JPH0233918A - Manufacture of three-dimensional device - Google Patents

Manufacture of three-dimensional device

Info

Publication number
JPH0233918A
JPH0233918A JP18437388A JP18437388A JPH0233918A JP H0233918 A JPH0233918 A JP H0233918A JP 18437388 A JP18437388 A JP 18437388A JP 18437388 A JP18437388 A JP 18437388A JP H0233918 A JPH0233918 A JP H0233918A
Authority
JP
Japan
Prior art keywords
single crystal
crystal silicon
silicon layer
layer
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18437388A
Other languages
Japanese (ja)
Inventor
Takashi Namura
名村 高
Yukio Miyai
宮井 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP18437388A priority Critical patent/JPH0233918A/en
Publication of JPH0233918A publication Critical patent/JPH0233918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve the performance and integrity of a device substantially by a method wherein single crystal silicon having a conductivity type different from that of its lower layer is made to grow from column type apertures to fill the apertures and a flat single crystal silicon film is formed on insulating films. CONSTITUTION:After elements are formed on a P-type, which is a first conductivity type, single crystal silicon layer 3, insulating layers 4 are formed. N-type single crystal silicon 5 is made to grow from column type apertures by epitaxial selective growth to fill the apertures with the single crystal silicon 5. The surface is levelled by vapor phase etching and the growth is continued again and, finally, vapor phase etching is again performed to cover the surface of the insulating layers 4 with flat single crystal 6. After elements are formed, insulating layers 7 are formed. A flat single crystal silicon layer 8 covering the insulating layer 7 is formed. With this constitution, the performance and integrity can be improved substantially.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集積回路装置において三次元構造を有する素子
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing elements having a three-dimensional structure in an integrated circuit device.

従来の技術 ヘテロエピタキシャル法は、サファイア基板を用いて実
用化され、集積回路へ応用されて高速性耐ラツチアツプ
性及び耐放射線性の向上に有効であることが確認された
The conventional heteroepitaxial method has been put to practical use using a sapphire substrate, and has been applied to integrated circuits and has been confirmed to be effective in improving high-speed latch-up resistance and radiation resistance.

酸素イオン注入による埋め込み酸化膜形成法と。A buried oxide film formation method using oxygen ion implantation.

レーザ及び電子ビームによる酸化膜上シリコン再結晶化
法と、気相エピタキシャル選択成長及び固相成長法によ
る構方向結晶成長法等の方法はいずれも開発段階の要素
技術である。
Methods such as silicon recrystallization on an oxide film using laser and electron beams, and directional crystal growth using vapor phase epitaxial selective growth and solid phase growth are all elemental technologies at the development stage.

発明が解決しようとする課題 す7アイヤ基板は製造コストが高く経済性に乏しく、ま
た、多層構造とすることが困難である。
Problems to be Solved by the Invention Seven-layer substrates are expensive to manufacture, are not economical, and are difficult to form into a multilayer structure.

その他の方法は、結晶性や処理能力に問題があり歩留シ
や量産性の要求を満たすことは現段階では難かしい。
Other methods have problems with crystallinity and processing capacity, and it is currently difficult to meet the requirements for yield and mass production.

課題を解決するための手段 本発明は単結晶シリコン層上に集積回路を製作した後、
この上に絶縁膜を形成し、短冊状の溝を形成し更に溝の
底部に下層の単結晶シリコンに達する柱状の開口部を形
成する。この開口部より下層と異なった電導型の単結晶
シリコンを成長させ柱状の開口部を埋める。さらに所望
の電導型の単結晶シリコンを成長させ短冊状の溝を利用
して平坦な単結晶シリコン膜を絶縁膜上に形成しこの上
に再び集積回路を製作するものである。さらに多層化す
るにはこの方法をくり返す。
Means for Solving the Problems The present invention provides a method for fabricating an integrated circuit on a monocrystalline silicon layer.
An insulating film is formed on this, a rectangular groove is formed, and a columnar opening reaching the underlying single crystal silicon is formed at the bottom of the groove. From this opening, single crystal silicon of a conductivity type different from that of the layer below is grown to fill the columnar opening. Furthermore, single-crystal silicon of a desired conductivity type is grown, a flat single-crystal silicon film is formed on the insulating film using the rectangular grooves, and an integrated circuit is again fabricated on this film. Repeat this method to create more layers.

作用 以下の作用が見込まれる。action The following effects are expected.

(1)単結晶シリコン層のシードとなる部分が分散して
いるだめ、この部分を避けた配線を施すことが可能であ
る。
(1) Since the seed portion of the single crystal silicon layer is dispersed, it is possible to perform wiring that avoids this portion.

(2)  シードを高密度にとることにより結晶性のす
ぐれた単結晶シリコン層が得られる。
(2) A single-crystal silicon layer with excellent crystallinity can be obtained by providing seeds at a high density.

