JPH0234257B2 - - Google Patents

Info

Publication number
JPH0234257B2
JPH0234257B2 JP60291946A JP29194685A JPH0234257B2 JP H0234257 B2 JPH0234257 B2 JP H0234257B2 JP 60291946 A JP60291946 A JP 60291946A JP 29194685 A JP29194685 A JP 29194685A JP H0234257 B2 JPH0234257 B2 JP H0234257B2
Authority
JP
Japan
Prior art keywords
hole
joint
width
seamed
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291946A
Other languages
Japanese (ja)
Other versions
JPS62151234A (en
Inventor
Michio Watanabe
Tsuneo Imatani
Katsuhiro Imazu
Yasuo Kaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP29194685A priority Critical patent/JPS62151234A/en
Publication of JPS62151234A publication Critical patent/JPS62151234A/en
Publication of JPH0234257B2 publication Critical patent/JPH0234257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明が属する利用分野) 本発明は巻締接合缶及びその製法に関するもの
で、より詳細には、巻締部における所謂ラツプ割
れと呼ばれる欠陥に基づく漏洩が有効に抑制され
しかも製缶作業性も顕著に向上した巻締缶及びそ
の製法に関する。 (従来の技術) 従来、缶詰用缶の製造に際しては、両端開口の
缶胴に缶蓋(キヤン・エンド)を被蓋させ、缶胴
フランジと缶蓋周縁部との間に二重巻締を行う。
缶胴部材としては、缶用素材(ブランク)を樹脂
接着剤、ハンダ等の接合剤を介して側部重ね合せ
接合したものが広く使用されている。 缶胴と缶蓋との二重巻締部においては、フラン
ジ加工された缶胴端部は、全体としてほぼ180度
折曲げられており、この折曲げられた缶胴端部を
包み込む形で缶蓋周辺部が巻締られている。巻締
られた缶胴端部において、重ね合せ継目の部分で
は当然2枚の素材が重なつており、巻締加工に際
して、接合された2枚の素材の内、継目内側の素
材は軸方向に強く伸張力を受ける一方、継目外側
の素材は軸方向に圧縮力を受け、また周方向には
両素材間に引張り剪断力を受ける。かくして継目
間に存在する接合剤は容器軸方向にも同方向にも
著しく大きい剪断力を受け、接合部に、ラツプ割
れと呼ばれるミクロな破壊欠陥を生じ、これが長
期経時における漏洩の原因となる。 これを防止するために、米国特許第2120038号
明細書には、缶蓋と巻締られる缶胴重ね合せ継目
の部分に、エツジから継目に入るV字型の切欠き
を設けることが提案されており、また特開昭55−
55935号公報には、同様の切欠き部を接着缶に適
用することが提案されている。 (発明が解決しようとする問題点) 上述した手段は、重ね合せ継目の接合部に加わ
る剪断力を緩和し、所謂ラツプ割れを防止するに
は有効であるが、次の欠点を生じることが認めら
れる。即ち、エツジから重ね合せ継目に入る切欠
きにより、エツジが不連続となり、このため、ブ
ランク相互が係合し合つて、ブランクの円滑な搬
送や取扱いが屡々困難となる。また、この切欠き
により分離された開口側端縁部の重ね合せ接合を
円滑に且つ作業性良く行うことが屡々困難とな
る。またエツジが不連続であることから、切欠き
部よりも開口側の重ね合せ接合部を中央側の重ね
合せ接合部と精度良く整合させることも困難とな
る。 更に、接着缶の製造に際しては、缶用素材の接
合すべき両端部を高周波誘導加熱して接着剤層を
軟化乃至溶融させ、次いで両端部を重ね合せ、こ
れを冷却下にバンピングすることにより製造され
るが、この高周波誘導加熱に際し、前述した切欠
き部や存在すると、切欠き部よりも開口側の端部
には過電流が誘導され易くなり、この部分の加熱
が過多となり適切に行い得ないという、工業生産
上致命的な欠点を生ずる。 従つて、本発明の技術的課題は、巻締部におけ
るラツプ割れが防止されしかも上述した諸欠点が
解消された巻締接合缶及びその製法を提供するに
ある。 本発明の他の技術的課題は、継目接合部の整合
性に優れていると共に、継目の形成が容易にしか
も良好な作業性をもつて行われ、しかも巻締に際
しラツプ割れの発生を有効に防止得る新規構造の
巻締接合缶及びその製法を提供するにある。 (問題点を解決するための手段) 本発明によれば、缶用素材を接合剤を介して側
部重ね合せ接合した缶胴と、缶蓋と、両者の間に
形成された巻締部とから成る巻締接合缶におい
て、 缶用素材の重ね合せ接合されるべき端縁部分の
何れか一方に、打抜き孔を、重ね合せ接合部の巾
内に位置し、巻締部における折れ曲り部の少なく
とも一部を含み且つ式 R2/W=0.05〜0.45 ω1≧0.3mm ω2≧0.5mm 式中、R2は打抜き孔の周方向半径、Wは重ね
合せ接合部の周巾方向、ω1は孔より外方の外側
エツジ側接合巾、ω2は孔より外方の内側エツジ
側接合巾を夫々表わす、 を満足するように設け、前記打抜き孔を接合剤の
剪断応力緩和機構としたことを特徴とする巻締接
合缶が提供される。 本発明によればまた、缶用素材を接合剤を介し
て側部重ね合せ接合して缶胴を製造し、次いで缶
胴開口端部と缶蓋との間で巻締を行うことから成
る巻締接合缶の製法において、缶用素材の重ね合
せ接合されるべき端縁部分の何れか一方に、打抜
き孔を、重ね合せ接合予定部の巾内に位置し、巻
締部における折れ曲り予定部の少なくとも一部を
含み且つ式 R2/W=0.05〜0.45 ω1≧0.3mm ω2≧0.5mm 式中、R2は打抜き孔の周方向半径、Wは重ね
合せ接合部の周巾方向、ω1は孔より外方の外側
エツジ側接合巾、ω2は孔より外方の内側エツジ
側接合巾を夫々表わす、 を満足する工程と、 前記端縁部分の少なくとも一方に熱接着剤を施
す工程とを、この順序或いは逆の順序に行い、接
合すべき両端部分を高周波誘導加熱し、 加熱された両端部分を重ね合せて冷却下に加圧
して、側部継目を形成させることを特徴とする巻
締接合缶の製法が提供される。 (作用) 本発明の接合缶胴の要部を拡大して示す第1図
及び第2図において、缶用素材1の両側方端部2
a,2bが重ね合され、接着剤3,4を介して接
合され、重ね合せ継目5を形成している。この具
体例においては、継目外方となる端部2aの内面
には熱可塑性樹脂から成る熱接着剤3の層が接着
して設けられており、継目内方となる端部2bに
も、熱可塑性樹脂から成る熱接着剤4の層が、エ
ツジ6を包み込む形で接着されている。これら熱
接着剤3及び4が溶融一体化することにより、側
部重ね合せ接合が行われる。 本発明によれば、重ね合せ接合される両端部2
a,2bの一方、この具体例においては継目外側
に位置する端部2aに対して、重ね合せ接合部5
の巾(W)内に位置し且つ巻締部の折れ曲り部
(後述する)の一部を含む部分に打抜き孔7を設
ける。打抜き孔7とは、文言通り打抜かれた孔で
あり、端部2aのエツジ8は孔7の部分でも完成
に連続していることが本発明の特徴である。ま
た、この打抜き孔7は前記接合部5の巾内に設け
られることから、この打抜き孔7と継目外側エツ
ジ8との間には適当な接合巾w1及び打抜き孔7
と継目内側エツジ9との間には適当な接合巾w2
が確保され、打抜き孔7を通しての漏洩が防止さ
れている。 本発明においては、継目外側となるエツジ8
に、切欠きが入ることなくその連続性が保たれ、
打抜き孔7より開口側の部分もそれより下方の部
分と常に一体化されているため、継目接合剤の整
合性、即ち缶胴内周面への整合性を高めることが
できる。また、缶用素材の製缶工程での搬送や取
扱いに際しても、どのエツジの部分も連続してお
り、切欠き等が存在しないため、缶用素材相互が
係合しあう(引掛かる)等の不都合が解消され、
これらの操作並びに両端部2a,2bの重ね合せ
接合操作を著しく円滑に良好な作業性を以つて行
うことができる。 接合部5の内、打抜き孔7が設けられた部分で
は、接着剤4は外方に露出しており、即ちその一
方の面は内方端部2bに密着されて拘束されてい
るが、その他方の面即ち外面は未拘束の自由面と
なつている。 缶胴の開口端部の缶蓋との巻締に際しては、先
ず開口端が約90度外方(第1図において手前方
向)に折曲げられて、フランジを形成し、次いで
缶蓋が被蓋されて更に約90度下方に折曲げられ
る。これらの加工により、第3図に示す通り外側
端部2aに対しては矢印Aに示すように軸方向に
圧縮応力が作用し、一方内側端部2bに対して
は、点線の矢印Bに示すように軸方向に引張応力
が作用する。更に、両端部2a,2bには矢印C
に示す通り周方向の引張応力が作用する。これら
の応力に対応して、接着剤層3,4には著しく大
きな剪断応力が発生することが理解されよう。 本発明においては、打抜き孔7の部分では、接
着剤層4の一方の面が未拘束の自由面となつてい
るから、この部分の接着剤層には一切剪断応力が
発生していないのみならず、打抜き孔7の周状エ
ツジ10が全ゆる方向の応力に追随して適度の変
形を生じ、接着剤層3,4に過度の剪断応力が発
生するのを回避するように作用するのである。例
えば、軸方向の圧縮応力に対しては、軸方向に圧
縮された楕円形状になるような変形を生じ、また
周方向の引張応力に対しては周方向に伸張された
楕円形状になるような変形を生じるのである。こ
のように、本発明における打抜き孔はどの方向の
応力に対しても、それに追随して容易に変形し、
接着剤層の剪断応力を緩和させ得るという優れた
作用を有することが理解されよう。更に、この打
抜き穴7は滑らかな周状エツジ10を有すること
から、フランジ加工及び巻締加工に際しても、特
定の部分に応力集中を生じることがなく、巻締ら
れる継目部の強度を比較的大きく保つことを可能
にし、加工中における継目破壊等のトラブルを回
避し得ることも利点の一つである。 本発明において、重ね合せ接合部の巾内に位置
し且つ巻締部の折れ曲り部を含む部分に孔を設け
ることにより、ラツプ割れが有効に防止される事
実は、次の理論的考察から明らかとなろう。 重ね合せ接合部の内ラツプ割れが問題となる部
分は、折れ曲り部よりも先端の接合部であり、こ
の接合部の面積をSmm2、接着剤の降伏剪断応力を
τaKg/mm2とすると、この接合部が割れに至る強
度は式 Fa(Kg)=Sτa ……(1) で表わされる。一方缶用素材の降伏強さをσYKg/
mm2、その厚みをtmm、折れ曲げ部の巾をωmmとす
ると、缶用素材が降伏に至る強さは式 Fb(Kg)=σY・t・ω ……(2) で表わされる。今、両者の強さを比較して、式 Fa<Fb ……(3) が成立するならば、缶用素材が変形して接合部が
破壊されることなく、巻締操作が行われることに
なる。 本発明において、折れ曲り部に打抜き孔7を設
けたことにより、折れ曲げ部の巾ωが式 ω=ω1+ω2<W ……(4) となり、折れ曲げ部の変形を可能にして接合部の
破壊を防止し得ることがわかる。尚、孔7を外側
端部2aに設ける場合には、圧縮力により厚みが
増大する変形を生じ、孔7を内側端部2bに設け
る場合には、伸張力により厚みが減少する変形を
生ずる。 (発明の好適実施態様) 巻締部の構造 本発明の巻締接合缶において、缶用素材に設け
る孔7の形状は、打抜かれたエツジが滑らかであ
るものであればよく、例えば円、楕円、長円等が
最も適しているが、角を丸めた多角形状、例えば
角も丸めた三角形、矩形、菱形、正方形、五角
形、六角形等の形状であつてもよい。 孔7の軸方向の半径をR1、周方向の半径をR2
とすると、各寸法の関係は W=ω1+2R2+ω2 ……(5) となる。前記式(1)乃至(5)から明らかな通り孔7の
周方向の径R2は、折れ曲り部の降伏変形が接着
破壊に先立つて行われ、しかも継目からの漏洩が
防止されると共に、継目の整合性が維持されるよ
うに定められなければならない。 一般に、R2/Wは、0.05乃至0.45特に0.10乃至
0.35の比率とすることにより、上述した両要求を
満足させることができる。即ち、この比率R2
Wが上記範囲よりも小さいとラツプ割れ防止に顕
著な効果がなく、一方上記範囲よりも大きいと継
目からの漏洩防止や継目の整合性が得られなくな
る傾向がある。継目巾Wは一般に1.0乃至10.0mm、
特に2.5乃至2.5mmの範囲とするのがよく、外側エ
ツジ側接合巾ω1は継目の整合性の点で0.3mm以上、
特に0.5mm以上の範囲にあるべきであり、内側エ
ツジ側接合巾ω2は継目からの漏洩防止の点で0.5
mm以上、特に1.0mm以上の範囲にあるべきである。 孔7の軸方向径R1は、折れ曲げ部から先端迄
の部分における接合剤の降伏剪断強さFaをあま
り低下させずに、しかも巻締時におけ変形を孔7
内に許容し得るように定める。即ち、折れ曲げ部
から先端迄の距離をHとしたとき、R1/Hの比
は、一般に0.15乃至0.85、特に0.20乃至0.60の範
囲とするのがよい。この比率R1/Hが上記範囲
よりも小さいと巻締時に生じる変形を孔7内で吸
収することが困難となつて、ラツプ割れにつなが
り易く、またこの比率R1/Hが上記範囲よりも
大きいと接合部の降伏剪断強さFaが低下する結
果としてやはりラツプ割れを生じ易くなる。孔7
におけるR1/R2の比は0.1乃至5、特に0.3乃至2
の範囲にあるのがよく、1であることが最も望ま
しい。 継目の構造は、巻締部が重ね合せ(ラツプ)接
合となつている限り任意の継目構造をとり得る。
例えば、缶胴の側部継目全体がラツプ接合であつ
てよいのは勿論のこと、巻締部のみがラツプ接合
で他の部分がロツク接合である場合や、巻締部が
ラツプ接合で、その他の部分がラツプとロツクと
が交互になつている場合も包含される。 本発明の巻締接合缶における継目部分及び継目
以外の部分の断面を第4図及び第5図に示す。 この缶は缶胴部材11と缶蓋12とから成り、
両者の間に二重巻締部13が形成される。この二
重巻締部13において、缶胴部材11には延長さ
れたフツク(巻締られたフランジ部)14があ
り、この缶胴フツク14は折り曲げ部分15から
ほぼ180度下方に曲げられており、その最端部1
6が最下方に位置している。一方、缶蓋12は周
辺部17を有しており、この周辺部17は缶胴部
材11のフツク14を包み込む形で、即ち外周環
状部18と内周側のフツク19との間に缶胴フツ
ク14が挾まれる関係で巻締が行われている。 缶蓋の周辺部17において、外周環状部18と
内周側の缶蓋フツク19との接続部乃至下方湾曲
部20は、缶胴部材11の最下端部16よりも下
方に位置しており、一方内周側のフツク19の先
端21は缶胴部材11と缶胴フツク14との折れ
曲り部分15よりも下方に位置している。缶蓋の
下方湾曲部20と缶胴部材の最下端部16との間
にはローワークリアランス部(下方間隙部)22
があり、缶蓋の先端21と缶胴部材の折れ曲り部
分15との間にはアツパークリアランス部(上方
間隙部)23が存在する。密封用ゴム組成物の層
24は、ローワークリアランス部22にほぼ完全
に充満していると共に、アツパークリアランス部
23にも充満している。 第4図は、缶胴部材11の側面継目における二
重側面継目を拡大して示すもので、この側面継目
に対応する缶胴フツク14では、2枚の缶胴金属
素材端部2a,2bが熱接着剤3を介して接合さ
れた構造となつているが、前述した折れ曲り部1
5では孔7の存在により、一方の端部2aの変形
が許容されていることが明らかとなろう。 缶用素材 本発明において、缶用素材としては任意の缶用
素材、例えばブラツクスチール、錫メツキ鋼板、
ニツケルメツキ鋼板、錫−ニツケルメツキ鋼板、
アルミニウムメツキ鋼板、テインフリースチー
ル、クロム酸化学処理鋼板等の各種鋼板類及びア
ルミニウム等の軽金属板板が使用される。かかる
金属素材の内でも、本発明は特に接着缶に有利に
適用されることから、テイン・フリー・スチール
(TFS)を用いることが望ましい。本発明におい
て、テイン・フリー・スチール(TFS)素材と
しは、任意のものを用いることができる。TFS
素材としては、圧延鋼板等の鋼板基質と該鋼板基
質表面に施された金属クロム、非金属クロム及び
これらの組合せから成る群より選択された含クロ
ム被覆層とから成るものが知られており、このも
のは本発明の目的に好適に使用される。含クロム
被覆層としては、クロム換算で0.06乃至3.6mg/
dm2、特に0.1乃至2.5mg/dm2の範囲の膜厚にあ
るものが一般的に入手が容易であり且つ本発明に
も好適であるが、勿論これに限定される必要はな
く、アルミニウムメツキ鋼板、電気亜鉛メツキ鋼
板、冷却鋼板等も用途によつて使用できる。 また、耐腐食性に特に優れたものとして、含ク
ロム被覆層が鋼板基質上の金属クロム層と金属ク
ロム層上の非金属クロム層(酸化クロム及び/又
は水和クロム酸化物層)とから成り、且つ金属ク
ロム層が0.05乃至3.0mg/dm2、特に0.1乃至2.0
mg/dm2の範囲の膜厚にあり、非金属クロム層が
クロム換算で0.01乃至0.6mg/dm2、特に0.05乃至
0.4mg/dm2の範囲の膜厚にあるものが知られて
いるが、これらのTFS素材も本発明の目的に好
適に使用し得る。 使用する缶用素材は、巻締缶の用途によつても
相違するが、一般に0.12乃至0.40mm、特に0.14乃
至0.36mmの厚みを有するのがよい。基材の厚みが
上記範囲よりも低い場合には、缶詰の製造時或い
は保存中に変化を生じる場合があり、一方上記範
囲を越えると、二重巻締等の加工が困難となる傾
向がある。 塗 料 上記缶用金属素材には、これを保護するために
塗料を設ける。このような保護塗膜としては、一
般的に言つて水酸基、エーテル基、カルボキシル
基、エポキシ基等の極性基を10乃至2000ミリモ
ル/100g樹脂の濃度、特に20乃至1500ミリモ
ル/100g樹脂の濃度で含有する熱可塑性樹脂或
いは熱硬化性樹脂が使用される。その適当な例
は、塩化ビニル−酢酸ビニル共重合体塗料、塩化
ビニル−酢酸ビニル共重合体部分ケン化物塗料、
塩化ビニル−酢酸ビニル−アクリル酸共重合体塗
料等のビニル系塗料;上記ビニル系塗料に塩化ビ
ニル系樹脂を分散させて成るオルガノゾル塗料;
エポキシ樹脂変性ビニル系塗料;熱可塑性ポリエ
ステル塗料;アクリル系塗料;エポキシ変性アク
リル系塗料;ウレタン変性アクリル系塗料;エポ
キシ−フエノール系塗料、エポキシ−アミノ樹脂
系塗料、アルキツド系塗料、熱硬化性型ポリエス
テル系塗料の1種または2種以上から成る塗料で
ある。 接着剤、特にナイロン系接着剤を用いる場合に
は、保護被膜が接着プライマーとしての役目をも
兼ねるのが望ましく、かかる接着プライマー兼保
護塗膜としては、エポキシ樹脂と多環フエノール
を含有するフエノール、アルデヒド樹脂とを含有
する塗料が好適に使用される。 エポキシ樹脂成分aとしては、所謂フエノール
−エポキシ塗料中のエポキシ樹脂成分として従来
使用されているものは全て制限なしに使用し得る
が、これらの内代表的なものとして、エピハロヒ
ドリンとビスフエノールA〔2,2′−ビス(4−
ヒドロキシフエニル)プロパン〕との縮合によつ
て製造した平均分子量800乃至5500、特に望まし
くは、1400乃至5500のエポキシ樹脂が挙げられ、
このものは本発明の上記目的に好適に使用され
る。 エポキシ樹脂成分aと組合せて使用するフエノ
ール・アルデヒド樹脂成分bも、この樹脂骨格中
に多環フエノールを含有するものであれば、任意
のものを用いることができる。 本明細書において、多環フエノールとは、フエ
ノール性水酸基が結合した環を複数個有するフエ
ノール類の意味であり、かかる多環フエノールの
代表的な例として、 2,2′−ビス(4−ヒドロキシフエニル)プロ
パン(ビスフエノールA) 2,2′−ビス(4−ヒドロキシフエニル)ブタ
ン(ビスフエノールB)、 1,1′−ビス(4−ヒドロキシフエニル)エタ
ン、 ビス(4−ヒドロキシフエニル)メタン(ビス
フエノールF) 4−ヒドロキシフエニルエーテル、 P−(4−ヒドロキシ)フエノール、 等が挙げられるが、ビスフエノールAが最も好適
である。 これらの多環フエノールは単独で或いはその他
のフエノール類との組合せで、ホルムアルデヒド
と縮合反応させてレゾール型フエノールアルデヒ
ド樹脂とする。その他のフエノール類としては、
従来この種の樹脂の製造に使用される1価フエノ
ールは全て使用できるが、2官能性フエノール;
例えばo−クレゾール、p−クレゾール、p−
tert−ブチルフエノール、p−エチルフエノー
ル、2,3−キシレノール、2,5−キシレノー
ル等の2官能性フエノールの1種又は2種以上の
組合せが最も好ましい。勿論、上記2官能性フエ
ノールの他に、フエノール(石炭類)、m−クレ
ゾール、n−エチルフエノール、3,5−キシレ
ノール、m−メトキシフエノール等の3官能性フ
エノール類;2,4−キシレノール、2,6−キ
シレノール等の1官能性フエノール類;p−tert
−アミノフエノール、p−ノニルフエノール、p
−フエニルフエノール、p−シクロヘキシルフエ
ノール等のその他の2官能性フエノールも、単独
で或いは上記2官能性との組合せで、フエノール
アルデヒド樹脂の調製に使用することができる。 フエノールアルデヒド樹脂中における多環フエ
ノールの量は全フエノール成分の少なくとも10重
量%以上、特に30重量%以上であればよいが、多
環フエノール(イ)と前記1価フエノール(ロ)とを イ:ロ=97:2〜65:35 特に 95:5〜75:25 の重量比で組合せることが、耐レトルト性の点で
特に有利である。 本発明に用いるレゾール型フエノールアルデヒ
ド樹脂は、上述したフエノールとアルデヒドとを
塩基性触媒の存在下に反応させることにより得ら
れる。フエノールに対するアルデヒドの使用量に
は特に制限はなく、従来レゾール型樹脂の製造に
使用されている量比で用いることができ、例えば
フエノール類1モル当り1モル以上、特に1.5乃
至3.0モルの量比のアルデヒドを好適に用いるこ
とができるが、1モルよりも少ないアルデヒドを
用いて特に不都合はない。縮合は、一般に適当な
反応媒体中、特に水性媒体中で行うのが望まし
い。塩基性触媒としては、従来レゾール型樹脂の
製造に使用されている塩基性触媒の何れもが使用
される。 前述したエポキシ樹脂成分aとフエノール・ア
ルデヒド樹脂成分bとは、従来この種々の塗料に
使用されている範囲内の任意の割合で組合せて使
用することができ、特別に制限は受けない。接着
部の耐レトルト性の見地からは、 (a):(b)=95:5乃至50:50 特に 90:10乃至60:40 の重量比で両者を組合せた塗料を用いるのがよ
い。 接合剤 本発明において、接合剤としては、従来側部重
ね合せ接合に使用されている任意の接合剤、例え
ばハンダ、熱可塑性或いは熱硬化性の樹脂接着剤
等が使用されるが、熱接着型(ホツトメルト型)
の熱可塑性樹脂接着剤を用いることが最も好まし
い。 ホツトメルト型の接着剤の適当な例は、これに
限定されるものでないが、重要な順に、ポリアミ
ド、ポリエステル、アイオノマー(イオン架橋オ
レフイン共重合体)、酸変性ポリオレフイン類、
ビニルエステル系共重合体、コポリカーボネート
等である。 適当なポリアミド系接着剤の例は、炭素数100
個当りのアミド基の数が4乃至12の範囲にある少
なくとも1種のナイロン類であり、より具体的に
は、ポリ−ω−アミノデカン酸、ポリ−ω−アミ
ノウンデカン酸、ポリ−ω−アミノドデカン酸、
ポリ−ω−アミノトリデカン酸、ポリデカメチレ
ンセバカミド、ポリデカメチレンドデカミド、ポ
リデカメチレントリデカミド、ポリデカメチレン
アジパミド、ポリドデカメチレンセバカミド、ポ
リドデカメチレンドデカミド、ポリドデカメチレ
ントリデカミド、ポリトリデカメチレンアジパミ
ド、ポリトリデカメチレンセバカミド、ポリトリ
デカメチレンドデカミド、ポリトリデカメチレン
トリデカミド、ポリヘキサメチレンアゼラミド、
ポリデカメチレンアゼラミド、ポリドデカメチレ
ンアゼラミド、ポリトリデカメチレンアゼラミド
等が挙げられる。 これら等のポリアミドは2種以上のブレンド物
でも、或いは各単量体の組合せから成るコポリア
ミドの形でも、更にこれらを組合せブレンド物の
形でも使用できる。用いるポリアミドは少量であ
ればダイマー酸等の異種成分で変性されていても
よい。 用い得るポリエステルの適当な例は、高分子量
のコポリエステル、特に二塩基酸成分としてテレ
フタル酸単位及び他の二塩基酸単位を含有し且つ
ジオール成分としてテトラメチレングリコール単
位を含有する高分子コポリエステル、及び/又は
二塩基酸成分としてベンゼンジカルボン酸単位を
含有し、且つジオール成分としてテトラメチレン
グリコール単位と他のジオール単位とを含有する
高分子量コポリエステルであり、具体的には、 ポリテトラメチレン・テレフタレート/イソフ
タレート、 ポリテトラメチレン・テレフタレート/イソフ
タレート/アジペート、 ポリテトラメチレン・テレフタレート/アジペ
ート、 ポリテトラメチレン・テレフタレート/セバテ
ート、 ポリテトラメチレン/エチレン・テレフタレー
ト、 ポリテトラメチレン/ポリオキシエチレン・テ
レフタレート、 ポリテトラメチレン/ポリオキシエチレン・テ
レフタレート/イソフタレート 等が挙げられる。 これらのコポリエステルは単独で使用される他
に、複数種のブレンド物としても使用され、更に
ポリエチレン、ポリプロピレン、アイオノマー、
エチレン酢酸ビニル共重合体、変性ポリプロピレ
ン等のポリオレフイン系の樹脂を一部ブレンドし
て用いる場合もある。 アイオノマーとしては、オレフイン類と不飽和
カルボン酸、或いは更に他のビニルモノマーとの
共重合体をアルカリ金属、アルカリ土類金属、或
いは有機塩基で中和して得られる樹脂例えば、米
国デユポン社から市販されているサーリン類が使
用される。 更に、ポリエチレン、ポリプロピレン、結晶性
エチレン−プロピレン共重合体等のポリオレフイ
ン類に、アクリル酸、メタクリル酸、クロトン酸
等のエチレン系不飽和カルボン酸や、無水マレイ
ン酸、無水イタコン酸等のエチレン系不飽和カル
ボン酸でグラフト重合させて成る酸変性ポリオレ
フインを使用し得る。更にビニルエステル系共重
合体として、ビニルエステルとオレフイン類又は
他のビニルモノマーとの共重合体或いはその部分
ケン化物、例えば、エチレン/酢酸ビニル共重合
体、エチレン−酢酸ビニル共重合体部分ケン化
物、塩化ビニル/酢酸ビニル共重合体を使用し得
る。 本発明に用いる熱可塑性樹脂は十分に高分子量
であるべきであり、一般に6000以上、特に9000乃
至500000の数平均分子量を有することが望まし
い。また、この樹脂は、熱融着性や熱接着操作の
容易性の見地から、80乃至280℃、特に90乃至240
℃の軟化点(融点)を有することが望ましい。 製缶操作 製造操作は、前述した孔7を設設ける点を除け
ば、それ自体公知の任意の手法で行うことができ
る。 製缶に際しては、金属素材に前述した塗料を塗
布し、焼付して塗装金属素材を先ず製造する。塗
膜の厚みは、一般に0.5乃至20μm、特に1乃至
10μmの範囲にあるのがよい。 この塗装金属素材からの加工の順序を示す 第−6−A図において、塗装金属素材1の継目
内側となるべき端部2bに接着剤層4を、そのカ
ツトエツジを包み込む形で施こし、更に継目外側
となるべき端部2aにも重ね合せされる面に接着
剤層3を施こす。接着剤層3及び4の厚みは、一
般的に言つて、10乃至300μm、特に15乃至150μ
mの範囲内にあることが望ましく、また接着剤層
3及び4の塗布巾は重ね合せ継目の巾(W)より
も大きいのがよい。接着剤の塗布は、予じめ形成
された接着剤のテープを加熱された塗装金属素材
端部に適用し、熱接着させることにより容易に行
われる。 この接着剤を塗布した塗装金属素材を、缶胴高
さとなるサイズに截断して缶用素材(ブランク)
とする。 次いで、第6−B図において接着剤層3が施さ
れた端部2aにパンチングにより孔7を形成させ
る。孔7を形成させる位置は、既に説明した位置
である。孔7を接合すべき素材端部2aに設ける
と共に、この端部の上縁及び下縁の縁切(スリー
バーノツチ)30を設けるのがよい。このスリー
バーノツチ30は巻締部において、重ね合せ接合
部に対応するフツクが肉厚になりすぎるのを防止
し、且つ先端間の位置ずれを防止する作用を行う
ものである。 接着剤層3を設けるに先立つて、パンチングに
よる孔7を形成し得ることは当業者には自明であ
ろう。 次いで、第6−B図に示す缶用素材を丸め、接
着剤層が溶融状態にある両端部を重ね合わせ、冷
却下にバンピングして第6−C図に示す缶胴を作
成する。 このようにして形成して缶胴を、必要により一
