JPS6054915A - Spherical basic magnesium carbonate and production thereof - Google Patents

Spherical basic magnesium carbonate and production thereof

Info

Publication number
JPS6054915A
JPS6054915A JP15907383A JP15907383A JPS6054915A JP S6054915 A JPS6054915 A JP S6054915A JP 15907383 A JP15907383 A JP 15907383A JP 15907383 A JP15907383 A JP 15907383A JP S6054915 A JPS6054915 A JP S6054915A
Authority
JP
Japan
Prior art keywords
magnesium carbonate
reaction
spherical
basic magnesium
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15907383A
Other languages
Japanese (ja)
Other versions
JPH0453809B2 (en
Inventor
Ryohei Kataoka
良平 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15907383A priority Critical patent/JPS6054915A/en
Publication of JPS6054915A publication Critical patent/JPS6054915A/en
Publication of JPH0453809B2 publication Critical patent/JPH0453809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce the titled salt having a narrow particle size distribution in the form of spheres or spheroid close thereto, by subjecting a water-soluble magnesium salt and an aqueous solution of Na2CO3 kept within specific ranges of reaction concentration, reaction temperature and reaction rate to synthetic reaction. CONSTITUTION:A water-soluble magnesium salt, e.g. MgCl2, is reacted with an aqueous solution of Na2CO3 to synthesize basic magnesium carbonate. In the process, the temperature of the reaction system is kept at 40-80 deg.C, and both are mixed under >=0.1 S/V conditions between S(l/min) addition rate of the salt and the reaction volume V(l) under agitation and then allowed to stand and matured in the mother liquor. According to the process, the titled salt having aggregated particles, formed by aggregating fine primary particles in which the form is spheres or spheroid having >=0.7 (b/a) when the major axis is assumed as (a) and the minor axis is assumed as (b), and having 5-60mu particle diameter of the aggregated particles, 0.4-0.7g/ml bulk density and 10-40m<2>/dg specific surface area is obtained. The resultant salt is effectively usable as fillers for synthetic resins, cosmetics and carriers for agricultural chemicals and medicines, etc.

Description

【発明の詳細な説明】 本発明は合成桐脂に対する充填材、化粧料あるいは農医
薬品の113体等に有効に使用される新規な球状塩基性
炭酸マグネシウム及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel spherical basic magnesium carbonate which can be effectively used as a filler for synthetic tung fat, cosmetics or agricultural medicines, and a method for producing the same.

従来より粉体全球状化することによって充填性、分散性
、研磨性、流動性など様々な粉体物性が改良さtl、好
ましい特性が付与されるところから、各種無機粉体の球
状化が試みられている。これら球状粉体で公知のものと
してti例えに球状炭酸カルシウム(特開昭57−92
519.!;7−9コ52θ、37−q2jtコ/sS
!;−qsbiq>、球状亜硫酸カルシウム(%開昭j
t3−/ll/9.!;)、球状アルカリ土類金属ケイ
酸#A(日化誌玄、727(/97b))、球状タング
ステン酸カルシウム(日化u10%/!;2S(/q7
1))吟がある。
Conventionally, spheroidizing various inorganic powders has improved various powder properties such as filling, dispersibility, abrasiveness, and fluidity by spheroidizing the powder, giving it desirable characteristics. It is being Among these spherical powders, known examples include spherical calcium carbonate (Japanese Unexamined Patent Application Publication No. 57-92
519. ! ;7-9ko52θ, 37-q2jtko/sS
! ;-qsbiq>, spherical calcium sulfite (%Kaishoj
t3-/ll/9. ! ;), spherical alkaline earth metal silicate #A (Nichika Shigen, 727 (/97b)), spherical calcium tungstate (Nichika U10%/!; 2S (/q7
1)) There is a gin.

塩基性炭酸マグネシウムの製造方法は従来、正炭酸マグ
ネシウム結晶の水性スラリーを中間原料として、これを
60〜gθ℃の温度でl〜数時間加熱熟成し、さらに許
別して得られた結晶を119〜750℃に加熱して乾燥
と完熟を行ない、概略次式のル応式に従かい地糸性炭酸
マグネシウムに転化させる方法が一般的である。
The conventional method for producing basic magnesium carbonate has been to use an aqueous slurry of orthomagnesium carbonate crystals as an intermediate raw material, heat-ripen it at a temperature of 60 to θ°C for 1 to several hours, and then separate the resulting crystals to 119 to 750 g A common method is to dry and ripen it by heating it to ℃, and then convert it into thread-like magnesium carbonate according to the following equation.

加熱 j!;(MgCO,−3H20)−−14MgC0,−
Mg(OH)2−1IH20+C02+1OH20 このために必要が正炭酸マグネシウム結晶は(11水溶
性マグネシウム塩(塩化マグネシウム粉tri a m
lマグネシウム)と水溶性炭酸堵(炭酸アンモニウム又
は炭酸ナトリウム)との反応(21重炭酸マグネシウム
(Mg(HCO2)2)の熱分解(3)水酸化マグネシ
ウムスラリ〜に炭酸ガスを吹き込む反応のいずれかによ
って調製されている。
Heating! ;(MgCO,-3H20)--14MgCO,-
Mg(OH)2-1IH20+C02+1OH20 For this purpose, the required magnesium carbonate crystals are (11 water-soluble magnesium salt (magnesium chloride powder tri a m
(21) Thermal decomposition of magnesium bicarbonate (Mg(HCO2)2) (3) Any reaction in which carbon dioxide gas is blown into magnesium hydroxide slurry ~ It is prepared by.

上記した従来の塩基性炭酸マグネシウムの製造方法では
反応系内を均一に維持することにより均一な大きさの結
晶を得るために、正炭酸マグネシウム結晶を析出させる
工程及びこれを加熱熟成して塩基性炭酸マグネシウムに
転化する工程において、反応槽内は絶えず楯拌状態に置
方・れている。
In the above-mentioned conventional method for producing basic magnesium carbonate, in order to obtain crystals of uniform size by maintaining uniformity in the reaction system, there is a step of precipitating orthomagnesium carbonate crystals, and this is heated and aged to make basic magnesium carbonate. In the process of converting magnesium carbonate, the inside of the reaction tank is kept in a constant state of shield stirring.

このような従来の方法により得られる地#・性炭酸マグ
ネシウムは板状の微結晶から成っておp1重密度が0.
2〜0.3P/atの非常に嵩高い粉体であり、溶液中
にあってはその粘度が増大し、ケーキ状にあっては固−
結を起し、製品とするためには解砕しカければならない
問題を有していた。
The geomagnesium carbonate obtained by such conventional methods consists of plate-like microcrystals and has a p1 density of 0.
It is a very bulky powder of 2 to 0.3 P/at, and its viscosity increases when it is in a solution, and when it is in the form of a cake, it becomes solid.
There was a problem in that it would cause coalescence and would have to be crushed in order to be made into a product.

また、塩基性炭酸マグネシウムは多くの結晶水と炭酸ガ
スを有し、合成樹脂難燃化のための充填材として有用で
あることが知られているが、難燃性を付与しつるほどの
鼾を樹脂に充填する場合、上記した塩基性炭酸マグネシ
ウムの性状から樹脂へ多量かつ均一に分散充填するのけ
きわめて困難である。
In addition, basic magnesium carbonate has a large amount of water of crystallization and carbon dioxide gas, and is known to be useful as a filler for flame retardant synthetic resins. When filling a resin with basic magnesium carbonate, it is extremely difficult to uniformly disperse and fill the resin in large quantities due to the above-mentioned properties of basic magnesium carbonate.

