JPH0234543B2 - REBERUHENKANKAIRO - Google Patents

REBERUHENKANKAIRO

Info

Publication number
JPH0234543B2
JPH0234543B2 JP11944484A JP11944484A JPH0234543B2 JP H0234543 B2 JPH0234543 B2 JP H0234543B2 JP 11944484 A JP11944484 A JP 11944484A JP 11944484 A JP11944484 A JP 11944484A JP H0234543 B2 JPH0234543 B2 JP H0234543B2
Authority
JP
Japan
Prior art keywords
circuit
output
level
signal
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11944484A
Other languages
Japanese (ja)
Other versions
JPS60263547A (en
Inventor
Shigeaki Ashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11944484A priority Critical patent/JPH0234543B2/en
Publication of JPS60263547A publication Critical patent/JPS60263547A/en
Publication of JPH0234543B2 publication Critical patent/JPH0234543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/062Setting decision thresholds using feedforward techniques only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、データ通信等において、無線伝送路
を用いてパルス状の制御データ信号を伝送する際
に行われる周波数変調の変調信号をレベルの安定
した周波数変調が行われるようにレベルを変換す
る回路に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method for adjusting the level of a frequency modulation signal that is performed when transmitting a pulsed control data signal using a wireless transmission path in data communication, etc. It relates to a circuit that converts levels so that stable frequency modulation is performed.

(従来技術と問題点) 従来、制御信号によつて周波数変調を行う場合
は、一般的に電圧制御発振器が用いられ、バラク
タダイオードの障壁容量を制御電圧により変化さ
せて出力発振周波数を変えている。
(Prior art and problems) Conventionally, when frequency modulation is performed using a control signal, a voltage controlled oscillator is generally used, and the output oscillation frequency is changed by changing the barrier capacitance of the varactor diode using the control voltage. .

第3図はバラクタダイオードの制御電圧に対す
る出力周波数の変化特性を示す図である。図中
VNは変調中心制御電圧でありこの時の発振周波
数が変調中心周波数f0である。即ち、変調動作が
バラクタダイオードの最適動作範囲で行われるよ
うに変調電圧がVNを中心にして変化するように
直流バイアス電圧が印加されている。
FIG. 3 is a diagram showing the change characteristics of the output frequency with respect to the control voltage of the varactor diode. In the diagram
V N is the modulation center control voltage, and the oscillation frequency at this time is the modulation center frequency f 0 . That is, a DC bias voltage is applied so that the modulation voltage changes around V N so that the modulation operation is performed within the optimum operating range of the varactor diode.

従つて変調信号が加えられていない時の電圧は
VNであり発振周波数はf0である。このため第4
図に示すように変調信号である制御信号を発生す
る制御用論理回路28の出力端子31と周波数変
調器30の入力端子32の間は結合コンデンサ2
9で結合されている。
Therefore, the voltage when no modulation signal is applied is
V N and the oscillation frequency is f 0 . For this reason, the fourth
As shown in the figure, a coupling capacitor 2 is connected between the output terminal 31 of the control logic circuit 28 that generates a control signal, which is a modulation signal, and the input terminal 32 of the frequency modulator 30.
They are joined by 9.

制御用論理回路28の出力波形は第5図aのよ
うに例えば0ボルトを基準として一定電圧の波高
値(例えば5Vの電源電圧を用いている回路では
それに等しい5V)を有するパルス波形である。
即ち、パル信号列の存在しない部分の基準レベル
とパルス信号が存在する時の低レベルとが同じ波
形である。
As shown in FIG. 5a, the output waveform of the control logic circuit 28 is a pulse waveform having a constant voltage peak value (for example, 5 V in a circuit using a power supply voltage of 5 V) with reference to 0 volts.
That is, the reference level of the part where the pulse signal train does not exist and the low level when the pulse signal exists have the same waveform.

