JPH0234520B2 - - Google Patents

Info

Publication number
JPH0234520B2
JPH0234520B2 JP57104958A JP10495882A JPH0234520B2 JP H0234520 B2 JPH0234520 B2 JP H0234520B2 JP 57104958 A JP57104958 A JP 57104958A JP 10495882 A JP10495882 A JP 10495882A JP H0234520 B2 JPH0234520 B2 JP H0234520B2
Authority
JP
Japan
Prior art keywords
polypropylene
sheet
methylpentene
internal loss
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57104958A
Other languages
Japanese (ja)
Other versions
JPS58221595A (en
Inventor
Tooru Yamamoto
Koji Takeda
Teruo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10495882A priority Critical patent/JPS58221595A/en
Priority to US06/471,456 priority patent/US4471085A/en
Priority to GB08305863A priority patent/GB2117389B/en
Priority to DE19833307946 priority patent/DE3307946A1/en
Publication of JPS58221595A publication Critical patent/JPS58221595A/en
Publication of JPH0234520B2 publication Critical patent/JPH0234520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/029Diaphragms comprising fibres

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスピーカ用振動板に関し、特に周波数
特性が平担でかつ高能率、広周波数帯域の耐水性
に優れた熱成形可能なスピーカ用振動板を提供す
ることを目的とするものである。 従来、スピーカ用振動板材料として紙コーンが
多く使用されてきたが、これは紙が低密度で適度
の弾性率、内部損失を有しているためである。こ
れらの物性は音響特性として能率、帯域、周波数
特性の平坦性に大きく関係している。しかし、紙
コーンの場合は熱成形ができないため一枚ずつコ
ーン形状に抄造するか、円錐形の一旦はり合せた
後水を十分吸収させた状態で熱金型で成形するか
の二つの方法が取られている。いずれの方法も職
人技にたよる所が多く、ロツト間でのバラツキが
大きい欠点があつた。一方、紙に代わる材料とし
てアルミニウム、ベリリウム等の金属材料やポリ
プロピレン、ポリエチレン等の高分子材料が使わ
れ出したが、金属材料の場合は比較性率が高い反
面、内部損失は極端に低い欠点を持ち鋭い共振ピ
ークを生じる。そのため主にツイータに使用され
ている。また、高分子材料の場合は比較性率、曲
げ剛性が低い反面、内部損失は高く成形性もすぐ
れているため、主にウーハに使用されている。 本発明は高分子中で最も軽い4−メチルペンテ
ンポリマを基材に用い内部損失が高く、かつ比弾
性率、曲げ剛性も高いフイルム振動板を提供する
ものである。4−メチルペンテン単体は溶融粘度
が低く成膜性が形性が悪い欠点をもち、又ガラス
転移温度が室温付近(29〜50℃)にあるため、温
度による弾性率、内部損失の大きな変化が生じ、
音質変化をもたらす。4−メチルペンテンにポリ
プロピレンをブレンドすることにより成膜性、成
形性を改善し、ガラス転移温度における弾性率、
内部損失の急激な変化も押えられている。また、
この系に強化材を加えることにより高弾性率化、
およびガラス転移温度での物性の急激な変化はさ
らに押えられる。 4−メチルペンテンポリマはオレフイン系ポリ
マで無極性であるため、極性を持つポリマとのブ
レンドはできず、オレフイン系ポリマとのブレン
ドが効果を持つ。混合化としては、4−メチルペ
ンテンの特長(低密度、高融点等)を損わない程
度でかつ上記の欠点を補なうことが要求されるた
め、4−メチルペンテン/ポリプロピレンの体積
比は1/2以上2以下が望ましい。 強化材としてはガラス転移温度での物性変化を
押え、弾性率を上げるために銅、鉄等の金属ウイ
スカ、炭化ケイ素、アルミナ、黒鉛等の無機ウイ
スカ、ポリオキシメチレン等の高分子ウイスカ又
はもみがら粉を用いる。強化材の複合量としては
成膜性、弾性率、曲げ剛性の点から20vol%以下
が望ましい。 このように4−メチルペンテンとポリプロピレ
ンとのブレンド物を基材とすることにより、低密
度、高内部損失、高剛性の物性となり、音響特性
としては周波数特性が平坦でかつ高能率、広周波
数帯域化を図ることができる。又、従来のコーン
紙は耐水性、耐湿性および加工性に問題がある、
本発明のフイルム振動板ではこれらの問題が全く
ない。さらに4−メチルペンテンポリマは四塩化
炭素に溶け、トルエンにも少し膨潤するため、他
のオレフイン系ポリマのような極端な接着性の悪
さはなく、融点を245℃と高く耐熱性にも優れて
いる。 以下に本発明の実施例について説明する。 比較例 1 4−メチルペンテンポリマ(三井石油化学(株)製
TPX)80vol%とポリプロピレン(チツソ(株)製)
20vol%を二軸押出機を用いてブレンドしマスタ
ーペレツトを一旦作り、次にこのペレツトを使用
し押出機により厚さ400μmのシートを作つた。
このシートの物性に表1に示すが、ポリプロピレ
ンと複合することにより密度が高くなり弾性率も
低下した反面、内部損失、成膜性および成形性は
大幅に改善され、真空成形が容易に行なえるよう
になつた。ポリプロピレンの体積分率が65vol%
以上になると接着性が極端に悪くなり、曲げ剛性
も低くなりすぎる欠点が現れだした。第1図のa
に周波数特性を示すが、ポリプロピレン単体シー
ト(第1図のb参照)にくらべ高能率、広帯域と
なつた。 比較例 2 4−メチルペンテンポリマ(三井石油化学(株)製
TPX)60vol%とポリプロピレン(チツソ(株)製)
30vol%に強化材として325メツシユでふるいをか
けたマイカ10vol%を二軸押出機を用いて混合し
一旦マスターペレツトを作り、次にこのマスター
ペレツトを使用し、押出機により厚さ400μmの
複合シートを得た。このシートを遠赤外線で1分
間程度加熱し、シートがたるみに出した時点で直
径16cmのスピーカ用振動板形状に真空成形を行つ
た。このシートの物性を表1に示すが、ポリプロ
ピレン単体のシートおよび比較例1のように強化
材の入つてないシートに比べ高比弾性率、高曲が
剛性となり、広帯域、低歪化を図ることができ
る。成膜性は比較例1のシートの方が優れてい
た。マイカの量を10vol%と一定にしておき、4
−メチルペンテンポリマとポリプロピレンとの混
合比を変えた場合の変化を第2第〜第4図に示す
が、ポリプロピレンの含有率が増えるにつれてガ
ラス転移温度での内部損失の鋭いピークは消え、
その絶対値は上がり、成形性も良くなる。一方、
弾性率は低下し接着性も悪くなる。4−メチルペ
ンテンポリマ/ポリプロピレンの体積比としては
1/2以上であることが望ましい。ポリエチレン、
ポリブチレンとの混合においても同様であつた。
又4−メチルペンテンポリマ/ポリプロピレンの
体積比を1/3と一定にしておき、マイカの含有率
を順次変えていつた際の物性変化を第5図、第6
図に示すが、密度はマイカ含有率の増加に伴ない
大きくなり、弾性率も高くなる。曲げ剛性は
20vol%付近でピークをもち、内部損失は低下し
ていつた。又、成膜性、成形性もマイカの含有率
が20vol%以上では極端に悪くなつた。他の強化
材においても20vol%以上の含有率では成膜性、
成形性に破れ等の問題を生じた。 実施例 1 4−メチルペンテンポリマ(TPX)30vol%、
ポリプロピレン60vol%、ポリオキシメチレンウ
イスカ(繊維長200μm)10vol%を実施例2と同
じ方法で混合し、厚さ400μmのシートを得た。
このシートの物性を表1に示すが、高内部損失、
高比弾性率が得られ、成膜性もすぐれていた。又
ガラス転移温度での内部損失の鋭いピークも消去
されていた。 実施例 2 4−メチルペンテンポリマ(TPX)70vol%、
ポリエチレン20vol%、もみがら粉(300メツシユ
でふるいをかけたもの)10vol%を実施例2と同
様の方法で混合し、厚さ400μmのートを得た。
このシートの物性を表1に示すが、密度が下が
り、曲げ剛性が高くなつた。又接着性も改善され
た。