以上のようが従来の塩基性炭酸マグネシウム粉体のもつ
不利益ないしは欠陥を克服するKは塩基性炭酸マグネシ
ウム粒子を球形r(すればよいが、塩基性炭酸マグネシ
ウムは単結晶としてはもちろん一次粒子としても球形に
するととけ困峻であり、球形にするためにけ■微細な一
次粒子全凝集させて球形にする必要があり、■そのため
には結晶析出速度?できるだけ速め、結晶が本来固有の
形状に成長する余裕を与えかいようにしなければならな
い。しかるに、析出速紅を速めるために反応温度を高め
たりl#巣粉粒子破壊してしまわないように攪拌を中止
又は緩やかにすれげ、場合によっては「球状」の凝集体
が得られることはわがっているが、その「球状」は剣状
の塩基性炭酸マグネシウム結晶が絡みあったいが果状で
きわめて粒度分布の広い、企んだ形状のものであり、バ
ラバラになった針状結晶やグル状不定形塊状物を含む混
合物である。
As described above, basic magnesium carbonate particles can be formed into spherical shapes (r), but basic magnesium carbonate can be used not only as a single crystal but also as a primary particle. It is difficult to make it into a spherical shape, and in order to make it into a spherical shape, it is necessary to aggregate all of the fine primary particles and make it into a spherical shape.To do this, the crystal precipitation rate is as fast as possible, and the crystals have to conform to their original shape. However, in order to speed up the precipitation, the reaction temperature may be increased, or stirring may be stopped or stirred slowly to prevent the destruction of the nested powder particles. It is known that "spherical" aggregates can be obtained, but the "spherical shape" is a deliberate shape in which sword-shaped basic magnesium carbonate crystals are intertwined, but fruit-like and have an extremely wide particle size distribution. , is a mixture containing disaggregated needle-like crystals and glue-like amorphous lumps.

一方、球状塩基性炭酸マグネシウムを製造する方法とし
て反応条件の制御によらず、バインダーを用いて機械的
に球状に成形する方法もあるが、バインダーの介在は塩
基性炭酸マグネシウム本来の化学的、物理的性貴f払う
ことになり好ましくない。
On the other hand, as a method for producing spherical basic magnesium carbonate, there is also a method of mechanically shaping it into a spherical shape using a binder without controlling the reaction conditions, but the intervention of the binder is due to the inherent chemical and physical properties of basic magnesium carbonate. I don't like it because I have to pay a lot of money.

本発明者擲は以上のような従来の塩基性炭酸マグネシウ
ム粉体のもつ課題を克服すべく鋭意研究の結果、墳墓性
炭酸マグネシウム前駆物質としての正炭酸マグネシウム
結晶の析出? F& 1に規定することにより球状の凝
集粒子が得られ、史に析出時における反応系内の均一性
を制御することにより球状凝集粒子の大きさf変λうる
ことを見い出し、反応液81に、反応温度及び反応速度
を特定の範囲内に維持して合成反応をおこなわせること
により粒度分布が狭く、粒子の形状が葦又けそれに近い
回転楕円体である球状塩基性炭酸マグネシウムが常に確
実に得ることができるとともに、得られる球状塩基性炭
酸マグネシウムは比表面積が大きいにもかかわらず嵩密
度が大きく、かつ流動性が極めて良好である等のf#ね
た粉体としての特性を示し、またこれにより高濃囲スラ
リーを1製した際には著しい粘度増加がなく合成樹脂に
対し多量罠充填し得る等、充填材とl−ても優れた特性
全治し、種々の分野に有効に;f′!I用し得ることを
知見して本発明を完成するに至ったものである。したが
って、本発明祉かかる知見に基づき微細な一次粒子が凝
集して形成された凝集粒子の形状が−k<径を81短径
ibとしたときb/―≧0.7の球状もしくは回転楕円
体であ幻、前記凝集粒子の粒径が5〜60μmであυ%
嵩叶、・度かO,ダ〜o 、 7 r/屑ε、比表面積
がlO〜ダOm’/ fである多孔質球状塩基性炭酸マ
グネシウムf柳供するものである。さらに上記した球状
塩基性炭酸マグネシウムの代表的な製造方法として本発
明は水溶性マグネシウム塩と炭酸ナトリウムの水溶液を
反応させて塩基性炭酸マグネシウムを合成する反応にお
いて、それぞれの濃度を/ 、 !r mo−e/ J
3以下とし、反応系の温度’elIo−go℃に保ち、
攪拌下、対地の添加速度S()7m1n)が反応容量V
 (−e)Ic対しS/V≧0.!の条件で混合j2、
シかる後母液中で2時間以上靜情熟成することを特徴と
する球状塩基性炭酸マグネシウムの製造方法′f−提供
するものである。本発明の塩基性1尖醒マグネシウムの
製法は上記したものに制に制限されるものでり、ない。
As a result of intensive research to overcome the above-mentioned problems with conventional basic magnesium carbonate powder, the inventor of the present invention has discovered that orthomagnesium carbonate crystals as a tomb-like magnesium carbonate precursor have been precipitated. By specifying F & 1, spherical agglomerated particles can be obtained, and it was previously discovered that the size of the spherical agglomerated particles can be varied by controlling the uniformity within the reaction system during precipitation, and in the reaction solution 81, By carrying out the synthesis reaction while maintaining the reaction temperature and reaction rate within a specific range, spherical basic magnesium carbonate with a narrow particle size distribution and a spheroidal particle shape similar to that of a reed matata can always be obtained. In addition, the obtained spherical basic magnesium carbonate exhibits characteristics as f# sticky powder, such as a large bulk density despite having a large specific surface area, and extremely good fluidity. When one highly concentrated slurry is made, there is no significant increase in viscosity and a large amount can be filled into the synthetic resin, and it has excellent properties even with fillers, making it effective in various fields; f' ! The present invention was completed based on the finding that the present invention can be used for various purposes. Therefore, based on the present invention and such knowledge, the shape of aggregated particles formed by agglomeration of fine primary particles is spherical or spheroidal with b/-≧0.7, where −k<diameter is 81 and minor axis ib. If the particle size of the aggregated particles is 5 to 60 μm, υ%
It provides a porous spherical basic magnesium carbonate with a bulky surface, a degree of O, a degree of O, 7 r/epsilon, and a specific surface area of lO to Om'/f. Furthermore, as a typical method for producing the above-mentioned spherical basic magnesium carbonate, the present invention involves a reaction in which a water-soluble magnesium salt and an aqueous solution of sodium carbonate are reacted to synthesize basic magnesium carbonate, and the respective concentrations are /, ! r mo-e/J
3 or less, and keep the temperature of the reaction system at 'elIo-go℃,
Under stirring, the addition rate S()7mln) to the ground is the reaction volume V
(-e) S/V vs. Ic≧0. ! Mixed under the conditions of j2,
The present invention provides a method for producing spherical basic magnesium carbonate, which comprises ripening the product in a mother liquor for 2 hours or more in silence. The method for producing basic 1-point atomized magnesium of the present invention is not limited to the above-mentioned method.

なを、本発明圧おいて反応#4*v、l!l:ij−マ
グネシウム地水溶液の容量と炭酸ナトリウム水溶液の好
句の和である。
What, reaction #4*v, l! at the pressure of the present invention! l:ij - It is the sum of the volume of the magnesium ground aqueous solution and the sodium carbonate aqueous solution.

以下、本発明の1細について簡明する。Hereinafter, one detail of the present invention will be briefly explained.

