JPH0233654B2 - TA2O5 * NH2ORYUSHINOSEIZOHOHO - Google Patents

TA2O5 * NH2ORYUSHINOSEIZOHOHO

Info

Publication number
JPH0233654B2
JPH0233654B2 JP16618685A JP16618685A JPH0233654B2 JP H0233654 B2 JPH0233654 B2 JP H0233654B2 JP 16618685 A JP16618685 A JP 16618685A JP 16618685 A JP16618685 A JP 16618685A JP H0233654 B2 JPH0233654 B2 JP H0233654B2
Authority
JP
Japan
Prior art keywords
particles
catalyst
producing
molar ratio
ethanol solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16618685A
Other languages
Japanese (ja)
Other versions
JPS6296319A (en
Inventor
Kojiro Shimodaira
Keita Nakanishi
Yoichi Takamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP16618685A priority Critical patent/JPH0233654B2/en
Publication of JPS6296319A publication Critical patent/JPS6296319A/en
Publication of JPH0233654B2 publication Critical patent/JPH0233654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は均一な粒度分布を持ち、分散性のよい
所謂単分散のTa2O5・nH2O粒子の製造方法に関
する。 Ta2O5は耐摩耗性、耐熱、耐食性の薄膜として
用いられるほか、LiTaO3単結晶、Ba(Zn・Ta)
O3セラミツクスの原料となり、LiTaO3単結晶は
光メモリ、表面波フイルター、高周波発振素子な
どに、また、Ba(Zn・Ta)O3セラミツクスは圧
電着火素子、超音波振動子、セラミツクスフイル
ター素子などに用いられる。 Ta2O5薄膜とする場合は、膜の均一性、膜厚、
充填性、付着性が、タンタル単結晶とする場合
は、高純度、易溶解性が、セラミツクスとする場
合は、高純度、易焼結性が、また光学ガラスとす
る場合は、易溶解性で粒度分布の均一性が、それ
ぞれ要求される。 これらの用途に共通してTa2O5粒子に要求され
る物性は、均一粒径、微粒子、分散性のよいこ
と、高純度、さらに高充填性を得るために、球状
であることである。 従来技術 従来のTa2O5粒子の製造方法としては、(1)金属
Taを空気中で燃焼させる方法。(2)タンタル酸の
加熱脱水によつて製造する方法が知られている。
これらの方法で得られるTa2O5粒子は比較的高純
度ではあるが、粒形の不均一な凝集粒子であり、
前記のような用途に最適であるとは言い難い。特
に前記(2)の方法ではゼラチン状沈殿しか得られな
い。 発明の目的 本発明は前記従来法の欠点を解消すべくなされ
たもので、その目的は均一粒径、微粒子、良分散
性、高純度で球形のTa2O5粒子の原料となる
Ta2O5・nH2O粒子の製造方法を提供するにある。 発明の構成 本発明者は前記目的を達成すべく研究の結果、
Ta(OC2H55などのタンタルアルコキシドをエタ
ノールの非水溶媒に溶かし、所定量の水および水
の存在下で水酸基を放出する化合物、所謂ブロス
テツド塩基を混合加熱して加水分解すると、均一
な粒度分布を持ち、粒径が0.05〜1μm範囲で任意
に粒径を調製し得られ、かつ高純度のTa2O5
nH2O粒子が容易に製造し得られることを究明し
得た。この知見に基いてて本発明を完成した。 本発明の要旨は、タンタルアルコキシドの非水
溶液に、水の存在下で水酸基を放出する化合物、
所謂ブロステツド塩基の触媒及び水を混合して加
水分解することを特徴とするTa2O5・nH2O粒子
の製造方法にある。 本発明の方法において用いられるタンタルアル
コキシドとしては、Ta(OCH35、Ta(OC2H55
Ta(n−OCH3H75、Ta(n−OC4O9)などが挙
げられる。 触媒としては、水の存在下で水酸基を放出する
化合物であるNaOH、KOH、Ca(OH)2、NH3
(NH22CO、C2H5NH2、(C2H52NHなどが挙げ
られる。加水分解反応は触媒なしでも進行する
が、その速度は極めておそく、また反応系のPHを
調整できないため、粒径を任意に調節できないの
で触媒は必要である。 前記触媒の内、NaOH、KOH、Ca(OH)2等の
強塩基を用いると、適当なPH範囲、適強な反応速
度を得るための添加量の適正範囲が狭い。この点
=NH基または−NH2基を持つ弱塩基、例えば
C2H5NH2、(NH22CO、C3H7NH2
(C2H52NHなどを用いると、前記の調節が比較
的容易である。しかし、=NH基あるいは−NH2
基を持つ化合物の中には粒子表面に吸着し、反応
後に洗浄を必要とするのがある。 この点NH3を用いれば、洗浄が不要であり、