今、このような波形の制御信号を結合コンデン
サ29を介して周波数変調器の入力端子32に加
えると入力端子32における電圧波形は結合コン
デンサ29の充電電荷の影響により過渡的に第5
図bに示すような波形となる。これはコンデンサ
による結合回路に第5図aのようなパルス列信号
を間欠的に加えた場合に通常見られる現象であ
る。しかし本来周波数変調器回路にとつて望まし
い波形は第5図cに示す如き波形である。従つ
て、図bにおいて、図cの波形の波頭値VPより
も高い電圧は所定の周波数範囲を越えた過変調を
引き起し隣接の他の周波数チヤネルに妨害を与え
ることになる。また、パルス波形が持ち上げられ
たことにより波底値VBが変調中心制御電圧VN
近くなつて変調のスレツシヨルド電圧にかかる可
能性が大きくなり復調時の読み誤りを生じ易くな
る。他チヤンネルへの妨害を防止するためには安
全のために周波数チヤネルの周波数値を大きく設
定するか又は周波数変調器の入力回路にクリツプ
回路を設ける方法があるが1チヤンネルの周波数
幅を広げることは周波数帯の利用効率の点からみ
て問題があるし、クリツプ回路を設けることは不
経済であるとともに仮りにクリツプ回路を設けた
としても波底値がスレツシヨルドレベルに近づき
復調時に読み誤りを生じ易くなるという欠点は改
善されないでそのまま残るという問題がある。
Now, when a control signal with such a waveform is applied to the input terminal 32 of the frequency modulator via the coupling capacitor 29, the voltage waveform at the input terminal 32 transiently changes to the fifth waveform due to the influence of the charge charged in the coupling capacitor 29.
The waveform will be as shown in Figure b. This is a phenomenon normally observed when a pulse train signal as shown in FIG. 5a is intermittently applied to a coupling circuit using a capacitor. However, the waveform that is originally desirable for the frequency modulator circuit is the waveform shown in FIG. 5c. Therefore, in Figure b, a voltage higher than the wavefront value V P of the waveform in Figure c will cause overmodulation beyond a predetermined frequency range and will interfere with other adjacent frequency channels. Furthermore, as the pulse waveform is raised, the wave bottom value V B becomes closer to the modulation center control voltage V N , increasing the possibility that it will be applied to the modulation threshold voltage, making it easier to cause reading errors during demodulation. In order to prevent interference to other channels, there are methods to set the frequency value of the frequency channel to a large value for safety, or to install a clip circuit in the input circuit of the frequency modulator, but it is not possible to widen the frequency width of one channel. There is a problem from the point of view of frequency band utilization efficiency, and it is uneconomical to provide a clip circuit, and even if a clip circuit is provided, the wave bottom value approaches the threshold level and reading errors are likely to occur during demodulation. There is a problem in that the drawbacks of becoming unresolved remain as they are without being improved.

(問題点を解決するための手段) 本発明は、従来技術における上記の問題点を解
決するために制御論理回路の出力波形を、結合コ
ンデンサを介して、直流バイアス電圧が印加され
ている周波数変調器の入力回路に加えても第5図
bのような波形にならないようにするために制御
用論理回路の出力波形を予め第5図cに示すよう
にパルス波形信号の基準値がパルス波形の高レベ
ルと低レベルの中間になるように変換するレベル
変換回路を提供しようとするものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems in the prior art, the present invention frequency-modulates the output waveform of a control logic circuit through a coupling capacitor to which a DC bias voltage is applied. In order to avoid the waveform shown in Fig. 5b even when added to the input circuit of the device, the output waveform of the control logic circuit is set in advance so that the reference value of the pulse waveform signal is set as shown in Fig. 5c. It is an attempt to provide a level conversion circuit that converts between high level and low level.

本発明の変換回路は上記の目的を達成するため
に次のような構成からなるレベル変換回路であ
る。
The conversion circuit of the present invention is a level conversion circuit having the following configuration in order to achieve the above object.