段域いは二段以上のネツクイン加工を行つた後、
フランジ加工を行い、最後にシーリングコンパウ
ンドを備えた缶蓋を備えた缶蓋と巻締して最終缶
とする。 缶蓋としては、前述した缶用素材をプレス成形
し、必要によりイージイオープン蓋加工を行い、
シーリングコンパウンドとして、スチレン−ブタ
ジエンゴムラテツクス等をライニングしたもの等
が使用される。 (実施例) 本発明を次の例で説明する。 実施例 1 板厚0.17mm、長さ827mm、幅1026mmの電解クロ
ム酸処理鋼板TFSの大板の両面にエポキシフエ
ノール系塗料をロール塗装して焼き付け、次にこ
の板の缶内面となるべき板面のうち、後記缶胴胴
周の幅のストリツプに切断した場合の長手方向に
沿つた端縁部より一方で2.0mm他方で5.5mm幅を残
して、その他の表面にマージン塗装をして焼き付
け、更にこの板の缶外面となるべき板面に前記と
同様にストリツプに切断した場合の長手方向に沿
つた端縁部より一方で5.5mm幅を残して通常の方
法で印刷及び仕上げニスを施した。この大板を通
常の切断機により、塗装方向に沿つて幅170.40
mm、長さ827mmのストリツプに切断した。 このストリツプの長さ方向に沿つた両端部を幅
約7〜8mmにわたり高周波加熱法で約270℃に予
熱し、厚さ40μm、幅6mmのナイロン系接着剤フ
イルムのテープをストリツプの一方の端部であつ
て缶内面側接合剤となるべき面にエツジに沿つて
ロール圧着した後冷却し、同時にストリツプの他
方の端部には前記テープであつて幅8mmのものを
用いて缶外面側接合剤となるべき面に5mm、缶内
面側となるべき面に2.5mm、かつストリツプの切
断端面を保護するようにして同様にロール圧着し
た後冷却した。この場合前記ストリツプの端部で
あつて上塗り層の未塗装部幅が2.0mmの方に接着
剤テープ幅2.5mmがくるようにした。 このようにして接着剤テープを施してストリツ
プを更に直角方向に切断して、両端部に接着剤テ
ープを有する136.52mm×170.40mmの缶用ブランク
とした。 この缶用ブランクの缶内面側接合部となるべき
面を有する端部(接合後缶の外側になる側である
ので通称アウトサイドと呼ぶ)に於て、その端面
より2.5mmの距離でかつ缶の高さ方向の両端面か
らそれぞれ2.4mmの位置を中心とした都合二箇所
に、直径2mmの丸穴を通常のパンチとダイを用い
て加工して設けた。更にこの丸穴に隣接して缶用
ブランクの角を缶の高さ方向に沿つて0.5mm、円
周方向に沿つて2.7mmの点を結ぶ斜めの線で切り
落としてノツチを設けた。一方この缶用ブランク
の缶外面側接合部となるべき面を有する端部(通
称インサイド)には通常用いられている形式のノ
ツチを設けることとし、缶の高さ方向に沿つて
1.1mm、円周方向に沿つて3.3mmの点を結ぶ斜めの
線で角切りを行つた。 打抜き穴を設けた部分の各寸法は次の通りであ
つた。 R1=R2=1mm、 W=5mm R2/W=0.2 ω1=ω2=1.5mm H=2.4mm R1/H=0.42。 このようにした作製された本特許実施例の打ち
抜き穴を設けられた缶用ブランクを、通常の製缶
機を用いて缶高さが136.52mmになるように筒状に
成形し、接着剤テープの施された両端部を高周波
加熱法により250℃に加熱し、接着剤が互いに重
なるようにして端部を5mmの幅で重ね合わせてお
き冷却下に圧着して缶胴を製作した。 この缶胴の外径は約53mmであるが、更にこの缶
胴を通常用いられているダイを用いる方法によつ
てネツクイン加工し、缶蓋が巻締められる部分の
外径を約50.5mmとした。次いで通常用いられてい
る方法でフランジ加工を施した後、底蓋としてア
ルミ塗装板を打ち抜き成形しSBR系ウオーター
ベースコンパウンドを塗布乾燥して得られた通常
の200径アルミ蓋を、通常の方法によつてこの缶
胴の一端に二重巻締して実施例1の空缶製品とし
た。 比較例 1 前記実施例1と全く同じ方法によつて両端部に
接着剤テープを有する136.52mm×170.40mmの缶用
ブランクを作製した。 この缶用ブランクの缶内面側接合部となるべき
面を有する端部(通称アウトサイド)に於て、ブ
ランクの角を缶の高さ方向に沿つて1.0mm、円周
方向に沿つて4.0mmの点を結ぶ斜めの線で切り落
として通常設けられているスリバーノツチを設け
た。一方この缶用ブランクの缶外面側接合部とな
るべき面を有する端部にも実施例1と同様に通常
用いられている形式のノツチを設けることとし、
缶の高さ方向に沿つて1.1mm、円周方向に沿つて
3.3mmの点を結ぶ斜めの線で角切りを行つた。 このスリバーノツチを設けたブランクを実施例
1と同様な通常使用されている製缶機によつて成
形接着して缶胴を作製し、更に実施例1と同様な
ネツクイン加工、フランジ加工を施した後、これ
もまた実施例1と同じ200径アルミ蓋を一端に二
重巻締して比較例1の空缶製品とした。 実施例 2 厚さ0.23mmのブリキ板を大略170mm×136.5mmの
大きさに切り、缶胴ブランクとする。後記するよ
うにこのブランクから作製する缶は、接合部をハ
ンダ付けされて製缶される所謂ハンダ缶である。
ハンダ缶の接合部は実施例1で詳述した如き熱可
塑性樹脂を用いた所謂接着缶の場合とは異なり、
缶胴両端の蓋を巻締めされる部分を除いては、通
常ブランクの一端を外側へ折り曲げ、一方他の一
端を内側へ折り曲げておいて、この両者を咬み合
わせた後にこの咬み合わせ部を圧着し、しかる後
にこの部分へ溶融したハンダを流し込んで接合を
完了させるような構造となつている。 この折り曲げ加工の為ブランクの形状は所謂接
着缶の場合とは異なつて単純な四角形では無い。
片側は舌状に伸びており、これと咬み合うべき他
の一端にはスリツト加工が施されているのが一般
的である。実施例2に詳述するにあたつて、この
形状を記すべきではあるが、その詳細は当業者の
よく知る処であり、かつ本特許の本質とは何等関
係が無いので、いたずらに複雑であるその詳細に
関しては割愛することとする。 念の為に記しておくならば、巻締め加工を受け
ない缶胴部分はこのように複雑な形状であるにも
かかわらず、本特許と係わりを持つ蓋を巻締めら
れる缶胴両端の部分の形状は所謂接着缶の場合と
全く同じであり、通常の製缶機によつてハンダ付
けされた後の形状は、概念的に視れば接着缶の熱
可塑性樹脂の接着剤層の替わりにハンダ層が存在
するものと考えて差し支えが無い。 尚このブランクのハンダ接合部となるべき以外
の部分には、缶の内面となるべき面と外面となる
べき面の両方ともにエポキシフエノール系塗料が
ロール塗装され、焼き付けされている。 この缶用ブランクの巻締め加工をされる部分に
於て缶外面側接合部となるべき面を有する端部
(通称インサイド)に於て、その端面より2.5mmの
距離でかつ缶の高さ方向の両端面からそれぞれ
2.4mmの位置を中心とした都合二箇所に、長径2.6
mm短径1.8mmの楕円穴を長径が缶の高さ方向の端
縁と平行になるような向きで通常のパンチとダイ
を用いて加工して設けた。更にこの楕円穴に隣接
して缶用ブランクの角を缶の高さ方向に沿つて
0.5mm、円周方向に沿つて2.8mmの点を結ぶ斜めの
線で切り落としてノツチを設けた。一方この缶用
ブランクの巻締め加工をされる部分に於て缶内面
側接合部となるべき面を有する端部(通称アウト
サイド)には通常用いられている形式のノツチを
設けることとし、缶の高さ方向に沿つて1.2mm、
円周方向に沿つてブランクの外形から測つて5.1
mmの点を結ぶ斜めの線で角切りを行つた。 打抜き穴を設けた部分の各寸法は次の通りであ
つた。 R1=1.3mm R2=0.9mm W=5mm R2/W=0.18 ω1=1.6mm ω2=1.6mm H=2.4mm R1/H=0.54 このようにして作製された本特許実施例の打ち
抜き穴を設けられた缶用ブランクを、通常の製缶
機を用いて缶高さが136.5mmになるように筒状に
成形し、前記の巻締め加工を受けない缶胴部分に
設けられた舌状部分と他端のスリツト加工された
区画内の部分とを互いに反対方向に折り曲げ加工
した後にこれを咬み合わせて圧着し、これらの巻
締め加工を受けない部分及び巻締め加工を受ける
部分の両方を含む接合部全体をガスバーナーによ
つて予熱した後に溶融した全錫ハンダを浸透さ
せ、しかる後冷却して缶胴を作製した。 次いで通常用いられている方法でこの缶胴にフ
ランジ加工を施した後、底蓋としてアルミ塗装板
を打ち抜き成形しSBR系ウオーターベースコン
パウンドを塗布乾燥して得られた通常の202径ア
ルミ蓋を、通常の方法によつてこの缶胴の一端に
二重巻締して実施例2の空缶製品とした。 比較例 2 前記実施例2と全く同じ方法によつて厚さ0.23
mmのブリキ鋼板より両端部に舌状部分及びスリツ
ト部分を持つ大略136.5mm×170.0mmの缶用ブラン
クを作製した。 この缶用ブランクの巻締め加工をされる部分に
於て缶外面側接合部となるべき面を有する端部
(通称インサイド)に於て、ブランクの角を缶の
高さ方向に沿つて1.2mm、円周方向に沿つて3.5mm
の点を結ぶ斜めの線で切り落として通常設けられ
ているスリバーノツチを設けた。一方この缶用ブ
ランクの缶外面側接合部となるべき面を有する端
部にも実施例2と同様に通常用いられている形式
のノツチを設けることとし、缶の高さ方向に沿つ
て1.2mm、円周方向に沿つてブランクの外形から
測つて5.1mmの点を結ぶ斜めの線で角切りを行つ
た。 このスリバーノツチを設けたブランクを実施例
2と同様な通常使用されている製缶機によつて成
形ハンダ付けして缶胴を作製し、更に実施例2と
同様なフランジ加工を施した後、これもまた実施
例2と同じ202径アルミ蓋を一端に二重巻締して
比較例2の空缶製品とした。 実験1 ブチルセロソルブ100c.c.に対し染料メチルバイ
オレツト0.5gを溶融した染色液を作製した。 前記の試料、実施例1、比較例1を各20缶用意
し、その缶内にこの染色液を注ぎこんだ後、空缶
の未だ蓋の巻締められていない缶端に、内外面に
エポキシユリア系塗料を塗装焼き付けした電解ク
ロム酸処理鋼板から通常の蓋打ち抜き機で打ち抜
き成形し、SBR系シーリングコンパウンドを塗
布して得られた200径のTFS蓋を通常の巻締機で
二重巻締めして試験缶を作製した。 更にまた前記の試料、実施例2、比較例2を各
20缶用意し、その缶内にこの染色液を注ぎこんだ
後、空缶の未だ蓋の巻締められていない缶端に、
内外面にエポキシフエノール系塗料を塗装焼き付
けしたブリキ板から通常の蓋打ち抜き機で打ち抜
き成形し、SBR系シーリングコンパウンドを塗
布して得られた202径のブリキ蓋を通常の巻締機
で二重巻締めして試験缶を作製した。 このようにして作製された両端に蓋を二重巻締
めし、中に染色液を詰められた試験缶の缶胴に通
常の電動ドリルを使用して直径6mmのをあけた。
内容品がこぼれぬよう注意しつつこの孔に外径6
mmの銅パイプを挿入した後、これをエポキシ系接
着剤で固定して加圧口とした。 ハンドルを動かしてピストンを往復運動させ所
定の水圧を得ることが出来る市販の加圧試験器を
用意し、この試験器のピストンシリンダー内部に
も前記染色液を満たした。次に試験缶の加圧口と
加圧試験器の吐出口とをナイロン製のチユーブで
結び、配管を完了した。 加圧試験器のハンドルを動かして試験缶内部に
8.5×105Paの圧力を加え、30分間保持した後常圧
に戻した。配管を取り去つた後に通常の方法によ
つて開缶して内容の染色液を流し去り、しかる後
にこの缶を50℃の恒温室中にて24時間乾燥させ
た。 巻締め加工された重ね合わせ接合部の部分を糸
鋸によつて切り出し、更に歯科技工師用の電動ヤ
スリを用いてこの部分を丹念に顕微鏡下で解体し
てゆき、二重巻締めされた接合部分の割れを染色
液の浸透度合によつて観察した。 実験1の結果 試験缶の数量は各20缶であるが、蓋は缶胴の両
端に巻締められており、かつ実施例で述べた如く
本特許で特徴とする打ち抜き穴の加工は両端とも
に施されている為、結果は次の表に示される如く
となつた。
(Field of Application to which the Invention Pertains) The present invention relates to a seamed jointed can and a method for manufacturing the same, and more specifically, the present invention relates to a seamed jointed can and a method for manufacturing the same, and more particularly, the present invention relates to a seamed can which effectively suppresses leakage due to defects called lap cracks in the seamed part, and also improves can manufacturing workability. This invention relates to a markedly improved seamed can and its manufacturing method. (Prior art) Conventionally, when manufacturing cans, a can body with open ends was covered with a can end, and double seaming was performed between the can body flange and the periphery of the can lid. conduct.
As a can body member, a material in which can raw materials (blanks) are joined together on the sides with a bonding agent such as a resin adhesive or solder is widely used. In the double-sealed part between the can body and can lid, the flanged can body end is bent approximately 180 degrees as a whole, and the can is wrapped around this bent can body end. The area around the lid is tightened. At the seamed end of the can body, the two pieces of material naturally overlap at the overlapping seam, and during the seaming process, the material on the inside of the seam of the two joined pieces is axially While receiving a strong tensile force, the material outside the seam receives a compressive force in the axial direction, and a tensile shearing force between the two materials in the circumferential direction. The bonding agent present between the seams is thus subjected to extremely large shearing forces both in the axial direction of the container and in the same direction, causing micro-destructive defects called lap cracks at the joints, which cause leakage over long periods of time. To prevent this, U.S. Patent No. 2,120,038 proposes providing a V-shaped notch that enters the seam from the edge at the overlapping seam of the can body and the can lid. Also, JP-A-55-
55935 proposes applying a similar cutout to an adhesive can. (Problems to be Solved by the Invention) Although the above-mentioned means are effective in alleviating the shearing force applied to the joint portion of the lap seam and preventing so-called lap cracking, it has been recognized that the following drawbacks occur. It will be done. That is, the notch entering the lap seam from the edge creates a discontinuity in the edge, which causes the blanks to engage with each other, often making smooth conveyance and handling of the blanks difficult. Further, it is often difficult to smoothly and efficiently overlap and join the opening side edge portions separated by the notch. Furthermore, since the edges are discontinuous, it is difficult to accurately align the overlapping joint portion on the opening side with respect to the notch portion with the overlapping joint portion on the center side. Furthermore, when manufacturing adhesive cans, both ends of the can material to be joined are heated by high-frequency induction to soften or melt the adhesive layer, and then both ends are overlapped and bumped while cooling. However, when performing high-frequency induction heating, if the above-mentioned notch exists, overcurrent is likely to be induced at the end on the opening side of the notch, causing excessive heating in this part and making it impossible to perform it properly. This is a fatal drawback in industrial production. SUMMARY OF THE INVENTION Accordingly, the technical object of the present invention is to provide a seamed and joined can which prevents lap cracking in the seamed portion and eliminates the above-mentioned drawbacks, and a method for manufacturing the same. Other technical objects of the present invention are that the integrity of the seam joint is excellent, that the seam can be formed easily and with good workability, and that the occurrence of lap cracks can be effectively prevented during seaming. An object of the present invention is to provide a can with a new structure for preventing seaming and joining, and a method for manufacturing the same. (Means for Solving the Problems) According to the present invention, a can body in which can materials are stacked and joined at the sides through a bonding agent, a can lid, and a seaming portion formed between the two, A punched hole is placed in one of the edge parts of the can material to be overlapped and joined, and a punched hole is located within the width of the overlapped joint, and a punched hole is located within the width of the overlapped joint, and a punched hole is located within the width of the overlapped joint, and a punched hole is formed in one of the edge parts of the can material to be overlapped and joined. R 2 /W = 0.05 to 0.45 ω 1 ≧0.3mm ω 2 ≧0.5mm In the formula, R 2 is the circumferential radius of the punched hole, W is the circumferential width direction of the overlapping joint, ω 1 represents the bonding width on the outer edge side outward from the hole, and ω2 represents the bonding width on the inner edge side outward from the hole. A seamed and joined can is provided. According to the present invention, there is also a winding method comprising manufacturing a can body by joining the sides of the raw materials for a can using a bonding agent, and then seaming between the open end of the can body and the can lid. In the method for manufacturing cans, a punched hole is placed in one of the edge parts of the can material to be overlapped and joined, and a hole is punched out within the width of the area where the overlap is to be joined. and the formula R 2 /W = 0.05 to 0.45 ω 1 ≧0.3 mm ω 2 ≧0.5 mm where R 2 is the circumferential radius of the punched hole, W is the circumferential width direction of the overlapping joint, ω 1 represents a bonding width on the outer edge side outward from the hole, and ω 2 represents a bonding width on the inner edge side outward from the hole, respectively; and applying a thermal adhesive to at least one of the edge portions. The process is performed in this order or in the reverse order, and both end portions to be joined are heated by high frequency induction, and the heated end portions are overlapped and pressurized while cooling to form a side seam. A method for manufacturing a seamed and joined can is provided. (Function) In FIGS. 1 and 2 showing the main parts of the jointed can body of the present invention in an enlarged manner, both side ends 2 of the can material 1 are shown.
a and 2b are overlapped and bonded via adhesives 3 and 4 to form an overlapping seam 5. In this specific example, a layer of thermal adhesive 3 made of thermoplastic resin is adhered to the inner surface of the end 2a that is on the outside of the seam, and a layer of thermal adhesive 3 made of thermoplastic resin is also attached to the inner surface of the end 2b that is on the inside of the seam. A layer of thermal adhesive 4 made of plastic resin is bonded so as to wrap around the edge 6. By melting and integrating these thermal adhesives 3 and 4, side overlap bonding is performed. According to the present invention, both ends 2 to be overlapped and joined
a, 2b, in this example, the overlapping joint part 5
A punched hole 7 is provided in a portion that is located within the width (W) of and includes a part of the bent portion (described later) of the seaming portion. The punched hole 7 is, as the name suggests, a punched hole, and the feature of the present invention is that the edge 8 of the end portion 2a is completely continuous even at the hole 7 portion. In addition, since this punched hole 7 is provided within the width of the joint portion 5, there is an appropriate joint width w 1 and punched hole 7 between this punched hole 7 and the seam outer edge 8.