取扱いも容易であるので好ましい。 触媒の添加量は下限は、反応溶液のPHによつて
決められる。例えば、溶媒してエタノールを用い
た場合は、PHを5.5以上、好ましくは7以上に保
つ。PHが5.5より低いと生成した粒子が凝結し易
い。それば反応系のPHがTa2O5・nH2Oの等電位
点に近ずくためと考えられる。 触媒の添加量の上限は、反応速度によつて決め
られる。多過ぎると反応が極めて速くなり、加水
分解と粒子化が並行して進む傾向が強くなるため
に粒子が凝結しやすくなる。このような凝結を防
ぐための尺度としてPHが用いられる。反応系のPH
は加水分解の進行と共に変化するが、PHの変化が
なくなつてから粒子化が起こるようにすることが
望ましい。 例えばアンモニアを触媒としてTa(OC2H55
加水分解させる場合、NH3の混合量はNH3/Ta
(OC2H55モル比で0.01〜1の範囲であることが
好ましい。この比が0.01より少ないとPHが低過ぎ
るため粒子が凝集し易くなる。1を超えると反応
が極端に速くなるため粒子が凝集し易く、所謂の
粒子を得ることが困難である。 添加する水の量は少な過ぎると収率が悪く、多
過ぎると三次元的な網目構造が発達して所謂の粒
子を得ることが困難である。例えば、アンモニア
を触媒としたTa(OC2H55の加水分解における水
の添加量は、タンタルアルコキシドに対し、モル
比で3〜50であることが好ましい。モル比が3よ
り少ないと反応速度が極めておそく、生成物の収
率も悪くなり、モル比が50を超えると三次元的な
構造が発達し易くなるので好ましくない。 なお、反応溶液の調製に際しては、溶液が不均
一となると凝集粒子が生成し易く単分散粒子が得
難くなるので、溶液を均一溶液とすることが好ま
しい。そのためには、溶媒に各成分を順次加える
のではなく、タンタルアルコキシド溶液及び水と
触媒を含む溶液を予め用意して混合することが望
ましい。 反応温度は、タンタルアルコキシド、H2O、
触媒の各濃度に応じて選ばなければならないが、
粒子化が始まつた後粒子の成長が短時間に行わ
れ、凝集することのないようにするには、30℃以
上の温度であることが望ましい。しかし極端に高
い温度であることを必要としない。また加工操作
は必要としない。 得られるTa2O5・nH2Oの粒子径は、触媒及び
水の添加量によつて任意に調節できる。例えば
Ta(OC2H55エタノール溶液0.015モル/Kgと
NH30.0018モル/Kgとからなる系では、H2O量を
0.059〜0.48モル/Kgに変えることによつて、粒
径を0.05〜0.4μmと変えることができる。 また、Ta(OC2H55エタノール溶液0.015モ
ル/KgとH2O0.09モル/Kgとからなる系では、
NH3量を0.00041〜0.0063モル/Kgに変化させる
ことにより粒径を0.1〜0.75μmと変えることがで
きる。 タンタルアルコキシドの濃度は、粒子の凝集を
防ぐためには、ある程度の上限が定まり、例えば
Ta(OC2H55では0.1モル/Kg以下であることが
好ましい。 生成粒子はX線回折分折及び熱分折により無定
形のTa2O5・nH2Oであつた。この粒子を800℃程
度で結晶化させても極めて小さい収縮であつた。 実施例 1 Ta(OC2H55エタノール溶液とNH3、H2O混合
エタノール溶液を混合し、混合後の濃度が〔Ta
(OC2H55〕=0.015mol/Kg、〔H2O〕=0.09mol/
Kgとなるように調整した。NH3濃度は、NH3
Ta(OC2H55モル比が0.027、0.055、0.098、0.20、
0.42となるように調整した。加水分解を50℃で1
時間行なつた結果、表1に示すような粒径の球形
単分散粒子が得られた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing so-called monodisperse Ta 2 O 5 .nH 2 O particles having a uniform particle size distribution and good dispersibility. Ta 2 O 5 is used as a wear-resistant, heat-resistant, and corrosion-resistant thin film, as well as LiTaO 3 single crystal, Ba (Zn Ta)
It is used as a raw material for O 3 ceramics, and LiTaO 3 single crystals are used for optical memories, surface wave filters, high-frequency oscillation devices, etc., and Ba (Zn Ta) O 3 ceramics are used for piezoelectric ignition elements, ultrasonic vibrators, ceramic filter elements, etc. used. When making a Ta 2 O 5 thin film, film uniformity, film thickness,