本発明の水溶性マグネシウム塩は増化マグネシウム及び
(IIlt酸マグネシウムの水浴液、苦汁等を挙げるこ
とができる。
The water-soluble magnesium salts of the present invention include enriched magnesium and magnesium (IIltate) water bath solutions, bittern, and the like.

水溶性マグネシウム塩及び炭酸ナトリウム水溶液の濃度
には厳密な制限けないが、余り希薄な溶液では処理液相
が増すため経営的でなくなり、また、余りに濃厚な溶液
では反応系スラリーの均一性を確保するのが困難となり
、最終的に得られる塩基性炭酸マグネシウムには球状体
同志が連鎖状にゆ着した凝集粒子が多くなり、粒度分布
の広い嵩高な塩基性炭酸マグネシウムとなるため、各々
の#度け0 @5− / 、 、!; mol) /−
eが好ましく用いられる。
There are no strict limits on the concentration of the water-soluble magnesium salt and sodium carbonate aqueous solution, but too dilute solutions will increase the processing liquid phase, making it uneconomical, and too concentrated solutions will make it difficult to ensure the uniformity of the reaction slurry. As a result, the basic magnesium carbonate that is finally obtained contains many agglomerated particles in which spherical bodies are linked together in a chain, resulting in bulky basic magnesium carbonate with a wide particle size distribution. Degree 0 @5- / , ,! ; mol) /-
e is preferably used.

上記マグネシウム塩水溶液と炭酸ナトリウム水溶液の混
合比率はMg 分の収率を高めるうえで、炭酸す) I
Iウムを若干過剰に仕込むのがよく、モル比C071−
/ Mf?が/、0〜/、/の範囲が奸才しい。
The mixing ratio of the above magnesium salt aqueous solution and sodium carbonate aqueous solution is determined in order to increase the yield of Mg.
It is better to charge a slight excess of Ium, and the molar ratio C071-
/ Mf? The range from /, 0 to /, / is clever.

本発明の球状塩基性炭酸マグネシウムを析出させるには
反応系の温度をlIO〜gθ℃、好ましくは3−0〜7
0℃に保持し、攪拌下、対地の添加速度s (、、e/
min ) ’に反応@−槓v(沼)に対しS/V≧0
−ts好ましくはコ≧S/V≧0 、 lKな、?−。
In order to precipitate the spherical basic magnesium carbonate of the present invention, the temperature of the reaction system is 1IO to gθ°C, preferably 3-0 to 7
While maintaining the temperature at 0°C and stirring, the ground addition rate s (,, e/
min) 'React to @-S/V≧0 for 槓v(swamp)
-ts preferably Ko≧S/V≧0, lK? −.

ように添加することが極めて1i姿である。It is extremely 1i form to add it like this.

伺、本明細物におはる対地の添加とは、炭酸ナトリウム
水溶液中に水溶性マグネシウム塩を添加する態様、及び
水溶性マグネシウム地中に炭酸ナトリウム水溶液を添加
する態様のどちらでも可能な意味であるが、前者の態様
が一般的である。
In this specification, the term "addition" refers to the addition of a water-soluble magnesium salt to an aqueous sodium carbonate solution, or the addition of a sodium carbonate aqueous solution to a water-soluble magnesium solution. However, the former mode is common.

反応系の温度が170℃または対地の添加速度と反応容
積の比s7vかθ、l以下の場合、巾l〜20μm、長
さ70〜100μmの比較的天真な針状ないし柱状の正
炭酸マグネシウムが生成1本発明でいう微細な一次粒子
を凝集させて球形にすることにはならず、球状塩基性炭
酸マグネシウムへの転化は起らない。逆に反応系の温度
がgθ℃以上では、従来の塩基性炭酸マグネシウムと同
様な微ホ板状の塩基性炭酸マグネシウム結晶となる。ま
た、S/V比の上限値については特に制限されないが一
≧S / V≧0./が好1しくS / V比を2以上
にするためKは反応液の一度ケ低くする必要かあり、さ
もないとスラリーの粘度が急激に上昇[7て反応系の均
一性を保つことが困難となる。
When the temperature of the reaction system is 170°C or the ratio of the addition rate to the ground and the reaction volume is less than s7v or θ, l, relatively innocent acicular or columnar magnesium orthocarbonate with a width of l to 20 μm and a length of 70 to 100 μm is formed. Production 1 The fine primary particles referred to in the present invention are not aggregated into a spherical shape, and no conversion into spherical basic magnesium carbonate occurs. On the other hand, when the temperature of the reaction system is higher than gθ°C, basic magnesium carbonate crystals form in the form of fine platelets similar to conventional basic magnesium carbonate. Further, there is no particular restriction on the upper limit of the S/V ratio, but S/V≧0. / is preferable, and in order to make the S / V ratio 2 or more, it is necessary to lower K once in the reaction solution, otherwise the viscosity of the slurry will increase rapidly [7, and it will be difficult to maintain the homogeneity of the reaction system] It becomes difficult.

反応系内の攪拌強度は析出した正炭酸マグネシウム粒子
がスラリー状を保ち、かつ系内の混iならびにスラリー
濃度を均一化するにたる状態が適当であシ、それ以上の
余りに激し2い攪拌は球状凝集粒子の破壊をもたらし、
最終的に得られる塩基性炭酸マグネシウムの形状を偏平
な円板状からさらには従来の板状微細なものにするので
好ま[2〈ない。また反応系内の攪拌時間は反応容器の
形状、反応容積、攪拌翼の形状、大小及び攪拌強度によ
り異なるが、対地の添加時間と同時あるいは添加終了後
3分以内にとどめるのが望1しく、それ以上の長時間に
わたる攪拌は析出した微細な一次粒子の静置熟成工程で
の溶解析出による球状凝集を妨げるので好普しくない。
The stirring intensity in the reaction system should be such that the precipitated magnesium orthocarbonate particles remain in a slurry state and the mixture and slurry concentration in the system are made uniform. results in the destruction of spherical agglomerated particles,
It is preferable because the shape of the basic magnesium carbonate finally obtained is changed from a flat disk shape to a conventional fine plate shape. The stirring time in the reaction system varies depending on the shape of the reaction vessel, the reaction volume, the shape and size of the stirring blade, and the stirring intensity, but it is preferable to keep it at the same time as the addition time to the ground or within 3 minutes after the completion of addition. Stirring for a longer period of time is undesirable because it prevents the fine primary particles that have precipitated from forming into spherical agglomerates due to dissolution precipitation during the static aging process.