(3)絶縁層に形成した溝の効果によシ結晶成長の異方
性を利用して平坦な表面を持つ単結晶層が容易に得られ
る。
(3) A single crystal layer with a flat surface can be easily obtained by utilizing the anisotropy of crystal growth due to the effect of the grooves formed in the insulating layer.

(4)  シードを高密度にとっても、下層との絶縁性
が保たれる。
(4) Even if the seeds are densely packed, insulation from the underlying layer is maintained.

実施例 第1図(&)〜(d)は絶縁層の形状説明図である。第
1図(1L)は、集積回路が形成された単結晶シリコン
層1の表面に厚さ1.5μmの二酸化シリコン2が形成
され、この二酸化シリコンには0.8μmの深さで幅が
O,Sμmの短冊状の溝が溝間隔1.5μmで形成され
、さらにこれらの溝の底部に単結晶シリコン層1に達す
る深さの開口部が1.5μmの間隔で複数個形成された
ものの平面図である。また第1図(b) 、 (0> 
、 ((1)はそれぞれ第1図(a)のA人′線。
Embodiment FIGS. 1(&) to (d) are explanatory diagrams of the shape of the insulating layer. In FIG. 1 (1L), silicon dioxide 2 with a thickness of 1.5 μm is formed on the surface of a single crystal silicon layer 1 on which an integrated circuit is formed, and this silicon dioxide has a width of O2 with a depth of 0.8 μm. , Sμm strip-shaped grooves are formed with a groove interval of 1.5μm, and a plurality of openings with a depth reaching the single crystal silicon layer 1 are formed at 1.5μm intervals at the bottoms of these grooves. It is a diagram. Also, Fig. 1(b), (0>
, ((1) is the person A' line in Figure 1(a), respectively.

B B’線、 CC’線での断面図である。断面はく1
0o〉方向にとっである。
It is a sectional view taken along line BB' and line CC'. Cross section foil 1
0o> direction.

第2図(1L)〜(6)は本発明方法における工程図を
示したものである。第1電導型としてp型の単結晶シリ
コン層3上に素子を作製した後絶縁層4を形成し、第1
図に示した形状にエツチングする(第2図(&))。開
口部よシエビタキシャル選択成長をさせn型の単結晶シ
リコン5で柱状の開口部を埋める(第2図(b))。次
にp型の単結晶シリコンをエピタキシャル選択成長をさ
せ溝を埋めたところで気相エツチングによシ平坦化し再
び成長を続は最後に再び気相エツチングを行い絶縁層4
の表面を平坦な単結晶6で覆う(第2図(C))。この
単結晶シリコン、1上に素子を作成した後、前と同様の
方法で絶縁層Tを形成する(第2図(d))。開口部よ
りn型の単結晶シリコンをエピタキシャル選択成長させ
前と同様に気相エツチングを加えることで絶縁層下を覆
う平坦な単結晶シリコン層8を形成する(第2図(θ)
)。以下これと同じ方法により任意の電導型の単結晶シ
リコン層を互いに絶縁された形で重ねてゆく。この実施
例は他の電導型の構成においても容易に製作することが
できる。
Figures 2 (1L) to (6) show process diagrams in the method of the present invention. After producing an element on a p-type single crystal silicon layer 3 as a first conductivity type, an insulating layer 4 is formed, and the first
Etch it into the shape shown in the figure (Fig. 2 (&)). The columnar openings are filled with n-type single crystal silicon 5 by selectively growing via the opening (FIG. 2(b)). Next, p-type single crystal silicon is selectively grown epitaxially to fill the grooves, and then flattened by vapor phase etching.
The surface of the crystal is covered with a flat single crystal 6 (FIG. 2(C)). After forming a device on this single crystal silicon 1, an insulating layer T is formed in the same manner as before (FIG. 2(d)). N-type single crystal silicon is epitaxially selectively grown from the opening and subjected to vapor phase etching in the same manner as before to form a flat single crystal silicon layer 8 covering the bottom of the insulating layer (Fig. 2 (θ)).
). Thereafter, monocrystalline silicon layers of arbitrary conductivity types are stacked in a mutually insulated manner using the same method. This embodiment can easily be fabricated in other conductivity type configurations.

エピタキシャル成長工程では水素−ジクロール7ランー
塩酸のガス系を用い、950℃の温度で成長させる。ま
た途中で水素−塩酸のガス系に切り換えることにより気
相エツチングを行なう。
In the epitaxial growth process, a gas system of hydrogen-dichlor 7-hydrochloric acid is used and growth is performed at a temperature of 950°C. Additionally, gas phase etching is performed by switching to a hydrogen-hydrochloric acid gas system midway through the process.