In terms of filling and adhesion properties, tantalum single crystals have high purity and easy melting properties, ceramics have high purity and easy sintering properties, and optical glasses have high melting properties. Uniformity of particle size distribution is required respectively. The physical properties commonly required of Ta 2 O 5 particles for these uses are uniform particle size, fine particles, good dispersibility, high purity, and spherical shape in order to obtain high filling properties. Conventional technology Conventional methods for producing Ta 2 O 5 particles include (1) metal
How to burn Ta in air. (2) A method of producing tantalic acid by thermal dehydration is known.
Although the Ta 2 O 5 particles obtained by these methods have relatively high purity, they are agglomerated particles with non-uniform particle shapes;
It is hard to say that it is optimal for the above-mentioned uses. In particular, method (2) above only yields a gelatinous precipitate. Purpose of the Invention The present invention was made to overcome the drawbacks of the conventional method, and its purpose is to provide a raw material for spherical Ta 2 O 5 particles with uniform particle size, fine particles, good dispersibility, and high purity.
The present invention provides a method for producing Ta 2 O 5 .nH 2 O particles. Structure of the Invention As a result of research to achieve the above object, the present inventor has
When tantalum alkoxide such as Ta(OC 2 H 5 ) 5 is dissolved in a non-aqueous solvent such as ethanol, a predetermined amount of water and a compound that releases a hydroxyl group in the presence of water, so-called Brostedt's base, are mixed and heated to hydrolyze it. High purity Ta 2 O 5 .
It has been found that nH 2 O particles can be easily produced and obtained. The present invention was completed based on this knowledge. The gist of the present invention is to provide a compound that releases a hydroxyl group in the presence of water to a non-aqueous solution of tantalum alkoxide,
The present invention provides a method for producing Ta 2 O 5 .nH 2 O particles, which comprises mixing and hydrolyzing a so-called Brosted base catalyst and water. The tantalum alkoxides used in the method of the present invention include Ta( OCH3 ) 5 , Ta( OC2H5 ) 5 ,
Examples include Ta(n-OCH 3 H 7 ) 5 and Ta(n-OC 4 O 9 ). Catalysts include NaOH, KOH, Ca(OH) 2 , NH3 , which are compounds that release hydroxyl groups in the presence of water.