更に本発明の球状塩基性炭酸マグネシウムを得るために
はマグネシウム塩水溶液と炭酸ナトリウム水溶液全上記
した濃度、温度、反応速度及び攪拌東件下で混合した後
、析出した倣細な−次粒子からなる正炭酸マグネシウム
スラリーを混合時の反応温度を保持し、なから#液中で
コ〜グ時間投拌を行わずに静衡熟成することが必髪であ
る。従来の環基性炭酸マグネシウムの製造法においてd
lもっばら反応系内を均一に保ち、それによりMj+ 
−な大きさの塩基性炭酸マグネシウムを得るために1正
炭酸マグネシウムスラリーを攪拌下で転化熟成すること
が行なわ名ていた6[、たがって従来の環基性炭酸マグ
ネシウムは、その本来固有の形状すなわち板状結晶とな
らざる余得なかった。17かし乃、がら微細々−次粉粒
子らなる正炭酸マグネシウムスラリーは本発明における
静画熟成することにより球状に凝集し1、次第に地λ【
:性炭酸マグネシウムへと転化する。り酸熟成時間がコ
時間より短かいと球状への転化及び正炭酸マグネシウム
の塩基性炭酸マグネシウムへの転化が不完全であり、ま
たダ時間以上熟成[7ても転化にそれ以上進まない。
Furthermore, in order to obtain the spherical basic magnesium carbonate of the present invention, a magnesium salt aqueous solution and a sodium carbonate aqueous solution are mixed under the above concentration, temperature, reaction rate, and stirring conditions, and then the precipitated fine particles are formed. It is essential to maintain the reaction temperature of the magnesium carbonate slurry at the time of mixing, and to statically mature the slurry in the liquid without stirring for a long time. In the conventional method for producing cyclic magnesium carbonate, d
l Keep the inside of the reaction system as homogeneous as possible, thereby increasing Mj+
In order to obtain basic magnesium carbonate with a large size, a mononormal magnesium carbonate slurry was converted and aged under stirring. In other words, it had no choice but to become a plate-like crystal. 17 The orthomagnesium carbonate slurry consisting of fine powder particles aggregates into a spherical shape by aging in the present invention, and gradually becomes spherical.
: Converted to magnesium carbonate. If the acid aging time is shorter than 1 hour, the conversion to spherical shape and the conversion of normal magnesium carbonate to basic magnesium carbonate will be incomplete, and even if the acid ripening time is longer than 7 hours, the conversion will not proceed any further.

本発明において平均径の大きい球状塩基性炭酸マグネシ
ウムを得るには低温で反応連1赳゛會遅くし、混合後の
攪拌時間を短かくすれはよく、逆に小径の球状塩基性炭
酸マグネシウムを得るにはこれらと逆の条件に設定すれ
ばよく、各反応条件を適宜に選定することにより所望す
る平均径を有する球状塩基性炭酸マグネシウムが製造さ
れる。
In the present invention, in order to obtain spherical basic magnesium carbonate with a large average diameter, it is better to slow down the reaction reaction at a low temperature and shorten the stirring time after mixing; conversely, to obtain spherical basic magnesium carbonate with a small diameter. The conditions may be set to the opposite of these conditions, and by appropriately selecting each reaction condition, spherical basic magnesium carbonate having a desired average diameter can be produced.

本発明により従来公知の塩基性炭酸マグネシウムの構造
と明瞭に区別される新規な球状構造地基性炭酸マグネシ
ウムが得られるが、該球状塩基性炭酸マグネシウムは比
表面積が太きいにもかかわらず嵩密度が大きく球状でか
つその粒度分布が狭いが故にきわめて流−1性分散性に
豊み、合成樹脂への充填材、化粧料あるいは農医薬品等
の1■体として有用である。また該球状塩基性炭酸マグ
ネシウムは特異な粉体特性をもつ高活性酸化マグネシウ
ムの原料としても有用である。
The present invention provides a novel spherical basic magnesium carbonate structure that is clearly distinguishable from the structure of conventionally known basic magnesium carbonates.However, although the spherical basic magnesium carbonate has a large specific surface area, it has a low bulk density. Because it is large and spherical and has a narrow particle size distribution, it has excellent fluidity and dispersibility, and is useful as a filler for synthetic resins, cosmetics, agricultural medicines, etc. The spherical basic magnesium carbonate is also useful as a raw material for highly active magnesium oxide, which has unique powder characteristics.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例/ 炭酸ナトリウム水溶液SOθmlに攪拌下で塩化マグネ
シウム水溶液500 mlを2沼/mlnの速度で添加
した。この時の添加速度S (−13/ mln )と
反応容積V(形)の比S/Vは2であった。
Example/ 500 ml of magnesium chloride aqueous solution was added to SOθml of sodium carbonate aqueous solution at a rate of 2 ml/ml under stirring. At this time, the ratio S/V between the addition rate S (-13/mln) and the reaction volume V (shape) was 2.

添加を始めてから60秒間攪拌を続けた。攪拌終了後3
時間同温度に静1熟成[7た。次いで、沈でん物をろ過
清浄後/20℃でS時間乾燥した。
Stirring was continued for 60 seconds after the addition began. After stirring 3
Matured for 1 hour at the same temperature [7 hours]. Then, the precipitate was filtered and cleaned and dried at 20° C. for S hours.

この時の反応温度は2 、!−”Cから90℃の範囲で
変化させ炭酸ナトリウムと塩化マグネシウムの濃If比
(No2Co3) / (Mg(J2) 1d、0 、
 !; 、210.!0及びθ、り310.70であっ
た。
The reaction temperature at this time is 2,! Concentrated If ratio of sodium carbonate and magnesium chloride (No2Co3) / (Mg(J2) 1d, 0,
! ; , 210. ! 0 and θ, ri was 310.70.

乾燥物のx#i1回折の結果は全て塩基性炭酸マグネシ
ウムであった。得られた環基性炭酸マグネシウムの性状
を表/にまた、形状を示す顕微鏡写真を第1〜第6図に
示す。
The results of x#i1 diffraction of the dry product were all basic magnesium carbonate. The properties of the obtained cyclic magnesium carbonate are shown in Table 1, and micrographs showing the shape are shown in FIGS. 1 to 6.

反応温度が170℃以下では本発明にいう球状塩基性炭
酸マグネシウムは得られず、4tθ℃〜70℃の温度範
囲で球状のものが得られる。
If the reaction temperature is 170°C or lower, the spherical basic magnesium carbonate referred to in the present invention cannot be obtained, but at a temperature range of 4tθ°C to 70°C, a spherical one can be obtained.

反応温度がgO℃以上になると偏平板状となる。When the reaction temperature exceeds gO 0 C, it becomes flat plate-like.

本実施例での最適反応温度はグ0〜70℃の範囲である
が、反応温度の上昇とともに球状粒子の粒径は小さくな
る。粒度分布はいずれも非常に狭い。
The optimum reaction temperature in this example is in the range of 0 to 70°C, but as the reaction temperature increases, the particle size of the spherical particles becomes smaller. Both particle size distributions are very narrow.

実施ψ11ノ ロ0℃に保持されたDgf / 、 0 ’l mo−
/3 /−eの炭酸ナトリウム水#液S 00 mば」
拌下同温度に保持された舗度/ 、QQmoA/−13
の塩化マグネシウム水溶液soomlを、24 / m
lnの速度で添加した。
Dgf/, 0'l mo- held at 0°C at ψ11
/3 /-e sodium carbonate water #liquid S 00 mba
Pavement maintained at the same temperature under stirring/ , QQmoA/-13
Sooml of magnesium chloride aqueous solution at 24/m
It was added at a rate of ln.

この時のS/V比はコであった。The S/V ratio at this time was .

添加を始めてから60秒間檀攪拌続けた。攪拌終了後同
温度で静置熟成をl−q時間桁ない、次いで沈でん物を
ろ過洗浄し、720℃でS時間乾、燥した。
After the addition started, stirring was continued for 60 seconds. After the stirring was completed, the mixture was left to mature at the same temperature for 1-q hours, and then the precipitate was filtered and washed, and dried at 720° C. for S hours.

乾燥物のX線回折の結釆は全て塩基性炭酸マグネシウム
であった。得られた粉体の性状を表2にまた、形状を示
す顕微鏡写真を第70〜第1,2図に示す。
X-ray diffraction analysis of the dried product revealed that all the solids were basic magnesium carbonate. The properties of the obtained powder are shown in Table 2, and micrographs showing the shape are shown in Figs. 70 to 1 and 2.