即ち、2入力端を有する排他的論理和回路と該
排他的論理和回路の出力信号を受けてそのレベル
の高低を反転する反転回路とからなり該反転回路
の出力を第1の出力信号とし前記排他的論理和回
路の2入力端のうち一方の入力信号をそのまま第
2の出力信号とする2信号出力回路と、該2信号
出力回路の出力を2入力端で受け該2入力端の一
方に高レベルの電位を加えられ他方に低レベルの
電位を加えられた時の出力電位が前記2入力端の
両方に前記高レベルの電位を加えられた時の出力
レベルと前記2入力端の両方に低レベルの電位を
加えられた時の出力レベルの中間の電位の電圧を
出力する抵抗回路と、該抵抗回路の出力電圧を受
けてこれを出力するボルテージホロワ回路とから
なるレベル変換回路である。
That is, it consists of an exclusive OR circuit having two input terminals and an inverting circuit that receives an output signal of the exclusive OR circuit and inverts the level thereof, and uses the output of the inverting circuit as the first output signal. a two-signal output circuit that directly uses one input signal of the two input terminals of the exclusive OR circuit as a second output signal; and a two-signal output circuit that receives the output of the two-signal output circuit at the two input terminals and outputs it to one of the two input terminals. The output potential when a high level potential is applied to the other and the output potential when the high level potential is applied to both of the two input terminals and the output potential when the high level potential is applied to both of the two input terminals. This is a level conversion circuit consisting of a resistor circuit that outputs a voltage at an intermediate potential of the output level when a low-level potential is applied, and a voltage follower circuit that receives and outputs the output voltage of the resistor circuit. .

(発明の実施例) 第1図に本発明にかかるレベル変換回路の実施
例の回路構成を示す。
(Embodiment of the Invention) FIG. 1 shows a circuit configuration of an embodiment of a level conversion circuit according to the present invention.

第2図は、第1図の回路における各部の信号波
形である。第2図aは第1図の入力端子6に加え
られるイネーブル信号であり、入力端子7に第2
図bに示す如きパルス信号列が加えられている時
のみ高レベル(例えば5V)になるような信号で
ある。
FIG. 2 shows signal waveforms at various parts in the circuit of FIG. 1. FIG. 2a shows an enable signal applied to input terminal 6 in FIG.
This is a signal that becomes high level (for example, 5V) only when a pulse signal train as shown in FIG. b is applied.

図bは入力端子7への入力波形であると同時に
直接出力されているので端子9での波形でもあ
る。図cは端子8における波形である。2信号出
力回路1は排他的論理和回路4と反転回路5とか
らなり次のような動作をする。入力端子6が高レ
ベルの時は入力端子7に高レベルが加えられると
端子9も高レベルになるとともに排他的論理和回
路4の出力は低レベル(例えば0ボルト)になり
これが反転回路5で反転されて高レベルとなるか
ら端子8も高レベルになる。同様に入力端子7に
低レベルが加えられると端子9も低レベルになる
とともに排他的論理和回路4の出力は高レベルと
なり、これが反転回路5で反転されるから端子8
は低レベルとなる。
Figure b shows the input waveform to the input terminal 7, and at the same time, it is also the waveform at the terminal 9 since it is directly output. Figure c is the waveform at terminal 8. The two-signal output circuit 1 includes an exclusive OR circuit 4 and an inversion circuit 5, and operates as follows. When the input terminal 6 is at a high level, when a high level is applied to the input terminal 7, the terminal 9 also goes to a high level and the output of the exclusive OR circuit 4 becomes a low level (for example, 0 volts), which is the inverting circuit 5. Since it is inverted and becomes a high level, the terminal 8 also becomes a high level. Similarly, when a low level is applied to the input terminal 7, the terminal 9 also becomes a low level and the output of the exclusive OR circuit 4 becomes a high level, which is inverted by the inverting circuit 5.
is at a low level.

結局、入力端子6に高レベル電位が加えられて
いる間は、入力端子7に高レベルが加えられると
端子8、端子9の電位は共に高レベルになり、入
力端子7に低レベル電位が加えられると端子8と
端子9の電位は共に低レベルになる。
As a result, while a high level potential is applied to input terminal 6, when a high level is applied to input terminal 7, the potentials of terminals 8 and 9 both become high level, and when a low level potential is applied to input terminal 7. When this happens, the potentials at terminals 8 and 9 both go to low level.

これに対して、入力端子6に低レベルが加えら
れている間は、入力端子7に低レベルが加えられ
ると端子9が低レベルになると共に排他的論理和
回路4の出力は低レベルとなりこれが反転回路5
で反転されて高レベルとなるため端子8は高レベ
ルとなる。同様にして入力端子7に高レベルが加
えられると端子9は高レベルとなり端子8は低レ
ベルとなる。結局、入力端子6に低レベルが加え
られている時は端子8と端子9の電位は常にいず
れか一方が高レベルで他方は低レベルということ
になる。第2図a,b,cは以上の関係を示すも
のである。
On the other hand, while a low level is being applied to the input terminal 6, when a low level is applied to the input terminal 7, the terminal 9 becomes a low level and the output of the exclusive OR circuit 4 becomes a low level. Inversion circuit 5
Since the signal is inverted and becomes a high level, the terminal 8 becomes a high level. Similarly, when a high level is applied to input terminal 7, terminal 9 becomes high level and terminal 8 becomes low level. As a result, when a low level is applied to the input terminal 6, one of the potentials of the terminals 8 and 9 is always at a high level and the other is at a low level. Figures 2a, b, and c show the above relationships.

第2図dの波形は、端子8および端子9に第2
図b,cのパルス電圧を加え、端子12に5Vの
電源電圧を加え、第1図aの抵抗回路2の抵抗器
22、抵抗器23、抵抗器21の値を3:3:1
の比に設定した場合の端子10における波形であ
り従つてまたボルテージホロワの出力である出力
端子11の波形でもある。
The waveform of FIG.
Apply the pulse voltages shown in Figures b and c, apply a 5V power supply voltage to terminal 12, and change the values of resistor 22, resistor 23, and resistor 21 of resistor circuit 2 in Figure 1a to 3:3:1.
This is the waveform at terminal 10 when the ratio is set to , and therefore also the waveform at output terminal 11, which is the output of the voltage follower.

第2図eの波形は、第1図bの抵抗回路2′に
おいて、抵抗器24、抵抗器25、抵抗器26、
抵抗器27の抵抗値を3:2:2:3に設定した
時の端子10及び出力端子11における波形であ
る。
The waveform in FIG. 2e is the same as that in the resistor circuit 2' in FIG.
These are waveforms at the terminal 10 and the output terminal 11 when the resistance value of the resistor 27 is set to 3:2:2:3.

ボルテージホロワ3は抵抗回路2又は同2′に
おける電位設定に影響を及ぼさないよう端子10
の電位を高入力インピーダンスで受けて低出力イ
ンピーダンスで周波数変調器の入力回路へパルス
信号を伝達する機能を果す。
The voltage follower 3 is connected to the terminal 10 so as not to affect the potential setting in the resistor circuit 2 or 2'.
It has the function of receiving the potential of 1 with a high input impedance and transmitting a pulse signal to the input circuit of the frequency modulator with a low output impedance.

以上のような動作により、制御用論理回路の出
力波形が第2図bや第5図aで示されるようにパ
ルス信号が存在しない時のレベル即ち基準レベル
とパルス信号の低レベルとが同じであるためにコ
ンデンサを介して直流レベルの異なる回路へ供給
した場合に第5図bのような波形になつてしまい
周波数変調器の動作に問題を生ずるということが
なくなる。
As a result of the above-described operation, the output waveform of the control logic circuit is at the same level as the low level of the pulse signal when no pulse signal is present, that is, the reference level, as shown in Figure 2b and Figure 5a. Therefore, if the DC voltage is supplied to circuits with different DC levels through capacitors, the waveform shown in FIG. 5B will not occur, which will cause problems in the operation of the frequency modulator.

即ち、第2図d,eにおける如く、パルス信号
が存在しない時の基準レベルがパルス信号の高レ
ベルと低レベルの中間にありこのレベルはまたパ
ルス信号列のレベルの平均値にもほぼ一致する。
このためパルス信号列の存在不存在にかかわらず
直流的な平均レベルは一定しているので周波数変
調器の入力回路へコンデンサを介して結合されて
いてもパルス信号列が入つて来たことによつて直
流レベルが変動することはなくパルス信号がその
まま直流バイアス電圧を基準として変調回路に加
えられることになる。
That is, as shown in FIGS. 2d and 2e, the reference level when no pulse signal is present is between the high level and low level of the pulse signal, and this level also almost matches the average value of the levels of the pulse signal train. .
For this reason, the DC average level is constant regardless of the presence or absence of a pulse signal train, so even if it is coupled to the input circuit of the frequency modulator via a capacitor, it will not be affected by the incoming pulse signal train. As a result, the DC level does not fluctuate, and the pulse signal is directly applied to the modulation circuit with the DC bias voltage as a reference.

(発明の効果) 以上説明したように、従来の制御論理回路の出
力信号はパルス信号が存在しない場合の基準レベ
ルとパルス信号の低レベルとが同じであるパルス
信号即ちパルス信号列が入つてくると直流レベル
が変つてしまう信号であつたためコンデンサを介
して周波数変調器の入力回路へ加えるとパルス信
号列の断続により周波数変調器入力回の直流レベ
ルが変動して過変調を起したり或いは変調のスレ
ツシヨルドレベルにかかり復調時に読み誤りを生
ずるという問題を有していたが、本件発明のレベ
ル変換回路を通すことにより信号の基準レベルを
パルス信号の高レベルと低レベルの中間のレベル
にすることができまたこのレベルがパルス信号列
の平均のレベルにほぼ一致するためコンデンサを
介して周波数変調器の入力回路に加えてもパルス
信号列の断続により直流レベルが変動しないので
従来技術におけるような問題点を除去することが
できるという利点がある。
(Effects of the Invention) As explained above, the output signal of the conventional control logic circuit receives a pulse signal, that is, a pulse signal train, in which the reference level in the absence of a pulse signal and the low level of the pulse signal are the same. Since the signal causes the DC level to change, if it is applied to the input circuit of the frequency modulator via a capacitor, the DC level at the frequency modulator input circuit will change due to the discontinuity of the pulse signal train, causing overmodulation or modulation. However, by passing the signal through the level conversion circuit of the present invention, the reference level of the signal can be set to a level between the high level and the low level of the pulse signal. In addition, since this level almost matches the average level of the pulse signal train, even if it is applied to the input circuit of the frequency modulator via a capacitor, the DC level will not fluctuate due to the discontinuation of the pulse signal train, unlike in the conventional technology. It has the advantage of eliminating many problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示すブロツク
図、第2図は第1図の各部における信号波形を示
す図、第3図は周波数変調器におけるバラクタダ
イオードの制御電圧に対する出力周波数の変化特
性を示す図、第4図は制御用論理回路と周波数変
調器の接続を示す図、第5図aは制御用論理回路
の出力波形、図bは結合コンデンサの影響により
直流平均レベルが変動する様子を示す図、図cは
コンデンサを介して印加しても直流平均レベルが
変動しない波形の例を示す図である。 1……2信号出力回路、2,2′……抵抗回路、
3……ボルテージホロワ回路、4……排他的論理
和回路、5……反転回路、6,7……入力端子、
8,9,10……端子、11……出力端子、12
……電源端子、21〜27……抵抗器、28……
制御用論理回路、29……結合コンデンサ、30
……周波数変調器、31……制御用論理回路出力
端子、32……変調器入力端子。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing signal waveforms in each part of FIG. 1, and FIG. 3 is a change in output frequency with respect to control voltage of a varactor diode in a frequency modulator. Figure 4 shows the connection between the control logic circuit and the frequency modulator, Figure 5a shows the output waveform of the control logic circuit, and Figure b shows how the DC average level fluctuates due to the influence of the coupling capacitor. Figure c is a diagram showing an example of a waveform in which the DC average level does not change even when applied through a capacitor. 1...2 signal output circuit, 2,2'...resistance circuit,
3... Voltage follower circuit, 4... Exclusive OR circuit, 5... Inverting circuit, 6, 7... Input terminal,
8, 9, 10...terminal, 11...output terminal, 12
...Power terminal, 21-27...Resistor, 28...
Control logic circuit, 29... Coupling capacitor, 30
... Frequency modulator, 31 ... Control logic circuit output terminal, 32 ... Modulator input terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 2入力端を有する排他的論理和回路と該排他
的論理和回路の出力信号を受けてそのレベルの高
低を反転する反転回路とからなり該反転回路の出
力を第1の出力信号とし前記排他的論理和回路の
2入力端のうち一方の入力信号をそのまま第2の
出力信号とする2信号出力回路と、該2信号出力
回路の出力を2入力端で受け該2入力端の一方に
高レベルの電位を加えられ他方に低レベルの電位
を加えられた時の出力電位が前記2入力端の両方
に前記高レベルの電位を加えられた時の出力レベ
ルと前記2入力端の両方に低レベルの電位を加え
られた時の出力レベルの中間の電位の電圧を出力
する抵抗回路と、該抵抗回路の出力電圧を受けて
これを出力するボルテージホロワ回路とからなる
レベル変換回路。
1. Comprised of an exclusive OR circuit having two input terminals and an inverting circuit that receives an output signal of the exclusive OR circuit and inverts the level thereof, the output of the inverting circuit is used as the first output signal, and the exclusive a two-signal output circuit that directly uses one input signal of the two input terminals of the logical OR circuit as a second output signal; The output potential when a high-level potential is applied to the other input terminal and the output potential when a low-level potential is applied to the other input terminal is low to the output potential when the high-level potential is applied to both of the two input terminals. A level conversion circuit comprising a resistor circuit that outputs a voltage at an intermediate potential of an output level when a potential of a certain level is applied, and a voltage follower circuit that receives and outputs the output voltage of the resistor circuit.
JP11944484A 1984-06-11 1984-06-11 REBERUHENKANKAIRO Expired - Lifetime JPH0234543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11944484A JPH0234543B2 (en) 1984-06-11 1984-06-11 REBERUHENKANKAIRO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11944484A JPH0234543B2 (en) 1984-06-11 1984-06-11 REBERUHENKANKAIRO