and the seam inner edge 9 is an appropriate joint width w 2
is ensured, and leakage through the punched holes 7 is prevented. In the present invention, the edge 8 on the outside of the seam
The continuity is maintained without any notches,
Since the part on the opening side of the punched hole 7 is always integrated with the part below it, the consistency of the seam bonding agent, that is, the consistency with the inner circumferential surface of the can body can be improved. In addition, when transporting and handling can materials during the can manufacturing process, all edges are continuous and there are no notches, so can materials may engage (get caught) with each other. The inconvenience is resolved,
These operations as well as the operation of overlapping and joining both end portions 2a and 2b can be performed extremely smoothly and with good workability. In the part of the joint part 5 where the punched hole 7 is provided, the adhesive 4 is exposed to the outside, that is, one surface thereof is tightly adhered to and restrained by the inner end part 2b; The other surface, that is, the outer surface, is an unrestricted free surface. When sealing the open end of the can body with the can lid, the open end is first bent outward by approximately 90 degrees (toward the front in Figure 1) to form a flange, and then the can lid is sealed. Then, it is further bent approximately 90 degrees downward. As a result of these processes, compressive stress is applied to the outer end 2a in the axial direction as shown by arrow A, as shown in FIG. 3, while compressive stress is applied to the inner end 2b as shown by dotted arrow B. Tensile stress acts in the axial direction. Furthermore, an arrow C is attached to both ends 2a and 2b.
As shown in , tensile stress in the circumferential direction acts. It will be appreciated that correspondingly to these stresses, significantly large shear stresses are generated in the adhesive layers 3, 4. In the present invention, since one surface of the adhesive layer 4 is an unrestricted free surface in the punched hole 7 area, no shear stress is generated in the adhesive layer in this area. First, the circumferential edge 10 of the punched hole 7 follows the stress in all directions and undergoes appropriate deformation, which acts to avoid excessive shear stress from occurring in the adhesive layers 3 and 4. . For example, in response to compressive stress in the axial direction, it will deform into an elliptical shape compressed in the axial direction, and in response to tensile stress in the circumferential direction, it will deform into an elliptical shape expanded in the circumferential direction. It causes deformation. In this way, the punched hole in the present invention easily deforms in response to stress in any direction.
It will be understood that it has an excellent effect of relieving the shear stress of the adhesive layer. Furthermore, since the punched hole 7 has a smooth circumferential edge 10, stress concentration does not occur in a specific part during flanging and seaming, and the strength of the seam to be seamed is relatively increased. One of the advantages is that it is possible to maintain the joints and avoid troubles such as seam breakage during processing. In the present invention, it is clear from the following theoretical considerations that lap cracking is effectively prevented by providing a hole within the width of the overlapping joint and in a portion that includes the bent portion of the seamed portion. Let's become. The area where internal lap cracking of overlap joints becomes a problem is the joint at the tip of the bend, and if the area of this joint is Smm 2 and the yield shear stress of the adhesive is τaKg/mm 2 , then The strength at which this joint part cracks is expressed by the formula Fa (Kg) = Sτa (1). On the other hand, the yield strength of the can material is σ Y Kg/
mm 2 , its thickness is tmm, and the width of the bent portion is ωmm, the strength at which the can material yields is expressed by the formula Fb (Kg) = σ Y・t・ω (2). Now, by comparing the strengths of the two, if the formula Fa<Fb...(3) holds, then the seaming operation can be performed without deforming the can material and destroying the joint. Become. In the present invention, by providing the punched hole 7 in the bent part, the width ω of the bent part becomes the formula ω=ω 12 <W (4), which allows the bent part to be deformed and joined. It can be seen that damage to the parts can be prevented. When the hole 7 is provided at the outer end 2a, the compressive force causes deformation to increase the thickness, and when the hole 7 is provided at the inner end 2b, the tensile force causes the thickness to decrease. (Preferred Embodiment of the Invention) Structure of Sealed Part In the seamed and joined can of the present invention, the shape of the hole 7 provided in the can material may be any shape as long as the punched edge is smooth, such as a circle or an ellipse. , ellipse, etc. are most suitable, but polygonal shapes with rounded corners, such as triangles, rectangles, rhombuses, squares, pentagons, hexagons, etc., with rounded corners may also be used. The radius in the axial direction of hole 7 is R 1 and the radius in the circumferential direction is R 2
Then, the relationship between each dimension is W=ω 1 +2R 22 (5). The diameter R 2 in the circumferential direction of the through hole 7, which is clear from the above formulas (1) to (5), is such that the yield deformation of the bent portion occurs prior to adhesive failure, and that leakage from the joint is prevented. The integrity of the seams shall be maintained. Generally, R 2 /W is between 0.05 and 0.45, particularly between 0.10 and
By setting the ratio to 0.35, both of the above requirements can be satisfied. That is, this ratio R 2 /
If W is smaller than the above range, there is no significant effect on preventing lap cracking, while if it is larger than the above range, there is a tendency that leakage from the seams and integrity of the seams cannot be achieved. Seam width W is generally 1.0 to 10.0mm,
In particular, it is best to set it in the range of 2.5 to 2.5 mm, and the outer edge side joint width ω 1 should be 0.3 mm or more in terms of joint integrity.
In particular, it should be in the range of 0.5 mm or more, and the inner edge side joint width ω 2 is 0.5 mm in order to prevent leakage from the joint.
It should be in the range of 1.0 mm or more, especially 1.0 mm or more. The axial diameter R 1 of the hole 7 is determined so that the yield shear strength Fa of the bonding agent in the area from the bent part to the tip does not decrease too much, and the deformation of the hole 7 during tightening is suppressed.
shall be determined as permissible within That is, when H is the distance from the bent portion to the tip, the ratio R 1 /H is generally in the range of 0.15 to 0.85, particularly preferably in the range of 0.20 to 0.60. If this ratio R 1 /H is smaller than the above range, it will be difficult to absorb the deformation that occurs during seaming within the hole 7, which will easily lead to lap cracking, and if this ratio R 1 /H is smaller than the above range, If it is too large, the yield shear strength Fa of the joint decreases, and as a result, lap cracking is likely to occur. Hole 7
The ratio of R 1 /R 2 is between 0.1 and 5, especially between 0.3 and 2.
, and most preferably 1. The joint structure can be any arbitrary joint structure as long as the seamed portion is a lap joint.
For example, it goes without saying that the entire side seam of the can body may be a lap joint, but there may also be cases where only the seam is a lap joint and the other parts are lock joints, or the seam is a lap joint and other parts are lap joints. This also includes the case where the portion of ``wrap'' and ``lock'' alternate. FIGS. 4 and 5 show cross sections of the seam and other parts of the seamed and joined can of the present invention. This can consists of a can body member 11 and a can lid 12,
A double seam portion 13 is formed between the two. In this double-sealed portion 13, the can body member 11 has an extended hook (sealed flange portion) 14, and this can body hook 14 is bent approximately 180 degrees downward from the bent portion 15. , its extreme end 1
6 is located at the bottom. On the other hand, the can lid 12 has a peripheral part 17 which wraps around the hook 14 of the can body member 11, that is, between the outer annular part 18 and the inner hook 19. Sealing is being performed because the hook 14 is being pinched. In the peripheral part 17 of the can lid, the connecting part between the outer peripheral annular part 18 and the can lid hook 19 on the inner peripheral side or the downwardly curved part 20 is located below the lowermost end part 16 of the can body member 11, On the other hand, the tip 21 of the hook 19 on the inner peripheral side is located below the bent portion 15 between the can body member 11 and the can body hook 14. A lower clearance portion (lower gap portion) 22 is provided between the lower curved portion 20 of the can lid and the lowermost end portion 16 of the can body member.
There is an upper clearance portion (upper gap portion) 23 between the tip 21 of the can lid and the bent portion 15 of the can body member. The sealing rubber composition layer 24 almost completely fills the lower clearance portion 22 and also fills the upper clearance portion 23 . FIG. 4 shows an enlarged view of the double side seam in the side seam of the can body member 11. In the can body hook 14 corresponding to this side seam, the two can body metal material ends 2a and 2b are Although it has a structure in which they are joined via a thermal adhesive 3, the above-mentioned bent portion 1
5, it will be clear that the presence of the hole 7 allows the deformation of one end 2a. Can Material In the present invention, any can material can be used as the can material, such as black steel, tin-plated steel plate,
Nickel plated steel plate, tin-nickel plated steel plate,
Various steel plates such as aluminum plated steel plates, stain-free steel, chromium oxide chemically treated steel plates, and light metal plates such as aluminum are used. Among such metal materials, it is desirable to use stain-free steel (TFS) because the present invention is particularly advantageously applied to adhesive cans. In the present invention, any stain-free steel (TFS) material can be used. TFS
The material is known to consist of a steel plate substrate such as a rolled steel plate and a chromium-containing coating layer selected from the group consisting of metallic chromium, nonmetallic chromium, and combinations thereof applied to the surface of the steel plate substrate. This material is preferably used for the purpose of the present invention. The chromium-containing coating layer has a content of 0.06 to 3.6mg/chromium equivalent.
dm 2 , particularly those with a film thickness in the range of 0.1 to 2.5 mg/dm 2 are generally easily available and suitable for the present invention, but of course there is no need to be limited to this, and aluminum plating Steel plates, electrogalvanized steel plates, cooling steel plates, etc. can also be used depending on the purpose. In addition, the chromium-containing coating layer has particularly excellent corrosion resistance, consisting of a metallic chromium layer on the steel plate substrate and a non-metallic chromium layer (chromium oxide and/or hydrated chromium oxide layer) on the metallic chromium layer. , and the metallic chromium layer is 0.05 to 3.0 mg/dm 2 , especially 0.1 to 2.0
mg/dm 2 , and the nonmetallic chromium layer has a thickness of 0.01 to 0.6 mg/dm 2 , especially 0.05 to 0.6 mg/dm 2 in terms of chromium.
TFS materials having a film thickness in the range of 0.4 mg/dm 2 are known, and these TFS materials can also be suitably used for the purpose of the present invention. The can material to be used will generally have a thickness of 0.12 to 0.40 mm, particularly 0.14 to 0.36 mm, although it will vary depending on the purpose of the seamed can. If the thickness of the base material is lower than the above range, changes may occur during the production or storage of canned goods, while if it exceeds the above range, processing such as double seaming tends to become difficult. . Paint A paint is applied to the above metal material for cans to protect it. Generally speaking, such a protective coating film contains polar groups such as hydroxyl groups, ether groups, carboxyl groups, and epoxy groups at a concentration of 10 to 2000 mmol/100 g resin, particularly 20 to 1500 mmol/100 g resin. A thermoplastic resin or a thermosetting resin containing the resin is used. Suitable examples include vinyl chloride-vinyl acetate copolymer paints, partially saponified vinyl chloride-vinyl acetate copolymer paints,
Vinyl paints such as vinyl chloride-vinyl acetate-acrylic acid copolymer paints; organosol paints made by dispersing vinyl chloride resin in the above-mentioned vinyl paints;
Epoxy resin-modified vinyl paint; thermoplastic polyester paint; acrylic paint; epoxy-modified acrylic paint; urethane-modified acrylic paint; epoxy-phenol paint, epoxy-amino resin paint, alkyd paint, thermosetting polyester It is a paint consisting of one or more types of paints. When using an adhesive, especially a nylon adhesive, it is desirable that the protective coating also serves as an adhesive primer, and such adhesive primer and protective coating may include epoxy resins, phenols containing polycyclic phenols, Paints containing aldehyde resins are preferably used. As the epoxy resin component a, all those conventionally used as epoxy resin components in so-called phenol-epoxy paints can be used without restriction, but representative ones include epihalohydrin and bisphenol A [2 ,2′-bis(4-
Examples include epoxy resins having an average molecular weight of 800 to 5,500, particularly preferably 1,400 to 5,500, produced by condensation with [hydroxyphenyl)propane],
This product is suitably used for the above-mentioned purpose of the present invention. As the phenol/aldehyde resin component b used in combination with the epoxy resin component a, any resin can be used as long as it contains a polycyclic phenol in its resin skeleton. As used herein, polycyclic phenol refers to phenols having a plurality of rings to which phenolic hydroxyl groups are bonded, and representative examples of such polycyclic phenols include 2,2'-bis(4-hydroxy phenyl)propane (bisphenol A), 2,2'-bis(4-hydroxyphenyl)butane (bisphenol B), 1,1'-bis(4-hydroxyphenyl)ethane, bis(4-hydroxyphenyl) enyl)methane (bisphenol F), 4-hydroxyphenyl ether, P-(4-hydroxy)phenol, etc., but bisphenol A is most preferred. These polycyclic phenols, alone or in combination with other phenols, are subjected to a condensation reaction with formaldehyde to form a resol type phenol aldehyde resin. Other phenols include
All monovalent phenols conventionally used in the production of this type of resin can be used, but difunctional phenols;
For example, o-cresol, p-cresol, p-
Most preferred is one or a combination of two or more difunctional phenols such as tert-butylphenol, p-ethylphenol, 2,3-xylenol, and 2,5-xylenol. Of course, in addition to the above bifunctional phenols, trifunctional phenols such as phenol (coals), m-cresol, n-ethylphenol, 3,5-xylenol, and m-methoxyphenol; 2,4-xylenol, Monofunctional phenols such as 2,6-xylenol; p-tert
-aminophenol, p-nonylphenol, p
Other difunctional phenols such as -phenylphenol, p-cyclohexylphenol, alone or in combination with the above difunctionalities, can also be used in the preparation of phenolic aldehyde resins. The amount of polycyclic phenol in the phenolaldehyde resin may be at least 10% by weight or more, particularly 30% by weight or more of the total phenol components, but if the polycyclic phenol (a) and the monovalent phenol (b) are B = 97:2 to 65:35 It is especially advantageous in terms of retort resistance to combine at a weight ratio of 95:5 to 75:25. The resol type phenol aldehyde resin used in the present invention is obtained by reacting the above-mentioned phenol and aldehyde in the presence of a basic catalyst. There is no particular restriction on the amount of aldehyde to phenol, and it can be used in the ratio conventionally used in the production of resol type resins, for example, a ratio of 1 mol or more, particularly 1.5 to 3.0 mol, per 1 mol of phenol. aldehydes can be suitably used, but there is no particular disadvantage in using less than 1 mole of aldehyde. It is generally desirable to carry out the condensation in a suitable reaction medium, especially an aqueous medium. As the basic catalyst, any of the basic catalysts conventionally used in the production of resol type resins can be used. The aforementioned epoxy resin component a and phenol aldehyde resin component b can be used in combination in any ratio within the range conventionally used in these various paints, and are not particularly limited. From the viewpoint of retort resistance of the bonded part, it is preferable to use a paint that combines the two in a weight ratio of (a):(b)=95:5 to 50:50, particularly 90:10 to 60:40. Bonding agent In the present invention, any bonding agent conventionally used for side overlap bonding, such as solder, thermoplastic or thermosetting resin adhesive, etc., can be used as the bonding agent. (hot melt type)
It is most preferred to use a thermoplastic resin adhesive. Suitable examples of hot melt adhesives include, but are not limited to, polyamides, polyesters, ionomers (ionically crosslinked olefin copolymers), acid-modified polyolefins,
These include vinyl ester copolymers and copolycarbonates. An example of a suitable polyamide adhesive is 100 carbon atoms.
At least one type of nylon having amide groups in the range of 4 to 12, more specifically, poly-ω-aminodecanoic acid, poly-ω-aminoundecanoic acid, poly-ω-aminoundecanoic acid, dodecanoic acid,
Poly-ω-aminotridecanoic acid, polydecamethylene sebamide, polydecamethylene dodecamide, polydecamethylene tridecamide, polydecamethylene adipamide, polydodecamethylene sebamide, polydodecamethylene dodecamide, poly Dodecamethylene tridecamide, polytridecamethylene adipamide, polytridecamethylene sebamide, polytridecamethylene dodecamide, polytridecamethylene tridecamide, polyhexamethylene azelamide,
Examples include polydecamethylene azeramide, polydodecamethylene azeramide, polytridecamethylene azeramide, and the like. These polyamides can be used in the form of a blend of two or more types, a copolyamide consisting of a combination of each monomer, or a combination of these in the form of a blend. The polyamide used may be modified with a different component such as a dimer acid in a small amount. Suitable examples of polyesters which can be used are high molecular weight copolyesters, in particular polymeric copolyesters containing terephthalic acid units and other dibasic acid units as the diol component and tetramethylene glycol units as the diol component; and/or a high molecular weight copolyester containing benzene dicarboxylic acid units as a dibasic acid component and tetramethylene glycol units and other diol units as a diol component, specifically, polytetramethylene terephthalate. /isophthalate, polytetramethylene terephthalate/isophthalate/adipate, polytetramethylene terephthalate/adipate, polytetramethylene terephthalate/sebatate, polytetramethylene/ethylene terephthalate, polytetramethylene/polyoxyethylene terephthalate, poly Examples include tetramethylene/polyoxyethylene terephthalate/isophthalate. In addition to being used alone, these copolyesters are also used as a blend of multiple types, and are also used in combination with polyethylene, polypropylene, ionomers,
A part of polyolefin resin such as ethylene vinyl acetate copolymer and modified polypropylene may be blended and used. Ionomers include resins obtained by neutralizing copolymers of olefins and unsaturated carboxylic acids or other vinyl monomers with alkali metals, alkaline earth metals, or organic bases, such as those commercially available from DuPont in the United States. Surlyn types are used. Furthermore, polyolefins such as polyethylene, polypropylene, and crystalline ethylene-propylene copolymers are added with ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and ethylenically unsaturated carboxylic acids such as maleic anhydride and itaconic anhydride. An acid-modified polyolefin obtained by graft polymerization with a saturated carboxylic acid may be used. Furthermore, as vinyl ester copolymers, copolymers of vinyl esters and olefins or other vinyl monomers, or partially saponified products thereof, such as ethylene/vinyl acetate copolymers, partially saponified ethylene-vinyl acetate copolymers, etc. , vinyl chloride/vinyl acetate copolymers may be used. The thermoplastic resin used in the present invention should have a sufficiently high molecular weight, and it is generally desirable to have a number average molecular weight of 6,000 or more, particularly 9,000 to 500,000. In addition, from the viewpoint of heat-fusibility and ease of heat-bonding operation, this resin is suitable for temperatures ranging from 80 to 280 degrees Celsius, especially from 90 to 240 degrees Celsius.
It is desirable to have a softening point (melting point) of °C. Can Making Operation The manufacturing operation can be carried out by any method known per se, except for providing the holes 7 described above. When making cans, the paint described above is first applied to a metal material and baked to produce a coated metal material. The thickness of the coating film is generally 0.5 to 20μm, especially 1 to 20μm.
It is preferable that it be in the range of 10 μm. In Figure 6-A, which shows the order of processing from this painted metal material, an adhesive layer 4 is applied to the end 2b of the painted metal material 1 that should be inside the seam so as to wrap around the cut edge, and then An adhesive layer 3 is also applied to the surface to be overlapped with the end portion 2a which is to be the outer side. The thickness of the adhesive layers 3 and 4 is generally between 10 and 300 μm, particularly between 15 and 150 μm.
The width (W) of the adhesive layers 3 and 4 is preferably larger than the width (W) of the overlapping seam. Adhesive application is facilitated by applying a preformed adhesive tape to the heated edges of the painted metal stock and thermally bonding. The painted metal material coated with this adhesive is cut into a size that corresponds to the height of the can body to create can material (blank).
shall be. Next, in FIG. 6-B, a hole 7 is formed by punching in the end portion 2a on which the adhesive layer 3 is applied. The position where the hole 7 is formed is the position already described. It is preferable to provide the hole 7 at the end 2a of the material to be joined, and to provide sliver notches 30 at the upper and lower edges of this end. This sliver notch 30 serves to prevent the hook corresponding to the overlapping joint from becoming too thick in the seaming part, and also to prevent misalignment between the ends. It will be obvious to those skilled in the art that the holes 7 can be formed by punching prior to applying the adhesive layer 3. Next, the can material shown in FIG. 6-B is rolled up, both ends with the adhesive layer in a molten state are overlapped, and bumped while cooling to create the can body shown in FIG. 6-C. After forming the can body in this way and performing neck-in processing in one or more stages as necessary,
Flange processing is performed, and finally the can lid is sealed with a can lid coated with a sealing compound to form the final can. For the can lid, the above-mentioned can material is press-molded, and if necessary, easy-open lid processing is performed.
As the sealing compound, a material lined with styrene-butadiene rubber latex or the like is used. (Example) The present invention will be explained with the following example. Example 1 Epoxyphenol paint was roll-coated on both sides of a large electrolytic chromic acid-treated steel plate TFS with a thickness of 0.17 mm, a length of 827 mm, and a width of 1026 mm, and baked, and then the surface of this plate that was to become the inner surface of the can was coated with a roll. When the strip is cut into strips with the width of the can body circumference described later, a width of 2.0mm on one side and 5.5mm on the other side is left from the edge along the longitudinal direction, and the other surfaces are painted with a margin and baked. Further, on the surface of this board that was to become the outside surface of the can, printing and finishing varnish were applied in the usual manner, leaving a width of 5.5 mm on one side from the edge along the longitudinal direction when the strip was cut into strips in the same manner as above. . This large board was cut to a width of 170.40 mm along the painting direction using a regular cutting machine.
mm, cut into strips with a length of 827 mm. Both ends along the length of this strip are preheated to about 270°C with a width of about 7 to 8 mm using high-frequency heating, and a tape of nylon adhesive film with a thickness of 40 μm and a width of 6 mm is attached to one end of the strip. The strip is rolled and crimped along the edge to the side that is to be the adhesive on the inside of the can, then cooled, and at the same time, the adhesive tape on the outside of the can is applied to the other end of the strip using a piece of tape with a width of 8 mm. The strip was crimped with rolls in the same manner, 5 mm on the surface that was to become the inner surface of the can, 2.5 mm on the surface that was to become the inner surface of the can, and the cut end surface of the strip was protected, and then cooled. In this case, the adhesive tape width of 2.5 mm was placed at the end of the strip where the width of the uncoated area of the top coat layer was 2.0 mm. With the adhesive tape thus applied, the strip was further cut at right angles to form a 136.52 mm x 170.40 mm can blank with adhesive tape at both ends. At the end of this can blank that has the surface that is to become the can inner side joint (commonly called the outside because it is the side that will become the outside of the can after joining), at a distance of 2.5 mm from the end surface and the can Two round holes with a diameter of 2 mm were formed using an ordinary punch and die at two locations centered at 2.4 mm from both end faces in the height direction. Further, adjacent to this round hole, a notch was formed by cutting off the corner of the can blank along a diagonal line connecting points 0.5 mm along the height direction of the can and 2.7 mm along the circumferential direction. On the other hand, we decided to provide a commonly used notch at the end of this can blank that has the surface that is to become the outer joint of the can (commonly known as the inside).
A corner cut was made along a diagonal line connecting 1.1 mm and 3.3 mm points along the circumferential direction. The dimensions of the part with the punched holes were as follows. R 1 = R 2 = 1 mm, W = 5 mm R 2 /W = 0.2 ω 1 = ω 2 = 1.5 mm H = 2.4 mm R 1 / H = 0.42. The thus produced can blank with punched holes according to the present patent example was formed into a cylindrical shape using an ordinary can making machine so that the height of the can was 136.52 mm, and adhesive tape was applied. The coated ends were heated to 250°C by high-frequency heating, and the ends were overlapped with a width of 5 mm so that the adhesive overlapped with each other, and the can bodies were crimped while cooling to produce a can body. The outer diameter of this can body is approximately 53 mm, but this can body was further processed with a neck-in process using a commonly used die, and the outer diameter of the portion where the can lid is wrapped was approximately 50.5 mm. . Next, after performing flange processing using a commonly used method, a regular 200-diameter aluminum lid obtained by punching and forming an aluminum coated plate as a bottom lid and applying and drying an SBR water base compound is processed using a regular method. The empty can product of Example 1 was then double-sealed at one end of the can body. Comparative Example 1 A can blank measuring 136.52 mm x 170.40 mm having adhesive tape on both ends was produced in exactly the same manner as in Example 1. At the end (commonly known as the outside) of this can blank that has the surface that is to become the inner side joint of the can, the corners of the blank are 1.0 mm along the height direction of the can and 4.0 mm along the circumferential direction. The usual sliver notch was created by cutting off along the diagonal line connecting the points. On the other hand, a commonly used notch is provided at the end of the can blank having the surface that is to become the can outer surface joint, as in Example 1.
1.1mm along the height direction of the can, along the circumferential direction
Corners were cut along a diagonal line connecting the 3.3 mm points. The blank provided with this sliver notch was molded and bonded using a commonly used can making machine similar to that in Example 1 to produce a can body, and was further subjected to neck-in processing and flange processing in the same manner as in Example 1. The empty can product of Comparative Example 1 was also made by double seaming the same 200 diameter aluminum lid as in Example 1 to one end. Example 2 A tin plate with a thickness of 0.23 mm was cut into a size of approximately 170 mm x 136.5 mm to form a can body blank. As will be described later, the can produced from this blank is a so-called solder can, which is manufactured by soldering the joints.
The joint part of the solder can is different from that of the so-called adhesive can using thermoplastic resin as detailed in Example 1.
Except for the part on both ends of the can body where the lid is seamed, one end of the blank is usually bent outward, while the other end is bent inward, and after the two are engaged, the engaged part is crimped. However, the structure is such that molten solder is then poured into this part to complete the joining. Due to this bending process, the shape of the blank is not a simple square, unlike in the case of so-called adhesive cans.
One end extends like a tongue, and the other end, which should engage with this tongue, is generally slitted. This shape should be described in detail in Example 2, but the details are well known to those skilled in the art and have nothing to do with the essence of this patent, so it is unnecessarily complicated. I will omit certain details. Just to be sure, even though the can body part that does not undergo the seaming process has such a complex shape, the parts at both ends of the can body where the lid is seamed, which is related to this patent, The shape is exactly the same as that of a so-called adhesive can, and conceptually the shape after being soldered by a normal can making machine is that the adhesive layer of the thermoplastic resin in the adhesive can is replaced by solder. It is safe to assume that there are layers. Note that the parts of this blank other than those to become the solder joints, both the inner and outer surfaces of the can, are roll coated with epoxyphenol paint and baked. In the part of the can blank to be seamed, at the end (commonly known as the inside) that has the surface that is to become the can outer surface joint, at a distance of 2.5 mm from the end surface and in the height direction of the can. from both end faces of
The major diameter is 2.6 mm at two locations centered around the 2.4 mm position.
An elliptical hole with a minor axis of 1.8 mm was formed using an ordinary punch and die in such a direction that the major axis was parallel to the edge of the can in the height direction. Furthermore, adjacent to this oval hole, cut the corner of the can blank along the height direction of the can.
A notch was made by cutting off a diagonal line connecting 0.5 mm and 2.8 mm points along the circumferential direction. On the other hand, in the part of the can blank to be seamed, a commonly used notch is provided at the end (commonly known as the outside) that has the surface that is to become the can inner surface joint. 1.2mm along the height direction of
5.1 measured from the outer diameter of the blank along the circumferential direction
A square cut was made using a diagonal line connecting the mm points. The dimensions of the part with the punched holes were as follows. R 1 = 1.3mm R 2 = 0.9mm W = 5mm R 2 /W = 0.18 ω 1 = 1.6mm ω 2 = 1.6mm H = 2.4mm R 1 /H = 0.54 Example of the present patent produced in this way A can blank with punched holes is formed into a cylindrical shape with a can height of 136.5 mm using an ordinary can making machine, and the can blank is formed into a cylindrical shape with a can height of 136.5 mm. The tongue-like part and the part inside the slit section at the other end are bent in opposite directions and then interlocked and crimped, and the part that is not subjected to seaming process and the part that is subject to seaming process. After preheating the entire joint including both with a gas burner, molten all-tin solder was infiltrated, and then cooled to produce a can body. Next, the can body was flanged using a commonly used method, then a bottom cover was stamped out of an aluminum coated plate, and an SBR water base compound was applied and dried to create a regular 202 diameter aluminum cover. An empty can product of Example 2 was obtained by double seaming one end of the can body using a conventional method. Comparative Example 2 A thickness of 0.23 was obtained using the same method as in Example 2.
A can blank of approximately 136.5 mm x 170.0 mm with tongue-shaped portions and slit portions at both ends was prepared from a tin plate steel plate of 136.5 mm x 170.0 mm. In the part of this can blank to be seamed, at the end (commonly known as the inside) that has the surface that is to become the outer joint of the can, the corner of the blank is 1.2mm along the height direction of the can. , 3.5mm along the circumferential direction
The usual sliver notch was created by cutting off along the diagonal line connecting the points. On the other hand, the end of this can blank having the surface that is to become the can outer surface side joint part is also provided with a commonly used notch as in Example 2, with a notch of 1.2 mm along the height direction of the can. , a diagonal cut was made along the circumferential direction along a diagonal line connecting points 5.1 mm apart from the outer diameter of the blank. The blank provided with this sliver notch was molded and soldered using a commonly used can making machine similar to that in Example 2 to produce a can body, which was then subjected to flange processing similar to that in Example 2. An empty can product of Comparative Example 2 was also obtained by double-sealing the same 202 diameter aluminum lid as in Example 2 to one end. Experiment 1 A staining solution was prepared by melting 0.5 g of dye methyl violet in 100 c.c. of butyl cellosolve. After preparing 20 cans each of the above sample, Example 1, and Comparative Example 1 and pouring this dye into the cans, apply epoxy to the inner and outer surfaces of the empty cans at the ends of the empty cans whose lids have not yet been tightened. A 200-diameter TFS lid is punched out using a regular lid punching machine from an electrolytic chromic acid treated steel plate that has been baked with a urea paint and then coated with an SBR sealing compound.The resulting 200-diameter TFS lid is double-sealed using a regular seaming machine. A test can was prepared. Furthermore, the above samples, Example 2, and Comparative Example 2 were each
After preparing 20 cans and pouring this dye into the cans, apply it to the end of the empty can whose lid has not yet been tightened.
A 202-diameter tin lid is punched out using a regular lid punching machine from a tin plate whose inside and outside surfaces are coated with epoxy phenol paint and baked, and an SBR sealing compound is applied.The resulting 202-diameter tin lid is double wrapped using a regular seaming machine. A test can was prepared by tightening the tube. A lid was double-sealed on both ends, and a 6 mm diameter hole was drilled into the body of the test can filled with the dye solution using an ordinary electric drill.
While being careful not to spill the contents, insert an outer diameter of 6 into this hole.
After inserting a mm copper pipe, it was fixed with epoxy adhesive to form a pressure port. A commercially available pressurized tester capable of obtaining a predetermined water pressure by moving a handle to reciprocate a piston was prepared, and the interior of the piston cylinder of this tester was also filled with the dye solution. Next, the pressurizing port of the test can and the discharge port of the pressurizing tester were connected with a nylon tube to complete the piping. Move the handle of the pressure tester to inside the test can.
A pressure of 8.5×10 5 Pa was applied, held for 30 minutes, and then returned to normal pressure. After removing the piping, the can was opened in the usual manner and the dyeing solution contained therein was washed away, and then the can was dried in a constant temperature room at 50° C. for 24 hours. The double-sealed joint is cut out using a scroll saw, and then carefully dismantled under a microscope using a dental technician's electric file to create the double-sealed joint. The cracks were observed depending on the degree of penetration of the staining solution. Results of Experiment 1 The number of test cans was 20 each, but the lid was wrapped around both ends of the can body, and as described in the example, the punched holes featured in this patent were applied to both ends. The results were as shown in the table below.

【表】 この結果から明らかなように、本発明の打ち抜
き穴を設けた重ね合わせ部は巻締められた後も全
く割れの発生がみられず、従来の缶よりも優れて
いる。 またこの試験缶を作製する過程では大きな変更
も無く通常の製缶機械を使用することが出来、生
産性においても従来の缶に対しなんら遜色が無
く、優れていることが証明された。 実験2 前記の試料、実施例1と比較例1の缶各990缶
を用意し、この缶の中に砂糖を溶解したクエン酸
水溶液と重炭酸水素ナトリウムの粉末をいれ、封
入後のガスボリユームが常温で4.0となるように
調整した。これらの内容液を注いだ後、空缶の未
だ蓋の巻締められていない缶端に、内外面にエポ
キシユリア系塗料を塗装焼き付けした電解クロム
酸処理鋼板から通常の蓋打ち抜き機で打ち抜き形
成し、SBR系シーリングコンパウンドを塗布し
て得られた200径のTFS蓋を通常の巻締機で二重
巻締めして試験缶を作製した。 これらの試験缶を50℃の恒温室中に1ケ月間保
存し、巻締められた重ね合わせ接合部を通過し
て、缶外面に内容物の浸透があるかどうかを観察
した。 実験2の結果 過大な内圧によつて既に漏洩を生じた缶は、巻
締められた重ね合わせ接合部付近の缶外面に砂糖
を固化させることによつて判別される。1ケ月保
存後の結果は次の表の如くとなつた。
[Table] As is clear from the results, the overlapping portion provided with punched holes according to the present invention shows no cracking at all even after being tightened, and is superior to conventional cans. In addition, in the process of producing this test can, ordinary can making machinery could be used without any major changes, and the productivity was proven to be comparable and superior to conventional cans. Experiment 2 Prepare 990 cans each of the above samples, Example 1 and Comparative Example 1, put a citric acid aqueous solution containing sugar and sodium bicarbonate powder into the cans, and adjust the gas volume after filling. It was adjusted to be 4.0 at room temperature. After pouring these liquid contents, a regular lid punching machine is used to punch out an electrolytic chromic acid treated steel plate with epoxy urea paint baked on the inside and outside of the can, on the end of the empty can where the lid has not yet been tightened. A test can was prepared by double-sealing a 200-diameter TFS lid obtained by applying SBR-based sealing compound using a normal seaming machine. These test cans were stored in a constant temperature room at 50° C. for one month, and it was observed whether the contents permeated the outer surface of the can by passing through the rolled-up joint. Results of Experiment 2 Cans that have already leaked due to excessive internal pressure are identified by the solidification of sugar on the outside of the can near the seamed lap joint. The results after storage for one month were as shown in the table below.

【表】 缶の密封能は蓋に塗布されたシーリングコンパ
ウンドによる処が大きく、通常の条件下ではそれ
は充分なものであるといえる。しかしながらこの
実験の如く苛酷な条件下に於ては更に高度な差が
顕れることとなつてくることもまた事実である。
この結果から明らかなように、本発明の巻締接合
缶は巻締められた接合部の密封能が従来の缶より
もさらに優れている。
[Table] The sealing ability of a can is largely determined by the sealing compound applied to the lid, which can be said to be sufficient under normal conditions. However, it is also true that under severe conditions such as in this experiment, even greater differences become apparent.
As is clear from these results, the seamed and joined can of the present invention has an even better sealing ability at the seamed joint than the conventional can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従う接合缶体の一具体例を
示す部分斜面図。第2図は、本発明に従う重ね合
せ接合部の部分断面図。第3図は、缶用素材及び
接着剤層に作用する応力状態を説明するための、
部分斜面図と接合部横断面の拡大図。第4図及び
第5図は本発明に従う接合缶における継目部分及
び継目以外の部分の二重巻締の断面図。第6−A
図、第6−B図、第6−C図は本発明の加工順序
を示す工程図。 引照数字1は缶用素材、2a,2bは缶胴端
部、3,4は接着剤層、5は重ね合せ接合部、7
は打抜き孔、9は内側エツジ、10は周状エツ
ジ、11は缶胴部材、12は缶蓋、13は二重巻
締部、14は缶胴フツク、19は缶蓋フツク、2
2はローワークリアランス部、23はアツパーク
リアランス部、24は密封用ゴム組成物を夫々示
す。
FIG. 1 is a partial perspective view showing a specific example of a joined can body according to the present invention. FIG. 2 is a partial cross-sectional view of a lap joint according to the invention. Figure 3 is for explaining the stress state acting on the can material and the adhesive layer.
Partial slope view and enlarged cross-sectional view of the joint. FIG. 4 and FIG. 5 are cross-sectional views of double seaming of a joint portion and a portion other than the joint in a joined can according to the present invention. 6th-A
6-B and 6-C are process diagrams showing the processing order of the present invention. Reference number 1 is the can material, 2a and 2b are the ends of the can body, 3 and 4 are the adhesive layers, 5 is the overlapping joint, and 7
1 is a punched hole, 9 is an inner edge, 10 is a circumferential edge, 11 is a can body member, 12 is a can lid, 13 is a double seam portion, 14 is a can body hook, 19 is a can lid hook, 2
2 is a lower clearance part, 23 is an upper clearance part, and 24 is a sealing rubber composition.

Claims (1)

【特許請求の範囲】 1 缶用素材を接合剤を介して側部重ね合せ接合
した缶胴と、缶蓋と、両者の間に形成された巻締
部とから成る巻締接合缶において、 缶用素材の重ね合せ接合されるべき端縁部分の
何れか一方に、打抜き孔を、重ね合せ接合部の巾
内に位置し、巻締部における折れ曲り部の少なく
とも一部を含み且つ式 R2/W=0.05〜0.45 ω1≧0.3mm ω2≧0.5mm 式中、R2は打抜き孔の周方向半径、Wは重ね
合せ接合部の周方向巾、ω1は孔より外方の外側
エツジ側接合巾、ω2は孔より外方の内側エツジ
側接合巾を夫々表わす、 を満足するように設け、前記打抜き孔を接合剤の
剪断応力緩和機構としたことを特徴とする巻締接
合缶。 2 接合剤が熱可塑性樹脂から成る熱接着剤であ
る特許請求の範囲第1項記載の巻締接合缶。 3 打抜き孔と継目内側エツジ及び継目外側エツ
ジとの間に十分な接合部が確保される特許請求の
範囲第1項記載の巻締接合缶。 4 缶用素材を接合剤を介して側部重ね合せ接合
して缶胴を製造し、次いで缶胴開口端部と缶蓋と
の間で巻締を行うことから成る巻締接合缶の製法
において、 缶用素材の重ね合せ接合されるべき端縁部分の
何れか一方に、打抜き孔を、重ね合せ接合予定部
の巾内に位置し、巻締部における折れ曲り予定部
の少なくとも一部を含み且つ式 R2/W=0.05〜0.45 ω1≧0.3mm ω2≧0.5mm 式中、R2は打抜き孔の周方向半径、Wは重ね
合せ接合部の周方向巾、ω1は孔より外方の外側
エツジ側接合巾、ω2は孔より外方の内側エツジ
側接合巾を夫々表わす、 を満足する工程と、 前記端縁部分の少なくとも一方に熱接着剤を施
す工程とを、この順序或いは逆の順序に行い、接
合すべき両端部分を高周波誘導加熱し、 加熱された両端部分を重ね合せて冷却下に加圧
して、側部継目を形成させることを特徴とする巻
締接合缶の製法。
[Scope of Claims] 1. A seamed-jointed can comprising a can body whose sides are joined together using a bonding agent, a can lid, and a seamed part formed between the two: A punched hole is formed in one of the edge portions of the materials to be overlapped and joined, and the hole is located within the width of the overlapped joint, includes at least a part of the bent part in the seaming part, and has the formula R 2 /W=0.05~0.45 ω 1 ≧0.3mm ω 2 ≧0.5mm In the formula, R 2 is the circumferential radius of the punched hole, W is the circumferential width of the overlapping joint, and ω 1 is the outer edge outside the hole. A side joint width, ω 2 represents a joint width on the inner edge side outward from the hole, and the punched hole is provided as a shear stress relaxation mechanism for the adhesive. . 2. The seamed and bonded can according to claim 1, wherein the bonding agent is a thermal adhesive made of a thermoplastic resin. 3. The seamed and joined can according to claim 1, wherein a sufficient joint is ensured between the punched hole and the inner edge of the seam and the outer edge of the seam. 4. In a method for producing a seamed and bonded can, which comprises manufacturing a can body by overlapping and bonding the sides of can materials using a bonding agent, and then seaming between the open end of the can body and the can lid. , A punched hole is formed in one of the edge portions of the can material to be overlapped and joined, so that the hole is located within the width of the area to be overlapped and joined, and includes at least a part of the area where the seam is to be bent. And the formula R 2 /W = 0.05 to 0.45 ω 1 ≧0.3mm ω 2 ≧0.5mm In the formula, R 2 is the circumferential radius of the punched hole, W is the circumferential width of the overlapping joint, and ω 1 is the distance outside the hole. and ω2 represents the joint width on the inner edge side of the outer edge of the hole, respectively, and the step of applying thermal adhesive to at least one of the edge portions in this order. Alternatively, the process is performed in the reverse order, and both end portions to be joined are heated by high-frequency induction, and the heated end portions are overlapped and pressurized while cooling to form a side seam. Manufacturing method.
JP29194685A 1985-12-26 1985-12-26 Wound and joined can and its manufacture Granted JPS62151234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29194685A JPS62151234A (en) 1985-12-26 1985-12-26 Wound and joined can and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29194685A JPS62151234A (en) 1985-12-26 1985-12-26 Wound and joined can and its manufacture

Publications (2)

Publication Number Publication Date
JPS62151234A JPS62151234A (en) 1987-07-06
JPH0234257B2 true JPH0234257B2 (en) 1990-08-02

Family

ID=17775505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29194685A Granted JPS62151234A (en) 1985-12-26 1985-12-26 Wound and joined can and its manufacture

Country Status (1)

Country Link
JP (1) JPS62151234A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555935A (en) * 1978-10-19 1980-04-24 Toyo Seikan Kaisha Ltd Cylindrical tin body that failure of adhesive layer is inhibited

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555935A (en) * 1978-10-19 1980-04-24 Toyo Seikan Kaisha Ltd Cylindrical tin body that failure of adhesive layer is inhibited

Also Published As

Publication number Publication date
JPS62151234A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
KR940000196B1 (en) Can provided with easily openable closure and process for production thereof
JPS6347756B2 (en)
US4683263A (en) Metal vessel having circumferential side seam and adhesive primer for use in production thereof
JPS6252045A (en) Easy-open cover consisting of composite aluminum material
JPH0234257B2 (en)
KR890001587B1 (en) Atal vessel having circumferential side seam and process for production thereof
US3807332A (en) Method for producing tubular metal can body
US20130105499A1 (en) Three-Piece Can and Method of Making Same
US4556354A (en) Process for production of bonded can of key-opening type
JPS5852032A (en) Composite-structure vessel
JPH05269917A (en) Laminated metal panel for can making and primer used therein
JP3259416B2 (en) Laminated steel sheet for welding cans
JPH0534063B2 (en)
US4863063A (en) Metal vessel having circumferential side seam
JPS5946855B2 (en) Heat-resistant adhesive can and its manufacturing method
KR860001370Y1 (en) Bonded can resisting the heat
JP3271819B2 (en) Can lid and manufacturing method thereof
JPH01182248A (en) Easy-opening can lid and its manufacture
JP2903989B2 (en) Coated metal plate and manufacturing method
JPS62254939A (en) Seaming can
JPH0160310B2 (en)
JPS58127773A (en) Cemented aluminum can and preparation of same
JPH0248420B2 (en) NAIMENTOSOSETSUCHAKUKANOYOBISONOSEIHO
JPH057262B2 (en)
JPS59103840A (en) Vessel made of metal with circumferential joining section