特開口8GO−54915(7) 静置熟成の時間が7時間では球状に凝集した塩基性炭酸
マグネシウムは得られず、微細な一次粒子の不規則な凝
集体が得られるのみで、これを更に静置熟成すると微細
な一次粒子同志の溶解・析出により球状に凝集した塩基
性炭酸マグネシウムが得られる。しかしながら9時間以
上の静置熟成ではほとんど変りない。
Special opening 8GO-54915 (7) If the static aging time is 7 hours, basic magnesium carbonate aggregated into spherical shapes will not be obtained, but only irregular aggregates of fine primary particles will be obtained. When aged, basic magnesium carbonate aggregated into spherical shapes is obtained by dissolving and precipitating fine primary particles. However, there is almost no difference when left standing for 9 hours or more.

実施例3 加熱及び攪拌装機つきの内容f# 30−eの反応槽に
1濃度0073 man / Jの炭酸ナトリウム水溶
液/2.!;ノを入れ、60℃に加温した。これに6θ
℃に加温した#度0.7mQI3/、13の塩化マグネ
シウム水溶液/ 2 、!;−ek20−e/m1n(
D速度で添加した。この時のSlV比は09gであった
Example 3 Aqueous sodium carbonate solution with a concentration of 0073 man/J/2. ! ; and heated to 60°C. To this, 6θ
# degree 0.7mQI3/, 13 magnesium chloride aqueous solution/2,! ;-ek20-e/m1n(
Added at rate D. The SLV ratio at this time was 09g.

、 添加開始から70秒・間攪拌し、その後同温度で3
時間静置熟成した。沈でん物はtPi過洗浄後/20℃
でS時間乾燥した。
, Stir for 70 seconds from the start of addition, then stir at the same temperature for 3
It was left to mature for a while. Precipitates are removed after tPi overwashing/20°C
It was dried for S hours.

得られた粉体はX線回折により環基性炭酸マグネシウム
であることが確認された。走査型電子顕微鏡写真より球
状であったCml3図)。
The obtained powder was confirmed to be cyclic magnesium carbonate by X-ray diffraction. Cml3, which was found to be spherical in scanning electron micrograph).

実施例ダ 実施例1においてs ih比CNa2cOs :l /
 [MgcJ2〕=0.7310.り01反反応度を6
0℃、塩化マグネシウム水溶液の添加速度を、!i 0
 ml / ml n及び/ 00 yui / ml
nとし、酢加終了と同時に攪拌を止めて、同温間で3時
間静置熟成した。この時のS/V比ho、os及び0.
/であった。
In Example 1, the sih ratio CNa2cOs:l/
[MgcJ2]=0.7310. ri01 reaction degree 6
0℃, addition rate of magnesium chloride aqueous solution,! i 0
ml/ml n and/00 yui/ml
n, stirring was stopped at the same time as the addition of vinegar was completed, and the mixture was left to mature at the same temperature for 3 hours. At this time, the S/V ratio ho, os and 0.
/Met.

得られた粉体はX線回折により塩基性炭酸マグネシウム
であることが確認された。その形状は走査型電子顕微鏡
写真よりS/V=0.0!;では偏平板状(第1ダ図)
、S/V=0.7では球状(第1S図)であった。
The obtained powder was confirmed to be basic magnesium carbonate by X-ray diffraction. Its shape is determined by scanning electron microscopy: S/V=0.0! ; Then, it is flat plate-like (Fig. 1)
, S/V=0.7, it was spherical (Fig. 1S).

実施例S 実施例/−4で得た球状塩基性炭酸マグネシウムの粉体
としての性状(嵩密度、安息角、比表面積)およびスラ
リーとしての性状(重量基準で20%の環基性炭酸マグ
ネシウムを含む水系スラリーの粘度)を従来の塩基性炭
酸マグネシウムと比較した。
Example S Properties of the spherical basic magnesium carbonate obtained in Example/-4 as a powder (bulk density, angle of repose, specific surface area) and properties as a slurry (20% by weight of cyclic basic magnesium carbonate The viscosity of the aqueous slurry) was compared with that of conventional basic magnesium carbonate.

嵩密度のd111定けJIS に 6220に準拠して
測定し1、安息角はパウダテスタ(細用粉体工学研兜所
)により、比表面積d迅連表面積測定装収(BET /
点状、柴田化学器械工業)により、平均粒径はシーラス
粒度分布計(レーザー光透描法、セイシン企業)Kより
測定し、た。スラリーの粘度は25℃においてB型回転
粘18′11″で測定した。
The bulk density was measured in accordance with JIS 6220, d111, and the angle of repose was measured using a powder tester (Prepared Powder Technology Research Center), and the specific surface area d was measured using a rapid surface area measurement device (BET/
The average particle size was measured using a Cirrus particle size distribution meter (laser light transmission method, Seishin Enterprises) K. The viscosity of the slurry was measured at 25°C with a Type B rotational viscosity of 18'11''.

結果を表1IK示す。The results are shown in Table 1IK.

球状塩基性炭酸マグネシウムは従来品に:比べ、嵩密度
が2〜3倍程度大きく、合成樹脂の充填材として大1に
充填でき、でた電比IIが大きい割には比表面Sけそわ
ほど減少せず粒径により10〜ダQm’/f/の値を示
し、農医某品の担体として有用であシ、スラリーとした
場合にはその粘度′fr著U7〈減少させる。
Spherical basic magnesium carbonate has a bulk density 2 to 3 times higher than conventional products, and can be filled to a size of 1 as a filler for synthetic resins, and has a large specific surface S despite its large electric ratio II. It exhibits a value of 10 to Qm'/f/ depending on the particle size without decreasing, and is useful as a carrier for certain agricultural and medical products, and when it is made into a slurry, its viscosity is reduced by U7.

東施例乙(応用例) 実施例3の第13図に示す丹゛状地ノに性炭酸マグネシ
ウムをポリメチルメタアクリレート樹脂モノマー(メタ
アクリル酸メチル)に種々のW11合で配合して、組成
物の粘度をB型回転粘黒゛計で測定した。また比較のた
め市販されている従来の塩基性炭酸マグネシウムを用い
て同様力測定を行なった。
East Example B (Application example) Magnesium carbonate having a tangy shape as shown in FIG. The viscosity of the product was measured using a B-type rotary viscometer. For comparison, similar force measurements were conducted using conventional basic magnesium carbonate available on the market.

結果を表Sに示す。The results are shown in Table S.