Examples include (NH 2 ) 2 CO, C 2 H 5 NH 2 , (C 2 H 5 ) 2 NH, and the like. Although the hydrolysis reaction proceeds without a catalyst, the rate is extremely slow, and since the pH of the reaction system cannot be adjusted, the particle size cannot be adjusted arbitrarily, so a catalyst is necessary. Among the above catalysts, when a strong base such as NaOH, KOH, Ca(OH) 2 or the like is used, the appropriate range of the amount added to obtain an appropriate PH range and an appropriate reaction rate is narrow. This point = a weak base with NH group or -NH2 group, e.g.
C2H5NH2 , ( NH2 ) 2CO , C3H7NH2 ,
When (C 2 H 5 ) 2 NH or the like is used, the above adjustment is relatively easy. However, =NH group or -NH 2
Some compounds with groups adsorb onto the particle surface and require cleaning after reaction. In this respect, if NH 3 is used, cleaning is not necessary,
It is preferable because it is easy to handle. The lower limit of the amount of catalyst added is determined by the pH of the reaction solution. For example, when ethanol is used as a solvent, the pH is maintained at 5.5 or higher, preferably 7 or higher. When the pH is lower than 5.5, the generated particles tend to coagulate. This is thought to be because the pH of the reaction system approaches the equipotential point of Ta 2 O 5 .nH 2 O. The upper limit of the amount of catalyst added is determined by the reaction rate. If the amount is too large, the reaction will be extremely rapid, and there will be a strong tendency for hydrolysis and particle formation to proceed in parallel, making it easier for particles to coagulate. PH is used as a measure to prevent such coagulation. PH of reaction system
changes with the progress of hydrolysis, but it is desirable to allow particle formation to occur after the pH has stopped changing. For example, when Ta(OC 2 H 5 ) 5 is hydrolyzed using ammonia as a catalyst, the mixing amount of NH 3 is NH 3 /Ta.
The (OC 2 H 5 ) 5 molar ratio is preferably in the range of 0.01 to 1. When this ratio is less than 0.01, the pH is too low and particles tend to aggregate. If it exceeds 1, the reaction becomes extremely fast and particles tend to aggregate, making it difficult to obtain so-called particles. If the amount of water added is too small, the yield will be poor; if it is too large, a three-dimensional network structure will develop, making it difficult to obtain so-called particles. For example, the amount of water added in the hydrolysis of Ta(OC 2 H 5 ) 5 using ammonia as a catalyst is preferably 3 to 50 in molar ratio to tantalum alkoxide. When the molar ratio is less than 3, the reaction rate is extremely slow and the yield of the product is poor, and when the molar ratio exceeds 50, a three-dimensional structure tends to develop, which is not preferable. Note that when preparing the reaction solution, it is preferable to make the solution a homogeneous solution, since if the solution becomes non-uniform, aggregated particles are likely to be produced and monodisperse particles are difficult to obtain. To this end, it is desirable to prepare and mix a tantalum alkoxide solution, a solution containing water, and a catalyst in advance, rather than adding each component to the solvent one after another. The reaction temperature is tantalum alkoxide, H 2 O,
It must be selected according to each concentration of catalyst,
The temperature is desirably 30° C. or higher in order to ensure that particles grow in a short time after particle formation and do not aggregate. However, extremely high temperatures are not required. Moreover, no processing operation is required. The particle size of the obtained Ta 2 O 5 .nH 2 O can be arbitrarily adjusted by adjusting the amount of catalyst and water added. for example
Ta (OC 2 H 5 ) 5 ethanol solution 0.015 mol/Kg
In a system consisting of NH 3 0.0018 mol/Kg, the amount of H 2 O is
By changing the amount from 0.059 to 0.48 mol/Kg, the particle size can be changed from 0.05 to 0.4 μm. In addition, in a system consisting of Ta(OC 2 H 5 ) 5 ethanol solution 0.015 mol/Kg and H 2 O 0.09 mol/Kg,
By changing the amount of NH 3 from 0.00041 to 0.0063 mol/Kg, the particle size can be changed from 0.1 to 0.75 μm. The concentration of tantalum alkoxide has a certain upper limit in order to prevent particle agglomeration; for example,
For Ta(OC 2 H 5 ) 5 , it is preferably 0.1 mol/Kg or less. The produced particles were found to be amorphous Ta 2 O 5 .nH 2 O by X-ray diffraction analysis and thermal analysis. Even when these particles were crystallized at about 800°C, the shrinkage was extremely small. Example 1 Ta (OC 2 H 5 ) 5 ethanol solution and NH 3 , H 2 O mixed ethanol solution were mixed, and the concentration after mixing was [Ta
(OC 2 H 5 ) 5 ]=0.015mol/Kg, [ H2O ]=0.09mol/
Adjusted to be Kg. NH 3 concentration is NH 3 /
Ta(OC 2 H 5 ) 5 molar ratio is 0.027, 0.055, 0.098, 0.20,
Adjusted to be 0.42. Hydrolysis at 50℃
As a result of carrying out the test for a certain period of time, spherical monodisperse particles having the particle diameters shown in Table 1 were obtained.

【表】 実施例 2 Ta(OC2H55エタノール溶液とNH3、H2O混合
エタノール溶液を混合し、混合後の濃度が〔Ta
(OC2H55〕=0.015mol/Kg、〔NH3〕=
0.0018mol/Kgとなるように調整した。H2O濃度
は、H2O/Ta(OC2H55モル比が3.9、7.8、15.2、
32.2となるように調整した。加水分解を50℃で1
時間(H2O/Ta(OC2H55=3.9の場合のみ1日)
行なつた結果、表2に示すような粒径の球形単分
散粒子が得られた。H2O/Ta(OC2H55=3.9の
条件で得られた粒子の走査型電子顕微鏡写真を示
すと第1図の通りであつた。
[Table] Example 2 Ta (OC 2 H 5 ) 5 ethanol solution and NH 3 , H 2 O mixed ethanol solution were mixed, and the concentration after mixing was [Ta
(OC 2 H 5 ) 5 ]=0.015mol/Kg, [NH 3 ]=
It was adjusted to 0.0018 mol/Kg. The H 2 O concentration is H 2 O/Ta (OC 2 H 5 ) 5 molar ratio of 3.9, 7.8, 15.2,
Adjusted to be 32.2. Hydrolysis at 50℃
Time (1 day only when H 2 O/Ta (OC 2 H 5 ) 5 = 3.9)
As a result, spherical monodisperse particles having the particle diameters shown in Table 2 were obtained. A scanning electron micrograph of the particles obtained under the condition of H 2 O/Ta(OC 2 H 5 ) 5 =3.9 is shown in FIG. 1.

【表】 実施例 3 Ta(OC2H55エタノール溶液とNH3、H2O混合
エタノール溶液を混合し、混合後の濃度が〔Ta
(OC2H55〕=0.015mol/Kg、〔NH3〕=
0.0008mol/Kgとなるように調整した。H2O濃度
はH2O/Ta(OC2H55モル比が7.2、14.5となるよ
うに調整した。加水分解を0.5℃で1時間行なつ
た結果、表3に示すような粒径の球形単分散粒子
が得られた。 表3 H2O/Ta(OC2H55モル比 7.2 14.5 粒径(μm) 0.75 0.35 実施例 4 Ta(OC2H55エタノール溶液とNH3、H2O混合
エタノール溶液を混合し、混合後のH2O/Ta
(OC2H55モル比が5となるように調整した。 加光分解を50℃で1時間行なつた結果、表3に
示すような粒径の球形単分散粒子が得られた。 表4 〔Ta(OC2H55〕 0.015 0.03 0.045 粒度(μm) 0.2 0.3 0.35 実施例 5 Ta(OC2H55エタノール溶液とC2H5NH2
H2O混合エタノール溶液を混合し、混合後の
〔Ta(OC2H55〕=0.45mol/Kg、〔C2H5NH2〕=
0.045mol/Kg、〔H2O〕=0.36mol/Kgとし、20℃
で加水分解を1時間行なつた結果、粒径0.32μm
の球形単分散粒子が得られた。 実施例 6 Ta(OC2H55エタノール溶液と(NH22CO、
H2O混合エタノール溶液を混合し、混合後の
〔Ta(OC2H55〕=0.015mol/Kg、〔(NH22CO〕=
0.048mol/Kg、〔H2O〕=0.13mol/Kgとし、50℃
で加水分解を2時間行なつた結果、0.26μmの球
形単分散粒子が得られた。 発明の効果 本発明の方法によると、均一粒径、微粒子、良
分散性であり、かつ高純度で球状のTa2O5
nH2Oが得られ、しかも粒径も広い範囲で任意に
調節し得られる優れた効果を奏し得られる。
[Table] Example 3 Ta (OC 2 H 5 ) 5 ethanol solution and NH 3 , H 2 O mixed ethanol solution were mixed, and the concentration after mixing was [Ta
(OC 2 H 5 ) 5 ]=0.015mol/Kg, [NH 3 ]=
It was adjusted to 0.0008 mol/Kg. The H 2 O concentration was adjusted so that the H 2 O/Ta (OC 2 H 5 ) 5 molar ratio was 7.2 and 14.5. As a result of hydrolysis at 0.5° C. for 1 hour, spherical monodisperse particles having the particle sizes shown in Table 3 were obtained. Table 3 H 2 O/Ta (OC 2 H 5 ) 5 molar ratio 7.2 14.5 Particle size (μm) 0.75 0.35 Example 4 Mixing Ta (OC 2 H 5 ) 5 ethanol solution and NH 3 and H 2 O mixed ethanol solution H 2 O/Ta after mixing
(OC 2 H 5 ) 5 molar ratio was adjusted to 5. As a result of photolysis at 50° C. for 1 hour, spherical monodisperse particles having the particle sizes shown in Table 3 were obtained. Table 4 [Ta (OC 2 H 5 ) 5 ] 0.015 0.03 0.045 Particle size (μm) 0.2 0.3 0.35 Example 5 Ta (OC 2 H 5 ) 5 ethanol solution and C 2 H 5 NH 2 ,
Mix the H 2 O mixed ethanol solution, and after mixing [Ta(OC 2 H 5 ) 5 ] = 0.45 mol/Kg, [C 2 H 5 NH 2 ] =
0.045mol/Kg, [H 2 O] = 0.36mol/Kg, 20℃
As a result of hydrolysis for 1 hour, the particle size was 0.32 μm.
spherical monodisperse particles were obtained. Example 6 Ta(OC 2 H 5 ) 5 ethanol solution and (NH 2 ) 2 CO,
Mix the H 2 O mixed ethanol solution, and after mixing [Ta(OC 2 H 5 ) 5 ] = 0.015 mol/Kg, [(NH 2 ) 2 CO] =
0.048mol/Kg, [H 2 O] = 0.13mol/Kg, 50℃
As a result of hydrolysis for 2 hours, 0.26 μm spherical monodisperse particles were obtained. Effects of the Invention According to the method of the present invention, Ta 2 O 5 .
nH 2 O can be obtained, and the particle size can also be arbitrarily adjusted within a wide range to achieve excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で得られた粒子の走査型
電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of particles obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 タンタルアルコキシドの非水溶液に、水の存
在下で水酸基を放出する化合物、所謂ブロステツ
ド塩基の触媒及び水を混合して加水分解すること
を特徴とするTa2O5・nH2O粒子の製造方法。 2 触媒がNH3であり、その濃度がNH3/タン
タルアルコキシドのモル比で0.01〜1の範囲であ
る特許請求の範囲第1項記載のTa2O5・nH2O粒
子の製造方法。 3 H2O/タンタルアルコキシドがモル比で3
〜50%である特許請求の範囲第1項記載の
Ta2O5・nH2O粒子の製造方法。 4 触媒が=NH基または−NH2基を有する化合
物である特許請求の範囲第1項記載のTa2O5
nH2O粒子の製造方法。
[Claims] 1. Ta 2 O 5 .nH , which is characterized in that a non-aqueous solution of tantalum alkoxide is hydrolyzed by mixing a compound that releases a hydroxyl group in the presence of water, a so-called Brosted base catalyst, and water. 2 Method for producing O particles. 2. The method for producing Ta 2 O 5 .nH 2 O particles according to claim 1, wherein the catalyst is NH 3 and its concentration is in the range of 0.01 to 1 in molar ratio of NH 3 /tantalum alkoxide. 3 H 2 O/tantalum alkoxide has a molar ratio of 3
~50% according to claim 1
Method for producing Ta 2 O 5 nH 2 O particles. 4 Ta 2 O 5 according to claim 1, wherein the catalyst is a compound having an =NH group or -NH 2 group.
Method for producing nH2O particles.
JP16618685A 1985-07-26 1985-07-26 TA2O5 * NH2ORYUSHINOSEIZOHOHO Expired - Lifetime JPH0233654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16618685A JPH0233654B2 (en) 1985-07-26 1985-07-26 TA2O5 * NH2ORYUSHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16618685A JPH0233654B2 (en) 1985-07-26 1985-07-26 TA2O5 * NH2ORYUSHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6296319A JPS6296319A (en) 1987-05-02
JPH0233654B2 true JPH0233654B2 (en) 1990-07-30

Family

ID=15826669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16618685A Expired - Lifetime JPH0233654B2 (en) 1985-07-26 1985-07-26 TA2O5 * NH2ORYUSHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0233654B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904292A1 (en) * 1989-02-14 1990-08-16 Starck Hermann C Fa HIGH PURITY TANTALINE PENTOXIDE AND METHOD FOR THE PRODUCTION THEREOF
DE4436392C2 (en) * 1994-10-12 2002-10-31 Fraunhofer Ges Forschung Metal niobates and / or tantalates, processes for their preparation and their further processing into perovskites
JP4949960B2 (en) * 2007-07-27 2012-06-13 Dowaホールディングス株式会社 Method for producing tantalum oxide

Also Published As

Publication number Publication date
JPS6296319A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
TW200932405A (en) Method for producing copper powder, and copper powder
JPH0816003B2 (en) Method for producing inorganic oxide
US20220402768A1 (en) Method for preparing gamma-gallium oxide nanomaterial
Ocana et al. Formation of “monodispersed” SnO 2 powders of various morphologies
JPH06316407A (en) Production of silica sol
JPH0233654B2 (en) TA2O5 * NH2ORYUSHINOSEIZOHOHO
Srinivasan et al. A novel method to enhance metastable zone width for crystal growth from solution
JPS6054915A (en) Spherical basic magnesium carbonate and production thereof
Xiaowei et al. Oleic acid assisted glycothermal synthesis of cuboidal Ba0. 6Sr0. 4TiO3 nanocrystals and their ordered architectures via self-assembly
JP3955087B2 (en) Highly flowable maltitol powder and method for producing the same
JP3799485B2 (en) Zirconia powder and method for producing the same
JPS62158116A (en) Production of fine aluminium oxide particles
JP3878867B2 (en) Indium hydroxide and oxide
JPH0371366B2 (en)
Schwartz et al. Crystallization behavior of chemically prepared and rapidly solidified PbTiO3
CN111041548A (en) Plate-shaped sodium bismuth titanate template crystal grain and preparation method and application thereof
JPS6296327A (en) Method of preparing sol
Ishida et al. Hydrothermal synthesis of single-crystal α-tristrontium phosphate particles
JPH0530767B2 (en)
JPS63112411A (en) Production of silica particle
KR100417694B1 (en) Preparation method of spherical monodispersed bariumtitanate particles
KR100383088B1 (en) Barium tinate spherical fine particle synthesis method
JPH02184514A (en) Cylindrical quartz glass powder and production thereof
JP2915224B2 (en) Method for producing inorganic oxide particles

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term