発明の詳細 な説明した様に本発明は三次元構造を持つ集積回路を現
在直ちに量産可能な装置により実現するものである。三
次元化により素子性能や集積度が大きく向上する。
As described in detail, the present invention is to realize an integrated circuit having a three-dimensional structure using an apparatus that can be mass-produced immediately. Three-dimensional technology greatly improves device performance and integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a−)〜(d)は絶縁層の形状説明図、第2図
(IL)〜(e)は本発明方法の工程図である。 1・・・・・・単結晶シリコン層、2・・・・・・絶縁
層、3・・・・・・p型単結晶シリコン層、4・・・・
・・絶縁層、5・・・・・・n型単結晶シリコン層、6
・・・・・・p型単結晶シリコン層、了・・・・・・絶
縁層、8・・・・・・n型単結晶シリコン層。
FIGS. 1(a-) to (d) are explanatory diagrams of the shape of the insulating layer, and FIGS. 2(IL) to (e) are process diagrams of the method of the present invention. 1... Single crystal silicon layer, 2... Insulating layer, 3... P-type single crystal silicon layer, 4...
...Insulating layer, 5...N-type single crystal silicon layer, 6
. . . P-type single-crystal silicon layer, Terminal: Insulating layer, 8: N-type single-crystal silicon layer.

Claims (1)

【特許請求の範囲】[Claims] 第1のシリコン層に第1の集積回路を製作する工程、前
記シリコン層の上に絶縁膜を形成する工程、前記絶縁膜
に前記シリコン層に達しない深さの短冊状の溝を形成し
更に溝の底部に選択的に前記第1のシリコン層に達する
深さの開口部を形成する工程、この開口部より、結晶シ
リコンを成長させ、さらに前記絶縁膜上に第2のシリコ
ン層を形成する工程、更に前記第2のシリコン層に第2
の集積回路を製作する工程を有することを特徴とする三
次元素子製造方法。
a step of manufacturing a first integrated circuit on a first silicon layer; a step of forming an insulating film on the silicon layer; forming a strip-shaped groove with a depth that does not reach the silicon layer in the insulating film; selectively forming an opening deep enough to reach the first silicon layer at the bottom of the groove; growing crystalline silicon through the opening; and further forming a second silicon layer on the insulating film. step, further adding a second silicon layer to the second silicon layer.
A method for manufacturing a tertiary element, comprising a step of manufacturing an integrated circuit.
JP18437388A 1988-07-22 1988-07-22 Manufacture of three-dimensional device Pending JPH0233918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18437388A JPH0233918A (en) 1988-07-22 1988-07-22 Manufacture of three-dimensional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18437388A JPH0233918A (en) 1988-07-22 1988-07-22 Manufacture of three-dimensional device

Publications (1)

Publication Number Publication Date
JPH0233918A true JPH0233918A (en) 1990-02-05

Family

ID=16152078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18437388A Pending JPH0233918A (en) 1988-07-22 1988-07-22 Manufacture of three-dimensional device

Country Status (1)

Country Link
JP (1) JPH0233918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566675B1 (en) * 2004-12-14 2006-03-31 삼성전자주식회사 Semiconductor device and method of manufacturing the same
KR100611112B1 (en) * 2005-01-20 2006-08-09 삼성전자주식회사 Single crystal structure and method for forming the same, emiconductor device having the Single crystal structure and method for manufacturing the same
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566675B1 (en) * 2004-12-14 2006-03-31 삼성전자주식회사 Semiconductor device and method of manufacturing the same
KR100611112B1 (en) * 2005-01-20 2006-08-09 삼성전자주식회사 Single crystal structure and method for forming the same, emiconductor device having the Single crystal structure and method for manufacturing the same
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device

Similar Documents

Publication Publication Date Title
EP0317124B1 (en) Silicon on insulator semiconductor components containing thin synthetic diamond films
US4569700A (en) Method of manufacturing a stacked semiconductor device
JPS5837949A (en) Integrated circuit device
JPH0233918A (en) Manufacture of three-dimensional device
JPS5893220A (en) Preparation of semiconductor single crystal film
JPS59232440A (en) Manufacture of semiconductor device
JPH0233917A (en) Method of forming silicon single crystal layer in insulating layer
JPS60144949A (en) Manufacture of semiconductor device
JPH0348657B2 (en)
JPH0113210B2 (en)
JPH01259527A (en) Formation of single crystal silicon film on insulating film
JPH01259526A (en) Formation of single crystal silicon film on insulating film
JPS5911660A (en) Semiconductor integrated circuit device
JPS5893219A (en) Preparation of semiconductor device
JPS61290709A (en) Manufacture of semiconductor device
JPS60249311A (en) Manufacture of semiconductor single crystal thin film
JPS6020891B2 (en) Crystal growth method
JPH0666275B2 (en) Method for manufacturing semiconductor device
JPS594048A (en) Fabrication of semiconductor device
JPH03200350A (en) Semiconductor device and manufacture thereof
JPS62139334A (en) Manufacture of semiconductor device
JPH0147022B2 (en)
JPS60220946A (en) Manufacture of semiconductor device
JPH01208858A (en) Manufacture of complementary integrated circuit
JPH07107915B2 (en) Method for manufacturing substrate for semiconductor integrated circuit