本発明での球状地糸性炭酸マグネシウムはポリメチルメ
タアクリレート樹脂の充填材として従来の#A基性炭酸
マグネシウムに比べけるかに多像に充填用能である。
The spherical fibrous magnesium carbonate of the present invention can be used as a filler for polymethyl methacrylate resin in a much more multi-image filling capacity than conventional #A-based magnesium carbonate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図け(Na2CoM) / [Mg(J2
) =0、!;210.j50における、第7図〜第9
図け[Na2Co、] / [MgR1,] = 0−
り310 、70における実施91/の反応温度の影響
全示した顕微鏡写真である。 870図〜第1,2図は(Na2cos) / [Mg
(J、) =1.0ダ// 、00に−おける静置熟成
時間の影響を示した実施例コの顕微鏡写真である。 第13図はS/V比=o、gにおける実施例3(D、第
1’IImF:J:S/V=0 、O3s ml!i図
はS/V=0./における実施側1ダの+Jrri微鋭
写真である。 第1乙図は従来の地基性炭耐゛マグネシウムの彫状全示
す顕微鏡写真−である。 各々の方與の倍率16図が、!1000倍、i/41[
ilr/jrθ0倍、第76図ti 3 !; 00倍
である他は全て330倍である。 褐 許 出 斬 ^ jll ((J H++、r達蛛式会社鷲13図 篇15図 第14図 第16図 一1ミ続拘1’f 、’rlミ令→″ 昭和51(年 fl 7129 F+ 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第15f1073号 2、発明の名称 球状塩基性炭酸マグネシウム及びその
製造方法 3、補iFをする者 小(’lとの1川係 特許出願人 11 所 III LI県徳111市御影町1番1号4
、補正命令の目付 自 発 5、補正により増加する発明の数 な1〕6、補正の対
象 明細Wの「発明の詳細な説明」の欄 7、補正の内容 (1)明細1す第3頁4行口の ’ 5(MgC(lx −311&(+)−一→IIM
g(If、−Mg(1111)、−411,0+ J 
をr 5(MgCOl −31L O)−→4HzCG
、・Mg(O1+)、−4112(l+」に訂正する。 (2)同第3頁14行目の「方法では反応系内を・・・
」を「方法では、反応系内を・・・」に訂正する。 (3)同第7頁4行目のr的なIN造方法として本発明
は・・・」をr的な製造方法として、本発明は・・・」
に訂正する。 (4)同第7頁13〜14行目の「本発明の塩基性炭酸
マグネシウムの・・・制限されるものではない。、1を
削除する。 (5)同第9頁9行「1の[反応容積の比SRか0.1
以下の場合」を[反応?′l!積の比S/Vが0.1以
下の場合]に訂正する。 (6)同第13頁6行目のr[NoLCOヨ]/[Hg
Clよ]」をr [Na、 co、 ]/[MgCL 
] Jに訂正する。 (7)同第13頁10行目の「〜の性状を表1にまた、
」をr〜の性状を表1に、また」に訂正する。 (8)同第14頁・表1中の「球形度(%)」を「球形
度(b/a ) Jに訂正する。 手続補正書 昭和58年 9月30日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許顧第159073号 2、発明の名称 球状塩基性炭酸マグネシークム及びそ
の製造方法 3、補正をする者 事件との関係 特許出願人 住 所 山口県徳山市御影町1番1号 4、補正命令の日付 自 発 5、補正により増加する発明の数 なし6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1)明ilI書第;(頁4行1−1の110台 r 5(MgCO,−3112(1)−一14M*C1
1,−Mg(Oll)、−411,0+ J を「5(
卜18CO,・3112fl) 島4hC+1. ・h
(fill)t ・411.41 + Jに訂正する。 ″r一本先拘IT 、−iTら一値t ()j:i’:
 )昭和58年12月12日 特許庁長官 若 杉 和 大願 1、事件の表示 特願昭58−159073号 2、発明の名称 球状塩基性炭酸マグネシラノ、及びその製造方法3、補
正をする者 事件との関係 特許出願人 郵便番号 745 住 所 山「1県徳山市御影町1番1号同 発送口 昭
和58年11月290 6、補正の対象 図面の簡単な説明の欄6、補正の内容 (1)明細書第23頁f】行11 「実施例1の反応湿層の影響を示した」を「反応温度の
影響を示した実施例10粒子構造の1に補正する。 (2)同第23 t’j I 3行目及U 1 (3行
11「顕rvI鏡写真」の前にri1″!子構造の」を
挿入する。 (3)同第23頁19行11 「形状を示ず」をr粒子−構造を示ず」に補正する。 以−1− zl” 糸寺*市+l逼”i”tl’ 昭和5イ1年−1月4−11 特許庁長官 志賀 学 殿 1、事件の表ボ 昭和5114’l”I−冒り前箱15fl +171号
2、発明の名((1、 J・)ン状塩基ヤ1炭酸マグネシウノ、及7Iその製造
方法 ;(、拘1111−をするh 1′;件との関係 特許用1人 住 所 Il1口県徳I11市御影町1番1号5、補1
1により増加する発明の数 なし6、補止のzl象 明細111の” i’!+riり請求のftfl’i 
lul 、+、「発明の詳細な説明1及び「図1111
の簡単tr説明1の欄、7、補11−の内容 (1)明細書箱10 [特許請求のfri lIl+ 、1の記載を別紙のと
おり訂j1−1する。 (2)明細書第7自11行11 「2時間以11を削除する。 (:i)明細書箱1rvr:>行1−1rノ’=1液中
で1の次に「一般に1114間以11、特に1を加入す
る。 (/l)明細書箱+ + ct + /1行11「荀’
 i” I! ++li時間が1を「静置熱成時間j;
j Iftの条件に、I、り異なり一概に決定できない
が、一般に1時Iハ1、特tご1のlti!Rに旧1に
する。 (5)明細膚第=2z(百4行110次に下記の記載を
加入する。 「実施例7 7(1’lご保1、旨にれたRIHff 1 、 (1
/l mol/7ifの炭酸すI・1J1゛ツノ、水溶
液F50 (1mlにlid拌ド、同?1.A度に保持
されノ3・濃度1 、 (1(l mol/’?iTの
硫酸マグネシラノ、水溶液Fin(litを+?イ/m
inの速度τ添加2− 1添加終了と同時にifi’ l’l’を11−6め、
引き続き1時間静#熟成lノた。 沈殿物をろ過洗浄後、120’Cで5時間乾燥した。 X線回折の結果、乾燥物は球状のif、≦基性炭酸マグ
ネシウムであった。形状を示す顕微鏡写真第17図に水
ず。1 (6)明細書箱2 /+12行目の次に下記の記載を加
入する。 「第17図は実施例7で1!1られた粒子構造の顕微鏡
写真(1000倍)Tある。 (7)回向 別紙の「第17図1を追加する。 以 L 3− 特許請求の範囲 (+)微細な−¥:lr−が本X¥1ノて形成された凝
隼粒子の形状が、長径をrL、短径を1)とl/たとき
に、b/a≧0.7の球状も1.<は同転楕円体であり
、前記凝り粒子の粒径が5〜ri (171mで、嵩密
度が0./1〜11.7g/ml、比表面積が10〜4
. r1m2/ gである球状の塩基性炭酸マグネシラ
 )、。 り2)水溶性マグネシラノ、JIAと炭酸ナトリウノ、
水溶液を反応さ(I−て塩基性炭酸マグネシウムを合成
する方法に才5いて、反応系の?1.5度を/In〜8
0℃に保持し、撹はド、対電の添加速度S(゛?イ/m
in )が反応容積V(?i)に対しS/V≧0゜1の
条件で211合1ハさらに母液中−C1111置熟成す
ることを特徴とする球状塩基性炭酸マグネシウム、の製
造方法。 輩170 −85−
Figures 1 to 6 (Na2CoM) / [Mg(J2
) =0,! ;210. Figures 7 to 9 in j50
Figure [Na2Co,] / [MgR1,] = 0-
FIG. 3 is a micrograph showing all the effects of reaction temperature in Example 91/ in Example 310, 70. Figure 870 - Figures 1 and 2 are (Na2cos) / [Mg
(J,) = 1.0 Da//, 00 is a microscopic photograph of Example 1 showing the influence of standing aging time. FIG. 13 shows Example 3 (D, 1'IImF:J:S/V=0, O3s ml!i) at S/V ratio=o, g. This is a + Jr. micro-photograph of 1. Figure 1 is a microscopic photograph showing the entire engraving of conventional carbon-based carbon-resistant magnesium.
ilr/jrθ0 times, Figure 76 ti 3! ;Other than 00x, all are 330x. (J H++, R Tatsuhishiki Company Eagle 13 Figure 15 Figure 14 Figure 16 Figure 11 Mi Continuation 1'f, 'rlmi order →'' Showa 51 (year fl 7129 F+ Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1. Indication of the case, Patent Application No. 15F1073 of 1982, 2. Title of the invention: Spherical basic magnesium carbonate and its manufacturing method 3. Person in charge Patent applicant 11 Location III 1-1-4 Mikage-cho, Toku 111, LI Prefecture
, Weight of the amendment order Voluntary 5, Number of inventions to be increased by the amendment 1] 6, "Detailed explanation of the invention" column 7 of the specification subject to amendment W, Contents of the amendment (1) Specification 1, page 3 '5(MgC(lx -311&(+)-1→IIM
g(If, -Mg(1111), -411,0+ J
r 5(MgCOl -31L O)-→4HzCG
, ・Mg(O1+), -4112(l+). (2) On page 3, line 14, "In the method, the inside of the reaction system...
" should be corrected to "In the method, the inside of the reaction system is...". (3) As an r-type IN manufacturing method on page 7, line 4, the present invention...'' is an r-type manufacturing method, and the present invention...''
Correct to. (4) Delete 1 from page 7, lines 13 to 14, "The basic magnesium carbonate of the present invention...is not limited." (5) Delete 1 from page 9, line 9 of the same. [Ratio of reaction volumes SR or 0.1
If “Reaction?” 'l! [If the product ratio S/V is 0.1 or less]]. (6) p. 13, line 6 r [NoLCO yo]/[Hg
Cl]' to r [Na, co, ]/[MgCL
] Corrected to J. (7) On page 13, line 10, "The properties of ... are also shown in Table 1.
`` is corrected to show the properties of r~ in Table 1 and ``. (8) "Sphericity (%)" in Table 1 on page 14 is corrected to "Sphericity (b/a) J. Procedural amendment September 30, 1981 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 1982 Patent Review No. 159073 2. Title of the invention Spherical basic magnesicum carbonate and its manufacturing method 3. Person making the amendment Relationship to the case Patent applicant address 1, Mikage-cho, Tokuyama City, Yamaguchi Prefecture No. 1 No. 4, Date of amendment order Proprietor 5, Number of inventions increased by amendment None 6, “Detailed description of the invention” column 7 of the specification subject to amendment, Contents of amendment (1) Article I ;(Page 4 line 1-1 110 units r 5(MgCO, -3112(1)-14M*C1
1,-Mg(Oll), -411,0+ J as “5(
卜18CO,・3112fl) Island 4hC+1.・h
(fill)t ・Correct to 411.41 + J. ″r one-prior IT, -iT et al. one-value t ()j:i':
) Dec. 12, 1980 Director General of the Japan Patent Office Kazu Wakasugi Daigan 1, Indication of Case Patent Application No. 159073/1982 2, Title of Invention Spherical Basic Magnesilano Carbonate and Process for Producing the Same 3, Person Making Amendment Case and Relationship Patent Applicant Zip Code 745 Address 1-1 Mikage-cho, Tokuyama City, Prefecture 1 Shipping Port November 1982 290 6. Subject of Amendment Column 6 for Brief Explanation of Drawings, Contents of Amendment (1) ) Page 23 of the specification f] Line 11 "Example 1 showed the influence of the reaction wet layer" is corrected to "Example 10 particle structure 1, which showed the influence of reaction temperature." (2) Paragraph 23 of the specification t'j I Line 3 and U 1 (Insert ri1''!child structure' in front of Line 3, line 11, ``Mirror photograph of rvI.'' (3) Line 19, page 23, 11 of the same, ``Does not indicate shape.'' is corrected to "r particle - does not show structure". I-1-zl"Itodera*ichi+l"i"tl' January 4-11, 1933 Manabu Shiga, Commissioner of the Japan Patent Office 1, Incident Title of the invention (1, J.) Magnesium carbonate, and its manufacturing method; (1111-) Relationship with h 1'; Single person address for patent purposes 1-1-5 Mikage-cho, Toku I11-shi, Il1kuchi prefecture, Supplementary 1
Number of inventions increased by 1 None 6, "i'!+ri request ftfl'i of supplementary zl elephant specification 111"
lul, +, “Detailed Description of the Invention 1 and “Fig.
Brief description of tr Contents of Column 1, 7, Supplement 11- (1) Specification Box 10 [The statement in Patent Claim fri lIl+, 1 is revised as shown in the attached sheet j1-1. (2) Specification No. 7 Line 11 11 ``Delete 11 for more than 2 hours.'' (:i) Specification box 1rvr: > Lines 1-1r' = Next to 1 in 1 liquid, ``Generally for more than 1114 hours'' is deleted. 11, especially add 1. (/l) statement box + + ct + /1 line 11 ``Xun'
i” I! ++li time is 1 “static thermal formation time j;
Although it cannot be determined unconditionally depending on the condition of Ift, it is generally 1 hour Iha 1, especially t 1 lti! Set R to old 1. (5) Specification No. = 2z (104th line 110) Add the following statement: "Example 7
/l mol/7if of carbonic acid I. , aqueous solution Fin (lit +?i/m
In speed τ addition 2-1 At the same time as the addition is completed, ifi'l'l' is set to 11-6,
Continue to let it mature for 1 hour. After filtering and washing the precipitate, it was dried at 120'C for 5 hours. As a result of X-ray diffraction, the dried product was spherical if, ≦basic magnesium carbonate. A water droplet is shown in the micrograph (Figure 17) showing the shape. 1 (6) Statement box 2 Add the following statement after the /+12th line. "Figure 17 is a micrograph (1000x) of the particle structure magnified by 1:1 in Example 7. (7) Add "Figure 17 1" in the appendix. Hereinafter, L 3 - Scope of Claims (+) When the shape of the fine -¥:lr- is formed by the book The spherical shape of 1.< is a spheroid, and the particle size of the aggregated particles is 5 to ri (171 m, the bulk density is 0./1 to 11.7 g/ml, and the specific surface area is 10 to 4
.. Spherical basic magnesilla carbonate with r1m2/g). 2) Water-soluble magnesilano, JIA and sodium carbonate,
I am familiar with the method of synthesizing basic magnesium carbonate by reacting an aqueous solution (I), and the reaction system is 1.5 degrees /In~8
The temperature was maintained at 0°C, and the stirring was carried out at the addition rate S (゛?i/m
1. A method for producing spherical basic magnesium carbonate, characterized in that 211 in) is further aged in mother liquor under conditions of S/V≧0°1 with respect to reaction volume V(?i). Senior 170 -85-