The present invention relates to a speaker diaphragm, and more particularly, it is an object of the present invention to provide a thermoformable speaker diaphragm that has flat frequency characteristics, high efficiency, and excellent water resistance over a wide frequency band. Conventionally, paper cones have been widely used as a material for speaker diaphragms because paper has a low density, appropriate elastic modulus, and internal loss. These physical properties are closely related to acoustic characteristics such as efficiency, band, and flatness of frequency characteristics. However, in the case of paper cones, thermoforming is not possible, so there are two methods: either they are made into cone shapes one by one, or they are pasted together into conical shapes and then molded with a hot mold after absorbing enough water. It has been taken. Both methods rely heavily on craftsmanship and have the drawback of large variations between lots. On the other hand, metal materials such as aluminum and beryllium, and polymer materials such as polypropylene and polyethylene have begun to be used as materials to replace paper, but while metal materials have a high comparative performance, they have the disadvantage of extremely low internal loss. This produces a sharp resonance peak. Therefore, it is mainly used for tweeters. In addition, in the case of polymer materials, although they have a low relative elasticity and bending rigidity, they have a high internal loss and excellent moldability, so they are mainly used for woofers. The present invention provides a film diaphragm that uses 4-methylpentene polymer, which is the lightest among polymers, as a base material and has high internal loss, specific modulus of elasticity, and high bending rigidity. 4-Methylpentene alone has the drawbacks of low melt viscosity, poor film forming properties, and has a glass transition temperature near room temperature (29 to 50°C), so its elastic modulus and internal loss change significantly with temperature. arise,
Brings about a change in sound quality. By blending polypropylene with 4-methylpentene, film formability and moldability are improved, and the elastic modulus at the glass transition temperature,
Rapid changes in internal losses have also been suppressed. Also,
By adding reinforcing materials to this system, the modulus of elasticity can be increased,
And rapid changes in physical properties at the glass transition temperature are further suppressed. Since 4-methylpentene polymer is an olefin-based polymer and is non-polar, it cannot be blended with polar polymers, and is effective when blended with olefin-based polymers. The mixing must be done to the extent that the features of 4-methylpentene (low density, high melting point, etc.) are not impaired and the above drawbacks are compensated for, so the volume ratio of 4-methylpentene/polypropylene is Desirably 1/2 or more and 2 or less. As reinforcing materials, metal whiskers such as copper and iron, inorganic whiskers such as silicon carbide, alumina, and graphite, polymer whiskers such as polyoxymethylene, or rice husks are used to suppress changes in physical properties at the glass transition temperature and increase elastic modulus. Use powder. The combined amount of reinforcing material is preferably 20 vol% or less from the viewpoints of film formability, elastic modulus, and bending rigidity. By using a blend of 4-methylpentene and polypropylene as the base material, it has physical properties of low density, high internal loss, and high rigidity, and its acoustic properties include flat frequency characteristics, high efficiency, and a wide frequency band. It is possible to aim for In addition, conventional corn paper has problems with water resistance, moisture resistance, and processability.
The film diaphragm of the present invention does not have these problems at all. Furthermore, 4-methylpentene polymer dissolves in carbon tetrachloride and swells slightly in toluene, so it does not have extremely poor adhesion like other olefin-based polymers, and has a high melting point of 245°C and excellent heat resistance. There is. Examples of the present invention will be described below. Comparative example 1 4-methylpentene polymer (manufactured by Mitsui Petrochemical Co., Ltd.)
TPX) 80vol% and polypropylene (manufactured by Chitsuso Corporation)
A master pellet was made by blending 20 vol% using a twin-screw extruder, and then this pellet was used to make a sheet with a thickness of 400 μm using an extruder.
The physical properties of this sheet are shown in Table 1. Although the density increases and the elastic modulus decreases due to the composite with polypropylene, internal loss, film formability and formability are greatly improved, and vacuum forming can be easily performed. It became like that. The volume fraction of polypropylene is 65vol%
When the temperature exceeds this level, the adhesion becomes extremely poor and the bending rigidity becomes too low. a in Figure 1
The frequency characteristics are shown as follows, and compared to a single polypropylene sheet (see b in Figure 1), it has higher efficiency and a wider band. Comparative example 2 4-methylpentene polymer (manufactured by Mitsui Petrochemical Co., Ltd.)
TPX) 60vol% and polypropylene (manufactured by Chitsuso Corporation)
30vol% and 10vol% of mica sieved through 325 mesh as a reinforcing material are mixed using a twin-screw extruder to make master pellets, and then this master pellet is used to make pellets with a thickness of 400μm using an extruder. A composite sheet was obtained. This sheet was heated with far infrared rays for about 1 minute, and when the sheet began to sag, it was vacuum-formed into the shape of a speaker diaphragm with a diameter of 16 cm. The physical properties of this sheet are shown in Table 1, and compared to a sheet made of polypropylene alone and a sheet without reinforcing material as in Comparative Example 1, it has a higher specific modulus of elasticity and higher bending stiffness, achieving a wider band and lower distortion. Can be done. The sheet of Comparative Example 1 had better film formability. Keeping the amount of mica constant at 10vol%,
- Figures 2 to 4 show changes when the mixing ratio of methylpentene polymer and polypropylene is changed, and as the content of polypropylene increases, the sharp peak of internal loss at the glass transition temperature disappears.
Its absolute value increases and moldability also improves. on the other hand,
The elastic modulus decreases and the adhesiveness also deteriorates. The volume ratio of 4-methylpentene polymer/polypropylene is preferably 1/2 or more. polyethylene,
The same was true for the mixture with polybutylene.
Figures 5 and 6 show the changes in physical properties when the mica content was successively changed while keeping the volume ratio of 4-methylpentene polymer/polypropylene constant at 1/3.
As shown in the figure, the density increases as the mica content increases, and the elastic modulus also increases. The bending stiffness is
It peaked at around 20vol%, and the internal loss decreased. Furthermore, the film formability and moldability became extremely poor when the mica content was 20 vol% or more. Even with other reinforcing materials, film formability decreases when the content is 20 vol% or more.
Problems such as tearing occurred in moldability. Example 1 4-methylpentene polymer (TPX) 30vol%,
60 vol% polypropylene and 10 vol% polyoxymethylene whiskers (fiber length 200 μm) were mixed in the same manner as in Example 2 to obtain a sheet with a thickness of 400 μm.
The physical properties of this sheet are shown in Table 1, including high internal loss,
A high specific modulus of elasticity was obtained, and film formability was also excellent. Also, the sharp peak of internal loss at the glass transition temperature was also eliminated. Example 2 4-methylpentene polymer (TPX) 70vol%,
20 vol% of polyethylene and 10 vol% of rice husk powder (sifted through a 300 mesh) were mixed in the same manner as in Example 2 to obtain a sheet with a thickness of 400 μm.
The physical properties of this sheet are shown in Table 1, and the density decreased and the bending rigidity increased. Adhesion was also improved.

【表】 これらの実施例に用いた強化剤により比較例2
における強化剤マイカをほぼ同等の特性を得るこ
とができた。 シート化および成形性に問題のあつた4−メチ
ルペンテンポリマにポリプロピレンを混合するこ
とによりシートの成膜性、成形性が大幅に改善さ
れ、又ポリオキシメチレン等のウイスカ又はもみ
粉を強化材として混入することにより弾性率が向
上し接着性も改善された。 このように本発明のスピーカ用振動板は、内部
損失が大きく(紙の内部損失は0.035)、低密度で
弾性率も高い。そのため周波数特性が平坦でかつ
高能率、広周波数帯域の耐水性に優れ、しかも熱
成形できる利点を有するものである。
[Table] Comparative Example 2 depending on the reinforcing agent used in these Examples.
Almost equivalent properties could be obtained with the reinforcing agent mica. By mixing polypropylene with 4-methylpentene polymer, which had problems in sheet formation and moldability, the sheet formability and moldability were greatly improved, and whiskers such as polyoxymethylene or rice flour could be used as a reinforcing material. By mixing it, the elastic modulus was improved and the adhesion was also improved. As described above, the speaker diaphragm of the present invention has a large internal loss (the internal loss of paper is 0.035), a low density, and a high elastic modulus. Therefore, it has the advantage of having flat frequency characteristics, high efficiency, excellent water resistance over a wide frequency range, and can be thermoformed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較例1のスピーカ用振動板と従来の
ポリプロピレン振動板の音圧周波数特性の比較
図、第2図は同振動板における4−メチルペンテ
ンポリマとポリプロピレンの混合比に対する弾性
率1内部損失の変化曲線図、第3図は同混合比に
対する剥離強度の変化曲線図、第4図は同混合比
における温度−内部損失特性図、第5図は同振動
板におけるマイカ含有量に対する弾性率、内部損
失の変化曲線図、第6図は同振動板におけるマイ
カ含有量に対する曲げ剛性の変化曲線図である。
Figure 1 is a comparison diagram of the sound pressure frequency characteristics of the speaker diaphragm of Comparative Example 1 and a conventional polypropylene diaphragm, and Figure 2 is a comparison diagram of the elastic modulus 1 for the mixing ratio of 4-methylpentene polymer and polypropylene in the same diaphragm. Figure 3 is a change curve of peel strength for the same mixing ratio, Figure 4 is a temperature-internal loss characteristic diagram for the same mixing ratio, Figure 5 is the elastic modulus versus mica content in the same diaphragm. FIG. 6 is a curve diagram showing changes in bending stiffness with respect to mica content in the same diaphragm.

Claims (1)

【特許請求の範囲】 1 ポリプロピレンと前記ポリプロピレンに対す
る体積比が1/2以上2以下の比率を有する4−メ
チルペンテンポリマとのブレンド物を基材とし、
ウイスカまたはもみがら粉を強化材として複合し
たことを特徴とするスピーカ用振動板。 2 強化材の混合率が0vol%より大きく20vol%
以下であることを特徴とする特許請求の範囲第1
項記載のスピーカ用振動板。
[Scope of Claims] 1. A blend of polypropylene and a 4-methylpentene polymer having a volume ratio of 1/2 or more to the polypropylene and 2 or less, as a base material,
A speaker diaphragm characterized by being composited with whiskers or rice husk powder as a reinforcing material. 2 The mixing ratio of reinforcing material is greater than 0vol% and 20vol%
Claim 1 characterized in that:
The diaphragm for the speaker described in section.
JP10495882A 1982-03-08 1982-06-17 Diaphragm for speaker Granted JPS58221595A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10495882A JPS58221595A (en) 1982-06-17 1982-06-17 Diaphragm for speaker
US06/471,456 US4471085A (en) 1982-03-08 1983-03-02 Diaphragm material for loudspeakers
GB08305863A GB2117389B (en) 1982-03-08 1983-03-03 Compositions for use in forming loudspeaker diaphragms
DE19833307946 DE3307946A1 (en) 1982-03-08 1983-03-07 DIAPHRAGM MATERIAL FOR SPEAKERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10495882A JPS58221595A (en) 1982-06-17 1982-06-17 Diaphragm for speaker

Publications (2)

Publication Number Publication Date
JPS58221595A JPS58221595A (en) 1983-12-23
JPH0234520B2 true JPH0234520B2 (en) 1990-08-03

Family

ID=14394601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10495882A Granted JPS58221595A (en) 1982-03-08 1982-06-17 Diaphragm for speaker

Country Status (1)

Country Link
JP (1) JPS58221595A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583499A (en) * 1981-06-30 1983-01-10 Kuraray Co Ltd Acoustic diaphragm plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583499A (en) * 1981-06-30 1983-01-10 Kuraray Co Ltd Acoustic diaphragm plate

Also Published As

Publication number Publication date
JPS58221595A (en) 1983-12-23

Similar Documents

Publication Publication Date Title
US4471085A (en) Diaphragm material for loudspeakers
US4404315A (en) Molding compositions and diaphragms, arm pipes and head shells molded therefrom
JPH0234520B2 (en)
US4362772A (en) Vibratory elements for audio equipment
JPS59108499A (en) Diaphragm for speaker
JPS58107798A (en) Diaphragm system for speaker
JPS5986994A (en) Diaphragm for loudspeaker
JPH06284496A (en) Acoustic diaphragm
JPH0156600B2 (en)
JPH0241960B2 (en)
JPS5881399A (en) Diaphragm for speaker
GB2046274A (en) Molding compositions and acoustic articles molded therefrom
JPS5921196A (en) Diaphragm for electroacoustic transducer
JP3123279B2 (en) Speaker diaphragm
JPS5864896A (en) Diaphragm for acoustic device
JPS6123718B2 (en)
JP2003348687A (en) Speaker diaphragm
JPS58165500A (en) Diaphragm for electroacoustic transducer
JPS5896492A (en) Diaphragm for electroacoustic transducer
JPH01292998A (en) Diaphragm for loudspeaker
JPS5892195A (en) Diaphragm for electroacoustic transducer
JP2700314B2 (en) Speaker diaphragm
JPS58111600A (en) Acoustic diaphragm
JPS5921197A (en) Diaphragm for electroacoustic transducer
JP3201087B2 (en) Speaker diaphragm