Publications (2)

Publication Number Publication Date
JPS60263547A JPS60263547A (en) 1985-12-27
JPH0234543B2 true JPH0234543B2 (en) 1990-08-03

Family

ID=14761551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11944484A Expired - Lifetime JPH0234543B2 (en) 1984-06-11 1984-06-11 REBERUHENKANKAIRO

Country Status (1)

Country Link
JP (1) JPH0234543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2638900B2 (en) * 1988-03-16 1997-08-06 ソニー株式会社 Cordless telephone
JPH022720A (en) * 1988-06-17 1990-01-08 Matsushita Electric Ind Co Ltd Pll circuit

Also Published As

Publication number Publication date
JPS60263547A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
EP0156398B1 (en) Fsk or fm burst signal generating apparatus
US4243951A (en) High repetition rate driver circuit for modulation of injection lasers
US4415862A (en) Pulse width modulation amplifier
EP0059465B1 (en) Pulse modulator
JPH06167517A (en) Comparator circuit
US4609839A (en) Noise inverter circuit for a power line communication system
US4660002A (en) High frequency oscillator using a diode for frequency switching and FM modulation
JPH0234543B2 (en) REBERUHENKANKAIRO
US5812595A (en) Waveform shaping circuit for a multiplexed information bus transmitter
EP0434898B1 (en) Semiconductor integrated circuit
US5677642A (en) Signal generator with supply voltage tolerance
US4543495A (en) Diode bridge switching circuit with high attenuation
US4411005A (en) Data circuit for frequency modulating an oscillator
JP2824121B2 (en) Dynamic frequency divider
US4800338A (en) Pulse count type FM demodulator
US3950658A (en) Data separator with compensation circuit
US3436481A (en) Regeneration system for a transmitted telegraph signal
US4926133A (en) FM demodulator having a frequency independent delay circuit
JPS5990422A (en) Automatic control circuit of pulse phase
JP2573173B2 (en) High frequency multiplier
JPH0810807B2 (en) System clock oscillator
JPH0724408B2 (en) Bias circuit
SU1416974A1 (en) Scanning converter
JPS6330806B2 (en)
JPH03108814A (en) Pulse width securing circuit and clock transmission method