Claims (1)

【特許請求の範囲】 (11微細な一次粒子が凝集して形成さね、た凝集粒子
の形状が長径を81短径なりとしたときに、b / a
≧0.7の球状もしくは回転楕円体であり、前記凝集粒
子の粒径が3−10μmで、嵩密壓が0.lI〜θ、7
t/ml、比表面積か70〜70m2/P である球状
の塩基性炭酸マグネシウム。 (2) 水浩性マグネシウム増と炭酸ナトリウム水浴液
を反応させて塩基性炭し゛マグネシウムを合成する方法
において、反応糸の温度をl70〜g0℃に保持し7、
攪拌下、対塩の添加′4#S(4/m1n)が反応容積
V(、、e)に対しS / V≧0./の条件で混合し
、巧らに母液中でコ時間以上静置熟成することを特徴と
する球状塩基性炭酸マグネシウムの製造方法。
[Claims] (When 11 fine primary particles are aggregated and the shape of the agglomerated particles has a major axis of 81 minor axis, b/a
≧0.7 spherical or spheroidal shape, the particle size of the aggregated particles is 3-10 μm, and the bulk density is 0.7 μm. lI~θ, 7
Spherical basic magnesium carbonate with a specific surface area of 70 to 70 m2/P. (2) In the method of synthesizing basic magnesium carbonate by reacting water-soluble magnesium with a sodium carbonate water bath solution, the temperature of the reaction thread is maintained at 170 to 0°C7,
While stirring, add salt '4#S (4/m1n) to reaction volume V (,, e) so that S/V≧0. 1. A method for producing spherical basic magnesium carbonate, which is characterized by mixing the mixture under the following conditions and skillfully aging it in a mother liquor for at least 1 hour.
JP15907383A 1983-09-01 1983-09-01 Spherical basic magnesium carbonate and production thereof Granted JPS6054915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15907383A JPS6054915A (en) 1983-09-01 1983-09-01 Spherical basic magnesium carbonate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15907383A JPS6054915A (en) 1983-09-01 1983-09-01 Spherical basic magnesium carbonate and production thereof

