuring the activity α M of an impurity element M that can be combined with oxidation in molten iron, and a probe thereof. In FIG. 1, 1 is a measuring electrode, 2 is a standard electrode, and 3 is a potentiometer. The standard electrode 2 is composed of a solid electrolyte 4, a reference substance 5, and an electrode 6, and has basically the same structure as a conventional oxygen sensor. The solid electrolyte 4 may be any material as long as it has oxygen ion conductivity at high temperatures and can be used in conventional oxygen sensors. Further, the reference substance 5 is used to define a reference oxygen partial pressure, and may be any substance that can be used in conventional oxygen sensors. In the illustrated example, the solid electrolyte 4 is formed into a cylindrical shape, into which the reference substance 5 is inserted and brought into contact. In the measurement method of the present invention, a coating 7 of a substance such that the activity α MOx of the oxide MOx of the element M becomes a constant value is applied to the outside of the solid electrolyte 4, and then the measurement electrode 1 and the standard electrode 2 are coated. immersed in molten metal α. At the same time, the temperature of the molten metal α is measured using a thermocouple or the like. The electromotive force EMF appearing on the potentiometer 3 at this time is expressed by the formula. EMF=-1/4FRTlnP O2 ()/P O2 () ...... Where F: Faraday's constant, 23.05 (cal/mv/
mole) R: Gas constant, 1.99 (cal/deg/mole) T: Absolute temperature of molten metal (K) P O2 (): Oxygen partial pressure at standard electrode (atm) P O2 (): Oxygen content in molten metal Pressure (atm) When the impurity element M that can be combined with the oxygen to be measured in the molten metal is in an equilibrium state as shown in the equation, the equilibrium constant K M is expressed by the equation. M + X / 2O 2 ( ) = MOx ...... K M = α MOx / α M P -MOx = -RT lnK M ...... However, x: Number of moles of oxygen atoms O required to generate 1 mole of oxide MOx If the above formula is substituted into the summary formula for P O2 (), the following formula is obtained. . EMF=RT/4F{1nP O2 () − (1nα 2/x MOx-1o −1nα 2
/x
M -1nK 2/x M )}... Here, P O2 ( ) is a known value determined by the reference substance N of the standard electrode 2 and its oxide NOy, and is expressed by the formula. Po 2 () = exp (2/y・ΔG o / NOy / RT) ...... However, ΔG o N-NOy : Standard production freedom when element N in the reference material is oxidized to produce 1 mole of NOy Energy y: Number of moles of oxygen atoms O required to generate 1 mole of oxide NOy Substituting the formula into the formula, EMF = -1/4F (2/yΔG o N-NOy -2RT/x1nα M
Ox
+2RT/x1nα M -2/xΔG o M-MOx ) ...... is obtained. To summarize this equation for α M , α M = exp (−2xF/RT・EMF+1/RTΔG o M-MOx −x/y・1/RTΔG o N-NOy +1nα MOx ) ...... Here, the solid electrolyte 4 By applying the coating 7 to the surface, α MOx can be kept at a constant value. If, for example, pure oxide MOx of the element to be measured is used as the material of the coating 7, 1nα MOx =1. By applying coating 7 in this way, α MOx can be kept at a constant value, so the above formula
By measuring the EMF, it becomes possible to determine the activity α M of the impurity element M. In addition, as materials for the coating 7, materials considered to be suitable for each element to be measured are shown in Table 1 below.

【表】【table】

【表】 次に上記した本発明測定方法に用いるプローブ
の具体的構成を第2図の実施例に基づいて説明す
る。 測定電極1はMo製の棒体から成り、ハウジン
グ10上に装着され、コネクタ11を介して電位
差計(図示せず)に接続するようになつている。
標準電極2は有底筒状の固体電解質4とこの内部
に入れられた基準物質5及びこの基準物質5に先
端が浸漬され、コネクタ11を介して電位差計に
接続されるMo線電極6と更に固体電解質4の表
面に施された被覆7とから構成されている。固体
電解質4としてこの実施例ではZrO2・7mol
MgOを用いている。また基準物質5はCrと
Cr2O3の混合物を用いている。なおこれらに限定
されないことはいうまでもない。この実施例では
被覆7は測定対象となる不純物元素と同一元素の
純酸化物MOxとする、これにより上記αMOx=1
(すなわち1nαMOx=0)とおけるからである。被
覆の厚さとしては100〜200μmが適当である。こ
の酸化物MOxに適宜バインダ等を混入し固体電
解質4上に塗布すれば良い。またこの被覆7は多
孔質でも緻密質でもどちらでも良い。 電極1,2の間には熱電対8が装着され、同時
に測温ができるようになつている。 なおハウジング10の下部は保護管12に嵌挿
され、その上部はキヤツプ13に覆われている。
第3図に標準電極2の他の実施例を示す。この例
では石英管14を用い、ここに基準物質5を入
れ、管14の先端に固体電解質4を嵌挿して管を
閉塞する構成としている。そしてこの固体電解質
4の露出部に被覆7を形成した構成となつてい
る。 <実施例> 次に実施例を示す。 実施例 1 第2図に示す構造のプローブを用いて溶鉄中の
SolAl量を測定した。固体電解質上にはAl2O3
主成分とするコーテイング剤を塗布し、厚さ
100μmの被覆を形成した。他の条件は次の通りで
ある。 Γ固体電解質:ZrO2・7mol%MgO Γ基準物質 :CrとCr2O3の混合物 Γ基準電極 :Moワイヤ 0.3mmφ Γ測定電極 :Mo棒 3mmφ Γ熱 電 対:Pt−Pt13%Rh 以上のプローブを取鍋中の溶鉄1600℃に挿入
し、電位差計によりEMFを測定した。 第4図にSolAl量(αAlと等価)とEMFの関係
を示す。 このグラフからわかるように、本発明の測定法
では極めて良好な直線性が得られ、精度の高い測
定が可能であることがわかる。このEMFから、
式に基づいて活量αAlを求めた。 αAl=exP(−3F/RTEMF+1/RTΔGo Al-AlO1.5 −1/RTΔGo Cr-CrO1.5) ……… ここで ΔGo Al-AlO1.5=−197575+49.99Tcal/mole ΔGo Cr-CrO1.5 =1/2(−257400+55.53T)cal/mole が計算されるが、第4図に示したように実測値と
良い対応が認められる。 実施例 2 同様に第2図に示す構造のプローブを用いて
1600℃の溶鉄中のSi量を測定した。固体電解質に
はSiO2を主成分とするコーテイング剤を塗布し
厚さ100μの被覆を形成した。他の条件は実施例
1と同じとした。 このようなプローブを取鍋溶鉄中に挿入し、
EMFを得た。第5図にEMFとSi量(活量αSiに等
価)の関係を示す。この場合にも良好な直線性を
得ている。 このEMFから活量αSiを式により得た。 αSi=exp(−4F/RTEMF+1/RTΔGo Si-SiO2 −1/3 1/RTΔGo Cr-CrO15 ……… ここで、 ΔGo Si-SiO2=−206040+57.51T cal/mole ΔGo Cr-CrO1.5 =1/2(−257400+55.53T)cal/mole が計算されるが、第5図に示したように実測値と
良い対応が認められる。
[Table] Next, the specific configuration of the probe used in the above-mentioned measuring method of the present invention will be explained based on the embodiment shown in FIG. The measuring electrode 1 consists of a rod made of Mo, is mounted on a housing 10, and is connected to a potentiometer (not shown) via a connector 11.
The standard electrode 2 includes a bottomed cylindrical solid electrolyte 4, a reference substance 5 placed inside the solid electrolyte 4, a Mo wire electrode 6 whose tip is immersed in the reference substance 5, and is connected to a potentiometer via a connector 11. A coating 7 is formed on the surface of a solid electrolyte 4. In this example, ZrO 2.7 mol is used as the solid electrolyte 4.
MgO is used. In addition, reference material 5 is Cr and
A mixture of Cr 2 O 3 is used. Note that it goes without saying that the invention is not limited to these. In this example, the coating 7 is a pure oxide MOx of the same element as the impurity element to be measured, so that the above α MOx = 1
(In other words, 1nα MOx = 0). The appropriate coating thickness is 100 to 200 μm. A suitable binder or the like may be mixed into this oxide MOx and applied onto the solid electrolyte 4. Further, this coating 7 may be porous or dense. A thermocouple 8 is attached between the electrodes 1 and 2, so that temperatures can be measured at the same time. The lower part of the housing 10 is fitted into a protective tube 12, and the upper part is covered with a cap 13.
FIG. 3 shows another embodiment of the standard electrode 2. In this example, a quartz tube 14 is used, a reference substance 5 is placed in the tube, and a solid electrolyte 4 is inserted into the tip of the tube 14 to close the tube. A coating 7 is formed on the exposed portion of the solid electrolyte 4. <Example> Next, an example will be shown. Example 1 A probe with the structure shown in Fig. 2 was used to investigate molten iron.
The amount of SolAl was measured. A coating agent mainly composed of Al 2 O 3 is applied onto the solid electrolyte, and the thickness is
A coating of 100 μm was formed. Other conditions are as follows. Γ solid electrolyte: ZrO 2 7mol%MgO Γ reference material: mixture of Cr and Cr 2 O 3 Γ reference electrode: Mo wire 0.3mmφ Γ measurement electrode: Mo rod 3mmφ Γ thermocouple: Pt-Pt13%Rh or higher probe The molten iron was inserted into a ladle at 1600°C, and the EMF was measured using a potentiometer. Figure 4 shows the relationship between the amount of SolAl (equivalent to α Al ) and EMF. As can be seen from this graph, the measurement method of the present invention provides extremely good linearity and enables highly accurate measurement. From this EMF,
The activity α Al was determined based on the formula. α Al = exP (−3F/RTEMF+1/RTΔG o Al-AlO1.5 −1/RTΔG o Cr-CrO1.5 ) ……… Here ΔG o Al-AlO1.5 =−197575+49.99Tcal/mole ΔG o Cr -CrO1.5 = 1/2 (-257400 + 55.53T) cal/mole is calculated, and as shown in Figure 4, good correspondence with the measured value is observed. Example 2 Similarly, using a probe with the structure shown in Figure 2,
The amount of Si in molten iron at 1600℃ was measured. A coating agent containing SiO 2 as a main component was applied to the solid electrolyte to form a coating with a thickness of 100 μm. Other conditions were the same as in Example 1. Insert such a probe into the ladle of molten iron,
I got an EMF. Figure 5 shows the relationship between EMF and the amount of Si (equivalent to the activity α Si ). Good linearity is also obtained in this case. The activity α Si was obtained from this EMF using the formula. α Si = exp (-4F/RTEMF+1/RTΔG o Si-SiO2 -1/3 1/RTΔG o Cr-CrO15 ...... Here, ΔG o Si-SiO2 = -206040+57.51T cal/mole ΔG o Cr-CrO1 .5 = 1/2 (-257400 + 55.53T) cal/mole is calculated, and as shown in Figure 5, good correspondence with the measured value is observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の説明図、第2図はプロー
ブの一実施例を示す正断面図、第3図は標準電極
の他の実施例を示す正断面図、第4図はSolAl量
と起電力EMFとの関係を示すグラフ、第5図は
Si量と起電力EMFとの関係を示すグラフである。 1…測定電極、2…標準電極、3…電位差計、
4…固体電解質、5…基準物質、6…電極、7…
被覆。
Fig. 1 is an explanatory diagram of the method of the present invention, Fig. 2 is a front sectional view showing one embodiment of the probe, Fig. 3 is a front sectional view showing another embodiment of the standard electrode, and Fig. 4 is a diagram showing the amount of SolAl. The graph showing the relationship between the electromotive force and EMF, Figure 5, is
It is a graph showing the relationship between the amount of Si and the electromotive force EMF. 1... Measuring electrode, 2... Standard electrode, 3... Potentiometer,
4...Solid electrolyte, 5...Reference material, 6...Electrode, 7...
Covering.

Claims (1)

【特許請求の範囲】 1 酸素イオン導電性を有する固体電解質と標準
電極及び測定電極とを有し両極の酸素分圧差に比
例した起電力を生じさせるプローブの固体電解質
の表面に溶融金属中の測定対象とする不純物元素
の酸化物の活量を一定の値とする物質を被覆し、
このプローブを溶融金属中に投入して、両極間に
生ずる起電力を測定し、同時に溶融金属温度を測
定し、不純物元素Mの活量αMを測定することを
特徴とする溶融金属中の不純物元素の活量測定方
法。 2 酸素イオン導電性を有する固体電解質と標準
電極と測定電極とを有し、前記固体電解質表面に
溶鉄中の測定対象不純物元素と同一元素の酸化物
を被覆したことを特徴とする溶鉄中の不純物元素
の活量測定プローブ。
[Claims] 1. Measurement in molten metal on the surface of the solid electrolyte of a probe that has a solid electrolyte with oxygen ion conductivity, a standard electrode and a measuring electrode, and generates an electromotive force proportional to the oxygen partial pressure difference between the two electrodes. Coating with a substance that makes the oxide activity of the target impurity element a constant value,
Impurities in molten metal, characterized in that the probe is placed in molten metal to measure the electromotive force generated between the two electrodes, simultaneously measure the molten metal temperature, and measure the activity α M of impurity element M. Method for measuring the activity of elements. 2. Impurities in molten iron, comprising a solid electrolyte having oxygen ion conductivity, a standard electrode, and a measuring electrode, the surface of the solid electrolyte being coated with an oxide of the same element as the impurity element to be measured in the molten iron. Elemental activity measurement probe.
JP59243258A 1984-11-20 1984-11-20 Method and probe for measuring activity of impurity element in molten metal Granted JPS61142455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59243258A JPS61142455A (en) 1984-11-20 1984-11-20 Method and probe for measuring activity of impurity element in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59243258A JPS61142455A (en) 1984-11-20 1984-11-20 Method and probe for measuring activity of impurity element in molten metal

Publications (2)

Publication Number Publication Date
JPS61142455A JPS61142455A (en) 1986-06-30
JPH0471464B2 true JPH0471464B2 (en) 1992-11-13

Family

ID=17101193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59243258A Granted JPS61142455A (en) 1984-11-20 1984-11-20 Method and probe for measuring activity of impurity element in molten metal

Country Status (1)

Country Link
JP (1) JPS61142455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187577A (en) * 2014-03-27 2015-10-29 新日鐵住金株式会社 Sensor for measuring sulfur in molten metal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260156A (en) * 1985-05-15 1986-11-18 Nisshin Steel Co Ltd Method and apparatus for measuring silicon concentration in molten metal
JPH0629880B2 (en) * 1985-05-15 1994-04-20 日新製鋼株式会社 Method and device for measuring phosphorus concentration in molten metal
JPH0629879B2 (en) * 1985-05-15 1994-04-20 日新製鋼株式会社 A device for measuring the concentration of metallic elements dissolved in molten metal
JPS63286760A (en) * 1987-05-19 1988-11-24 Osaka Oxygen Ind Ltd Composite probe for measuring concentration of impurity element in molten iron
JPH0778485B2 (en) * 1987-06-11 1995-08-23 大阪酸素工業株式会社 Probe for measuring the concentration of impurity elements in molten metal
JPH0650296B2 (en) * 1987-11-17 1994-06-29 新日本製鐵株式会社 Method for measuring phosphorus concentration in hot metal
EP0358168B1 (en) * 1988-09-07 1994-11-30 Minoru Sasabe Method, apparatus and probe for measuring the activity of a solute element in molten metal
JPH0830693B2 (en) * 1989-08-30 1996-03-27 日本鋼管株式会社 Sensor for measuring solute element concentration in molten metal
JP2009068855A (en) * 2007-09-10 2009-04-02 Heraeus Electro Nite Japan Ltd Probe for measuring concentration of copper in molten metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746155A (en) * 1980-09-05 1982-03-16 Nippon Kokan Kk <Nkk> Measuring sensor for oxygen concentration for molten metal
JPS597257A (en) * 1982-07-05 1984-01-14 Sumitomo Alum Smelt Co Ltd Sensor for measuring oxygen concentration in molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746155A (en) * 1980-09-05 1982-03-16 Nippon Kokan Kk <Nkk> Measuring sensor for oxygen concentration for molten metal
JPS597257A (en) * 1982-07-05 1984-01-14 Sumitomo Alum Smelt Co Ltd Sensor for measuring oxygen concentration in molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187577A (en) * 2014-03-27 2015-10-29 新日鐵住金株式会社 Sensor for measuring sulfur in molten metal

Also Published As

Publication number Publication date
JPS61142455A (en) 1986-06-30

Similar Documents

Publication Publication Date Title
US5439579A (en) Sensor probe for measuring hydrogen concentration in molten metal
US4708783A (en) Apparatus for the determination of silicon in molten metal
JPH0471464B2 (en)
JPH07167823A (en) Collating electrode for electrochemical measurement of partial pressure of oxygen in ionic melt
KR960010691B1 (en) Probe for measuring concentration of impurity element in molten metal
US4830727A (en) Composite probe for measuring the concentration of an impurity element in molten iron
JP2000513451A (en) Probe for detecting the concentration of various elements in molten metal
KR960007787B1 (en) Probe using a mixed sub-electrode for measuring the activity of carbon in molten iron
JPS63191056A (en) Apparatus for measuring concentration of silicon in molten metal
US6340418B1 (en) Slag oxygen sensor
JPH0273148A (en) Method for measuring activity of solute element in molten metal and measuring probe
JP4030074B2 (en) Method and apparatus for continuous measurement of oxygen content in molten metal
JPH0629879B2 (en) A device for measuring the concentration of metallic elements dissolved in molten metal
EP0358168B1 (en) Method, apparatus and probe for measuring the activity of a solute element in molten metal
JP2566343B2 (en) Oxygen concentration measurement sensor for molten metal
JPS5935805Y2 (en) Oxygen concentration detection element in molten metal
KR830001366Y1 (en) Oxygen concentration detection element in molten metal
JPS6031261B2 (en) Consumable sensor
JPH0278945A (en) Probe for measuring activity of solute element in molten metal
Yamada et al. Determination of mixed ionic and electronic conduction in commercial-grade magnesia-stabilized zirconia electrolyte
US5294313A (en) Sensors for monitoring waste glass quality and method of using the same
JP2849961B2 (en) Equipment for measuring components in molten metal
JPH0628687Y2 (en) Continuous oxygen concentration measuring device
JP3037332U (en) Carbon concentration estimation probe
JP2878603B2 (en) Sensor for measuring dissolved amount of hydrogen in molten metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees