JPH0233986B2 - SUIYOEKICHUNOZENTANSANNOTEIRYOHO - Google Patents

SUIYOEKICHUNOZENTANSANNOTEIRYOHO

Info

Publication number
JPH0233986B2
JPH0233986B2 JP458181A JP458181A JPH0233986B2 JP H0233986 B2 JPH0233986 B2 JP H0233986B2 JP 458181 A JP458181 A JP 458181A JP 458181 A JP458181 A JP 458181A JP H0233986 B2 JPH0233986 B2 JP H0233986B2
Authority
JP
Japan
Prior art keywords
ions
aqueous solution
carbon dioxide
ammonium
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP458181A
Other languages
Japanese (ja)
Other versions
JPS57119256A (en
Inventor
Tetsumasa Sakano
Koji Sakaide
Yoshikazu Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP458181A priority Critical patent/JPH0233986B2/en
Publication of JPS57119256A publication Critical patent/JPS57119256A/en
Publication of JPH0233986B2 publication Critical patent/JPH0233986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水溶液中の全炭酸を簡便に定量する方
法に関する。 従来、水溶液中の炭酸イオン、重炭酸イオン等
の全炭酸を定量分析する方法としては、かかる炭
酸イオン等を二酸化炭素まで分解して、発生した
該二酸化炭素をガスクロマトグラフイー、オルザ
ツト法、赤外線吸収法等により定量する方法があ
る。しかし、水溶液中の炭酸イオン、重炭酸イオ
ン等は一般にナトリウム、カリウム等の金属イオ
ンと共存しているために、該炭酸イオン等を二酸
化炭素まで熱分解するためには1000℃以上の高温
を必要とする。したがつて、かかる炭酸イオン、
重炭酸イオン等を二酸化炭素まで分解するために
は、一般に硫酸、リン酸等の酸を用いる方法が採
られている。しかしながら、上記の如き酸により
分解する方法においては、硫酸分解装置のような
特別な付属装置を必要とするばかりでなく、特に
機器による分析方法においては腐食が起り易くな
るため、装置の保守管理が問題になる。 他方、水溶液中の炭酸イオン、重炭酸イオン等
を水溶液の状態で定量分析する方法としては、塩
化バリウム、塩化ストロンチウムを用いる中和滴
定法および液体クロマトグラフイーがある。しか
しながら、上記の中和滴定法は、水溶液中に共存
物質が多い場合に正確な分析値を得ることができ
ない欠点があり、また液体クロマトグラフイーに
よる方法は装置が高価なばかりでなく、特に連続
分析計としては充填剤の寿命等に問題があるた
め、一般に適用できない欠点を有する。 本発明者らは、かかる従来法における欠点を解
決すべく鋭意研究を積み重ねた結果、水溶液中の
全炭酸の定量に適した簡便で迅速な定量法を見い
出した。即ち、本発明は、水溶液中の全炭酸を定
量するに際し、該水溶液を、水溶液中の炭酸イオ
ンのモル数の2倍と重炭酸イオンのモル数の合計
以上のモル数のアンモニウムイオンの存在下に、
加熱して発生する二酸化炭素を定量することを特
徴とする水溶液中の全炭酸の定量法である。 本発明の定量法によれば、水溶液中の全炭酸
が、従来の熱分解温度である1000℃以上よりも格
段に低い約100℃以上の温度で定量的に二酸化炭
素に分解できる。また、本発明は従来の酸分解法
と異なり、酸を用いないので、機器の酸による腐
食が起らないために、装置の保守管理が簡単であ
るばかりでなく、連続自動分析への適用が容易で
ある。さらには、本発明は従来の方法に比較し
て、測定時間がはるかに短かく、測定操作も簡単
であり、正確な分析値が得られる特徴をも有す
る。したがつて、本発明の定量法は、上記した特
徴を生かして製造現場の製品の工程管理へ適用さ
れることもでき、工程管理の大巾な合理化が達成
される道を開いたものである。 本発明にいう水溶液中の全炭酸とは、水溶液中
で解離している炭酸イオン、重炭酸イオンを意味
する。このような炭酸を含む水溶液は、一般に炭
酸イオン、重炭酸イオンを陰イオンとし、金属イ
オンを陽イオンとする水溶性塩が水に溶解するこ
とによつて生成する。金属イオンとしてはナトリ
ウムイオン、カリウムイオンが一般的である。な
お、本発明では、この他に水に可溶な共存イオン
例えばカルシウムイオン、マグネシウムイオン、
硫酸イオン、塩素イオンが存在していても、全炭
酸の定量には影響がない。 本発明では、炭酸イオン、重炭酸イオンを含む
水溶液にアンモニウムイオンを存在させることが
極めて重要である。即ち、アンモニウムイオンを
存在させることにより、今までナトリウムやカリ
ウムイオンと共存していた炭酸イオン、重炭酸イ
オンが、約100℃以上という驚くべき低温で分解
することになつた。このことは恐らくアンモニウ
ムイオンが水溶液中の炭酸イオン、重炭酸イオン
と室温又は加熱下に反応し、炭酸アンモニウム又
は重炭酸アンモニウムに変化したためであろう。 本発明で使用されるアンモニウムイオンは水溶
性のアンモニウム塩であれば特に限定されず、硝
酸アンモニウム、硫酸アンモニウム、塩酸アンモ
ニウム、(酢酸アンモニウム)等が用いられるが、
中でも水への溶解度の大きい硝酸アンモニウムが
好適に採用される。アンモニウムイオンの存在量
はモル比で炭酸イオンに対しては2倍以上、重炭
酸イオンに対しては等量以上あれば十分である。
しかしながら、該水溶液中に既にアンモニウムイ
オンが含まれている場合には、その量だけ少くす
ることができる。即ち、水溶液中のアンモニウム
イオンの存在量を、炭酸イオンのモル数の2倍と
重炭酸イオンのモル数の合計以上に保つことが必
要である。このように水溶液中のアンモニウムイ
オンの存在量を、炭酸イオンのモル数の2倍と重
炭酸イオンのモル数の合計以上に保つと、この溶
液を約100℃以上の温度で加熱分解するときに、
100%分解させることができる。水溶液中のアン
モニウムイオンの存在量が上記の値未満の場合に
は、炭酸イオン、重炭酸イオンが100%分解せず、
該アンモニウムイオン量に相当する二酸化炭素の
みが発生する。この原理を利用すれば、逆に溶液
中のアンモニウムイオンの量も間接的に定量する
ことができる。 本発明方法では、水溶液にアンモニウムイオン
を存在させた後、加熱することにより該水溶液中
の炭酸イオン、重炭酸イオンを二酸化炭素に変換
する。その加熱する装置は特に限定されず、100
℃以上に加熱し、発生する二酸化炭素を回収でき
る装置であれば、従来公知のものが制限なく採用
される。また、発生した二酸化炭素の定量方法
(装置)も特に制限されず、ガスクロマトグラフ
イー、オルザツト法、赤外線吸収法などが採用さ
れる。特に加熱装置と発生ガスを分析する装置を
併せ備えているガスクロマトグラフイーが好適に
採用される。 本発明方法で、ガスクロマトグラフイーを用い
る場合には、試料気化室の温度を300℃以上にす
ることによつて、炭酸イオン、重炭酸イオンが定
量的に二酸化炭素に分解され、得られるガスクロ
マトグラムもシヤープな二酸化炭素のピークを与
えた。分離カラムは二酸化炭素が空気、水等の他
の成分と分離する充填剤が使用されているもので
あれば制限なく使用されるが、中でも、水の溶出
が短時間で終るに好都合なポラパツクR(商品名)
が好適に使用される。その他のガスクロマトグラ
フイーの測定条件は通常の分析条件がそのまま適
用される。 本発明を更に実施例、比較例をあげて具体的に
説明するが、本発明はこれらの実施例に限定され
るものではない。 実施例 1 炭酸ナトリウム標準溶液(2.53g/100ml)25
mlを100mlメスフラスコに採取しそれに硝酸アン
モニウム2g(アンモニウムイオン/炭酸イオン
のモル比4.2)を添加溶解し、水で100mlとした。
この溶液2μをマイクロシリンジに採り、下記
の条件に設定されたガスクロマトグラフイーに注
入して、熱分解して発生した二酸化炭素のピーク
面積を求めた。 ガスクロマトグラフイー条件 分離カラム:ポラパツクR 内径3mm、 長さ1.5m カラム温度:100℃ 注入口温度:300℃ 検出器温度:200℃ キヤリアーガス:水素 50ml/min 検出器:熱伝導度型(TCD)120mA 該ピーク面積から、予め炭酸ナトリウムと硝酸
アンモニウムにより求めた検量線を用いて、溶液
中の全炭酸量を算出した結果を第1表に示した。
第1表には比較のために、同一試料を硫酸分解に
よるオルザツト法により求めた定量値も示した。
The present invention relates to a method for easily quantifying total carbonic acid in an aqueous solution. Conventionally, methods for quantitatively analyzing total carbonic acid such as carbonate ions and bicarbonate ions in an aqueous solution include decomposing carbonate ions, etc. to carbon dioxide and analyzing the generated carbon dioxide using gas chromatography, the Orsat method, or infrared absorption. There are methods for quantifying it, such as by methods. However, since carbonate ions, bicarbonate ions, etc. in aqueous solutions generally coexist with metal ions such as sodium and potassium, high temperatures of over 1000°C are required to thermally decompose the carbonate ions, etc. to carbon dioxide. shall be. Therefore, such carbonate ions,
In order to decompose bicarbonate ions and the like into carbon dioxide, a method using acids such as sulfuric acid and phosphoric acid is generally adopted. However, the method of decomposition using acid as described above not only requires special accessory equipment such as a sulfuric acid decomposition device, but also tends to cause corrosion, especially when using an analytical method using an instrument, which requires maintenance and management of the equipment. It becomes a problem. On the other hand, methods for quantitatively analyzing carbonate ions, bicarbonate ions, etc. in aqueous solutions include neutralization titration using barium chloride and strontium chloride and liquid chromatography. However, the neutralization titration method described above has the disadvantage that accurate analytical values cannot be obtained when there are many coexisting substances in the aqueous solution, and the method using liquid chromatography not only requires expensive equipment but also requires continuous As an analyzer, it has the disadvantage of not being generally applicable due to problems such as the lifespan of the filler. The present inventors have conducted extensive research to solve the drawbacks of such conventional methods, and as a result, have discovered a simple and rapid quantitative method suitable for quantifying total carbonic acid in an aqueous solution. That is, in the present invention, when quantifying the total carbonic acid in an aqueous solution, the aqueous solution is prepared in the presence of ammonium ions in an amount equal to or greater than the sum of twice the number of moles of carbonate ions and the number of moles of bicarbonate ions in the aqueous solution. To,
This is a method for quantifying total carbon dioxide in an aqueous solution, which is characterized by quantifying carbon dioxide generated by heating. According to the quantitative method of the present invention, all carbonic acid in an aqueous solution can be quantitatively decomposed into carbon dioxide at a temperature of about 100°C or higher, which is significantly lower than the conventional thermal decomposition temperature of 1000°C or higher. Furthermore, unlike conventional acid decomposition methods, the present invention does not use acid, so equipment is not corroded by acid, which not only simplifies maintenance and management of the equipment, but also allows for application to continuous automatic analysis. It's easy. Furthermore, compared to conventional methods, the present invention has the characteristics that the measurement time is much shorter, the measurement operation is simpler, and accurate analytical values can be obtained. Therefore, the quantitative method of the present invention can also be applied to process control of products at manufacturing sites by taking advantage of the above-mentioned characteristics, paving the way to achieving extensive rationalization of process control. . The total carbonic acid in the aqueous solution as used in the present invention means carbonate ions and bicarbonate ions that are dissociated in the aqueous solution. Such an aqueous solution containing carbonic acid is generally produced by dissolving in water a water-soluble salt having carbonate ions and bicarbonate ions as anions and metal ions as cations. Common metal ions include sodium ions and potassium ions. In addition, in the present invention, water-soluble coexisting ions such as calcium ion, magnesium ion,
The presence of sulfate and chloride ions does not affect the determination of total carbonic acid. In the present invention, it is extremely important to have ammonium ions present in the aqueous solution containing carbonate ions and bicarbonate ions. That is, due to the presence of ammonium ions, carbonate and bicarbonate ions, which had previously coexisted with sodium and potassium ions, were decomposed at surprisingly low temperatures of about 100°C or higher. This is probably because ammonium ions react with carbonate ions and bicarbonate ions in the aqueous solution at room temperature or under heating, and are converted into ammonium carbonate or ammonium bicarbonate. The ammonium ion used in the present invention is not particularly limited as long as it is a water-soluble ammonium salt, and ammonium nitrate, ammonium sulfate, ammonium hydrochloride, (ammonium acetate), etc. are used.
Among them, ammonium nitrate, which has high solubility in water, is preferably employed. It is sufficient that the amount of ammonium ions present is at least twice the molar ratio of carbonate ions and at least the same amount as bicarbonate ions.
However, if the aqueous solution already contains ammonium ions, the amount can be reduced by that amount. That is, it is necessary to maintain the amount of ammonium ions present in the aqueous solution at least twice the number of moles of carbonate ions plus the number of moles of bicarbonate ions. In this way, if the amount of ammonium ions in an aqueous solution is maintained at more than twice the number of moles of carbonate ions plus the number of moles of bicarbonate ions, when this solution is thermally decomposed at a temperature of about 100°C or higher, ,
Can be 100% decomposed. If the amount of ammonium ions in the aqueous solution is less than the above value, carbonate ions and bicarbonate ions will not decompose 100%,
Only carbon dioxide corresponding to the amount of ammonium ions is generated. Using this principle, it is also possible to indirectly quantify the amount of ammonium ions in a solution. In the method of the present invention, after ammonium ions are present in an aqueous solution, carbonate ions and bicarbonate ions in the aqueous solution are converted into carbon dioxide by heating. The heating device is not particularly limited;
Any conventionally known device can be used without any restriction as long as it is capable of heating to temperatures above 0.degree. C. and recovering the generated carbon dioxide. Furthermore, the method (device) for quantifying the generated carbon dioxide is not particularly limited, and gas chromatography, Orsatz method, infrared absorption method, etc. are employed. In particular, gas chromatography, which is equipped with a heating device and a device for analyzing generated gas, is preferably employed. When using gas chromatography in the method of the present invention, carbonate ions and bicarbonate ions are quantitatively decomposed into carbon dioxide by raising the temperature of the sample vaporization chamber to 300°C or higher, and the resulting gas chromatogram It also gave a sharp carbon dioxide peak. Separation columns can be used without any restriction as long as they have a packing material that separates carbon dioxide from other components such as air and water, but Polapack R is especially convenient because water elution can be completed in a short time. (Product name)
is preferably used. For other gas chromatography measurement conditions, normal analysis conditions are applied as they are. The present invention will be further explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Sodium carbonate standard solution (2.53g/100ml) 25
ml was collected in a 100 ml volumetric flask, 2 g of ammonium nitrate (ammonium ion/carbonate ion molar ratio 4.2) was added and dissolved, and the volume was made up to 100 ml with water.
2μ of this solution was taken into a microsyringe and injected into a gas chromatograph set under the following conditions to determine the peak area of carbon dioxide generated by thermal decomposition. Gas chromatography conditions Separation column: Polapak R, inner diameter 3 mm, length 1.5 m Column temperature: 100°C Inlet temperature: 300°C Detector temperature: 200°C Carrier gas: Hydrogen 50ml/min Detector: Thermal conductivity type (TCD) 120 mA From the peak area, the total amount of carbonic acid in the solution was calculated using a calibration curve previously determined using sodium carbonate and ammonium nitrate. The results are shown in Table 1.
For comparison, Table 1 also shows quantitative values determined by the Orsat method using sulfuric acid decomposition for the same sample.

【表】 実施例 2 炭酸ナトリウム標準溶液(100μg/ml)30ml
を採り、それに硝酸アンモニウム0.3g(アンモ
ニウムイオン/炭酸イオンのモル比約60)を添加
溶解した。この溶液5μをマイクロシリンジに
採り、下記の条件に設定されたガスクロマトグラ
フイーに注入して熱分解して発生した二酸化炭素
のピーク面積を求めた。 ガスクロマトグラフイー条件 分離カラム:ポラパツクR 内径3mm、 長さ1.5m カラム温度:70℃→150℃(20℃/minで昇温) 注入口温度:300℃ 検出器温度:150℃ キヤリアーガス:水素 50ml/min 検出器:熱伝導度型(TCD)150mA 該ピーク面積から、予め炭酸ナトリウムと硝酸
アンモニウムにより求めた検量線を用いて、溶液
中の全炭酸量を算出した結果を第2表に示した。
第2表には比較のために、同一試料を硫酸分解し
て水酸化バリウム溶液に吸収させ中和滴定法によ
り求めた定量値も示した。
[Table] Example 2 Sodium carbonate standard solution (100μg/ml) 30ml
0.3 g of ammonium nitrate (ammonium ion/carbonate ion molar ratio of about 60) was added and dissolved therein. 5μ of this solution was taken into a microsyringe and injected into a gas chromatograph set under the following conditions to determine the peak area of carbon dioxide generated by thermal decomposition. Gas chromatography conditions Separation column: Polapak R, inner diameter 3 mm, length 1.5 m Column temperature: 70°C → 150°C (temperature increase at 20°C/min) Inlet temperature: 300°C Detector temperature: 150°C Carrier gas: Hydrogen 50ml /min Detector: Thermal conductivity type (TCD) 150 mA From the peak area, the total amount of carbonic acid in the solution was calculated using a calibration curve previously determined using sodium carbonate and ammonium nitrate. The results are shown in Table 2.
For comparison, Table 2 also shows quantitative values determined by neutralization titration after decomposing the same sample with sulfuric acid and absorbing it in a barium hydroxide solution.

【表】 比較例 1 実施例1において硝酸アンモニウムを用いなか
つた以外は全く実施例1と同様に実施したとこ
ろ、二酸化炭素は全然発生しなかつた。即ち、ア
ンモニウムイオンが存在しないと、実施例1の条
件下では炭酸ナトリウムは全く熱分解しないので
ある。 実施例 3 実施例1において、試料として炭酸ナトリウム
標準溶液2.53g/100mlの代りに、炭酸アンモニ
ウム8〜10g/100ml及び炭酸ナトリウム1〜2
g/100mlの混合溶液を用いた他は、実施例1と
全く同様に実施した結果を第3表に示した。第3
表には比較のために、同一試料を硫酸分解による
オルザツト法により求めた定量値も示した。
[Table] Comparative Example 1 The same procedure as in Example 1 was conducted except that ammonium nitrate was not used in Example 1, and no carbon dioxide was generated at all. That is, in the absence of ammonium ions, under the conditions of Example 1, sodium carbonate would not be thermally decomposed at all. Example 3 In Example 1, instead of the sodium carbonate standard solution 2.53 g/100 ml, ammonium carbonate 8-10 g/100 ml and sodium carbonate 1-2
Example 1 was carried out in exactly the same manner as in Example 1, except that a mixed solution of g/100 ml was used, and the results are shown in Table 3. Third
For comparison, the table also shows quantitative values determined by the Orsat method using sulfuric acid decomposition for the same sample.

【表】 実施例 4 実施例2において、試料として炭酸ナトリウム
標準溶液100μg/mlの代りに、第4表に掲げた
試料を用いた他は、実施例2と全く同様に実施し
た結果を第4表に示した。第4表には比較のため
に、同一試料を硫酸分解して、水酸化バリウム溶
液に吸収させ中和滴定法により求めた定量値も示
した。
[Table] Example 4 The results obtained in Example 4 were carried out in exactly the same manner as in Example 2, except that the samples listed in Table 4 were used instead of the 100 μg/ml sodium carbonate standard solution as the sample. Shown in the table. For comparison, Table 4 also shows quantitative values determined by neutralization titration after decomposing the same sample with sulfuric acid and absorbing it in a barium hydroxide solution.

【表】【table】

Claims (1)

【特許請求の範囲】 1 水溶液中の全炭酸を定量するに際し、該水溶
液を、水溶液中の炭酸イオンのモル数の2倍と重
炭酸イオンのモル数の合計以上のモル数のアンモ
ニウムイオンの存在下に加熱して発生する二酸化
炭素を定量することを特徴とする水溶液中の全炭
酸の定量法。 2 発生した二酸化炭素をガスクロマトグラフイ
ーで定量する特許請求の範囲第1項記載の定量
法。 3 加熱温度が100℃以上である特許請求の範囲
第1項記載の定量法。
[Scope of Claims] 1. When quantifying the total carbonic acid in an aqueous solution, the aqueous solution is treated with the presence of ammonium ions in an amount equal to or greater than the sum of twice the number of moles of carbonate ions and the number of moles of bicarbonate ions in the aqueous solution. A method for quantifying total carbon dioxide in an aqueous solution, which is characterized by quantifying carbon dioxide generated by heating the solution. 2. The quantitative method according to claim 1, in which the generated carbon dioxide is determined by gas chromatography. 3. The quantitative method according to claim 1, wherein the heating temperature is 100°C or higher.
JP458181A 1981-01-17 1981-01-17 SUIYOEKICHUNOZENTANSANNOTEIRYOHO Expired - Lifetime JPH0233986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP458181A JPH0233986B2 (en) 1981-01-17 1981-01-17 SUIYOEKICHUNOZENTANSANNOTEIRYOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP458181A JPH0233986B2 (en) 1981-01-17 1981-01-17 SUIYOEKICHUNOZENTANSANNOTEIRYOHO

Publications (2)

Publication Number Publication Date
JPS57119256A JPS57119256A (en) 1982-07-24
JPH0233986B2 true JPH0233986B2 (en) 1990-07-31

Family

ID=11587998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP458181A Expired - Lifetime JPH0233986B2 (en) 1981-01-17 1981-01-17 SUIYOEKICHUNOZENTANSANNOTEIRYOHO

Country Status (1)

Country Link
JP (1) JPH0233986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571574U (en) * 1992-03-03 1993-09-28 フレックス株式会社 Faucet Elbow Support that can be easily pulled out

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164673A (en) * 1991-12-11 1993-06-29 Nippon Steel Corp Measuring method of carbon of powder sample and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571574U (en) * 1992-03-03 1993-09-28 フレックス株式会社 Faucet Elbow Support that can be easily pulled out

Also Published As

Publication number Publication date
JPS57119256A (en) 1982-07-24

Similar Documents

Publication Publication Date Title
Talmi et al. Determination of alkylarsenic acids in pesticide and environmental samples by gas chromatography with a microwave emission spectrometric detection system
Kubová et al. Determination of rare earth elements in mineral waters by inductively coupled plasma atomic emission spectrometry
US4332591A (en) Analytical method and apparatus for the determination of total nitrogen contents in aqueous systems
Tande et al. Simultaneous determination of Cr (III) and Cr (VI) in water by reversed phase HPLC, after chelating with sodium diethyldithiocarbamate
EP0020072A1 (en) Analytical method and apparatus for the determination of the total nitrogen content in a sample
Pockard et al. The determination of traces of formaldehyde
Buncel et al. THE MECHANISM OF THE CARBONYL ELIMINATION REACTION OF BENZYL NITRATE KINETIC ISOTOPE EFFECTS AND DEUTERIUM EXCHANGE
Betowski et al. Identification of dyes by thermospray ionization and mass spectrometry/mass spectrometry
Kennedy et al. Determination of acrolein in air as an oxazolidine derivative by gas chromatography
US4046510A (en) Method and an apparatus for determining the inorganic carbon content of a liquid
JPH0233986B2 (en) SUIYOEKICHUNOZENTANSANNOTEIRYOHO
Buyske et al. Volatile organic acids of tobacco smoke
Krivan et al. Preatomization behaviour of Se (-II), Se (IV), and Se (VI) in the graphite furnace without and with matrix modifiers
De Schutter et al. Stability study and quantitative determination of mebeverine hydrochloride in tablets by means of reversed-phase high-performance liquid chromatography
Carr Jr et al. The Hydrogen Isotope Effect in the Thermal Decomposition of Cyclobutane1
Yamaguchi et al. Determination of ethylenediaminetetraacetic acid and nitrilotriacetic acid as their iron (III)-complexes by reversed phase high performance liquid chromatography.
Lendero et al. Detection of preatomization losses of mercury in the graphite tube with the tracer technique
Matsusaki et al. A method for removal of chloride interference in determination of aluminium by atomic-absorption spectrometry with a graphite furnace
Preston et al. Isotope dilution analysis of combined nitrogen in natural waters: I. Ammonium
JPH0241707B2 (en)
Baur et al. Hexamminecobalt (III) Tricarbonatocobaltate (III)-A New Analytical Titrant.
Tanner et al. Determination of parts-per-billion concentrations of aqueous nitrate by derivatization gas chromatography with electron capture detection
Feinsilver et al. Microdetermination of chloropicrin vapor in air
JPH0611498A (en) Gas chromatographic method and gas chromatograph mass-spectrometric method
Lindberg et al. Simultaneous determination of terbutaline and salbutamol in plasma by selected ion monitoring