Publications (2)

Publication Number Publication Date
JPS6054915A true JPS6054915A (en) 1985-03-29
JPH0453809B2 JPH0453809B2 (en) 1992-08-27

Family

ID=15685623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15907383A Granted JPS6054915A (en) 1983-09-01 1983-09-01 Spherical basic magnesium carbonate and production thereof

Country Status (1)

Country Link
JP (1) JPS6054915A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163526A (en) * 1984-09-04 1986-04-01 Tokuyama Soda Co Ltd Preparation of spherical basic magnesium carbonate
JPH01224218A (en) * 1988-03-02 1989-09-07 Ube Kagaku Kogyo Kk Spherical basic magnesium carbonate and production thereof
JPH03203967A (en) * 1989-12-29 1991-09-05 Canon Inc Ink jet recording medium
EP0460923A2 (en) * 1990-06-04 1991-12-11 Tokuyama Corporation Basic magnesium carbonate and process for preparation thereof
US5137778A (en) * 1990-06-09 1992-08-11 Canon Kabushiki Kaisha Ink-jet recording medium, and ink-jet recording method employing the same
US5246774A (en) * 1989-12-29 1993-09-21 Canon Kabushiki Kaisha Ink-jet medium and ink-jet recording method making use of it
US5338597A (en) * 1991-01-14 1994-08-16 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
US5561454A (en) * 1991-10-30 1996-10-01 Canon Kabushiki Kaisha Recording medium and ink jet recording method therefor
JP2009137838A (en) * 2008-12-22 2009-06-25 Merck Ltd Body pigment and process for producing the same
WO2011095269A3 (en) * 2010-02-03 2012-05-18 Merck Patent Gmbh Directly compressible magnesium hydroxide carbonate
WO2016031803A1 (en) * 2014-08-26 2016-03-03 協和化学工業株式会社 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP6245407B1 (en) * 2016-01-29 2017-12-13 東レ株式会社 Separation membrane element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314195A (en) * 1976-07-26 1978-02-08 Lion Corp Globular calcium sulfite and production thereof
JPS5480298A (en) * 1977-12-09 1979-06-26 Toyo Soda Mfg Co Ltd Production of magnesium orthocarbonate crystals
JPS5735126A (en) * 1980-08-07 1982-02-25 Hitachi Ltd Fuel feeder for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314195A (en) * 1976-07-26 1978-02-08 Lion Corp Globular calcium sulfite and production thereof
JPS5480298A (en) * 1977-12-09 1979-06-26 Toyo Soda Mfg Co Ltd Production of magnesium orthocarbonate crystals
JPS5735126A (en) * 1980-08-07 1982-02-25 Hitachi Ltd Fuel feeder for internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163526A (en) * 1984-09-04 1986-04-01 Tokuyama Soda Co Ltd Preparation of spherical basic magnesium carbonate
JPH01224218A (en) * 1988-03-02 1989-09-07 Ube Kagaku Kogyo Kk Spherical basic magnesium carbonate and production thereof
JP2602444B2 (en) * 1988-03-02 1997-04-23 宇部化学工業株式会社 Spherical basic magnesium carbonate and method for producing the same
US5362558A (en) * 1989-12-29 1994-11-08 Canon Kabushiki Kaisha Ink-jet recording medium and ink-jet recording method making use of it
JPH03203967A (en) * 1989-12-29 1991-09-05 Canon Inc Ink jet recording medium
US5246774A (en) * 1989-12-29 1993-09-21 Canon Kabushiki Kaisha Ink-jet medium and ink-jet recording method making use of it
EP0460923A2 (en) * 1990-06-04 1991-12-11 Tokuyama Corporation Basic magnesium carbonate and process for preparation thereof
US5137778A (en) * 1990-06-09 1992-08-11 Canon Kabushiki Kaisha Ink-jet recording medium, and ink-jet recording method employing the same
US5277962A (en) * 1990-06-09 1994-01-11 Canon Kabushiki Kaisha Ink-jet recording medium, ink-jet recording method employing the same
US5338597A (en) * 1991-01-14 1994-08-16 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
US5561454A (en) * 1991-10-30 1996-10-01 Canon Kabushiki Kaisha Recording medium and ink jet recording method therefor
JP2009137838A (en) * 2008-12-22 2009-06-25 Merck Ltd Body pigment and process for producing the same
WO2011095269A3 (en) * 2010-02-03 2012-05-18 Merck Patent Gmbh Directly compressible magnesium hydroxide carbonate
WO2016031803A1 (en) * 2014-08-26 2016-03-03 協和化学工業株式会社 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
US10233305B2 (en) 2014-08-26 2019-03-19 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP6245407B1 (en) * 2016-01-29 2017-12-13 東レ株式会社 Separation membrane element

Also Published As

Publication number Publication date
JPH0453809B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
Xu et al. Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid
TW215074B (en)
Zhong et al. Preparation of uniform zinc oxide colloids by controlled double-jet precipitation
JPS6054915A (en) Spherical basic magnesium carbonate and production thereof
JP5409599B2 (en) PCC manufacturing method
JP5226688B2 (en) Process for producing monodisperse and stable nanometer magnesium hydroxide and product thereof
JPH09503484A (en) Oblate sphere aggregates of plate-like synthetic hydrotalcite
CN108928844B (en) Preparation method of regular cubic calcium carbonate
TWI522238B (en) Composite inorganic particles and methods of making and using the same
WO2022110127A1 (en) Method for preparing cube-like nano calcium carbonate
EP0480587B1 (en) Precipitated calcium carbonate
US3133824A (en) Process for the production of finely dispersed calcium carbonate
PL192346B1 (en) Method of obtaining loose calcium carbonate particles
JP5019556B2 (en) Porous particles and method for producing the same
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
JP2683389B2 (en) Flaky zinc oxide powder and method for producing the same
JP4441252B2 (en) Calcium carbonate having an uneven surface and method for producing the same
Hsu et al. The formation of uniform colloidal particles of magnesium fluoride and sodium magnesium fluoride
JPH04228420A (en) Basic magnesium carbonate and its production
CN114853049B (en) Preparation method of high-stability nano calcium carbonate
JPH0687608A (en) Production of monodispersive spherical silica
CN1076319C (en) Method for preparing nanometre-grade titanium dioxide
JP4711648B2 (en) Method for producing polyhedral calcium carbonate
CN107032380B (en) Method for preparing nano calcium carbonate powder by using high-energy ball milling
Zhong et al. Synthesis of ZnO Crystal with Micro‐Nano Structures by a Continuous Co‐Precipitation Method: Morphological Evolution and Mechanism Analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees