JPH0233490B2 - METAKURIRUJUSHIBANNOSEIZOHO - Google Patents

METAKURIRUJUSHIBANNOSEIZOHO

Info

Publication number
JPH0233490B2
JPH0233490B2 JP1833881A JP1833881A JPH0233490B2 JP H0233490 B2 JPH0233490 B2 JP H0233490B2 JP 1833881 A JP1833881 A JP 1833881A JP 1833881 A JP1833881 A JP 1833881A JP H0233490 B2 JPH0233490 B2 JP H0233490B2
Authority
JP
Japan
Prior art keywords
stainless steel
resin plate
methacrylic resin
mold
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1833881A
Other languages
Japanese (ja)
Other versions
JPS57131516A (en
Inventor
Jun Nakauchi
Yukihiro Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1833881A priority Critical patent/JPH0233490B2/en
Publication of JPS57131516A publication Critical patent/JPS57131516A/en
Publication of JPH0233490B2 publication Critical patent/JPH0233490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/16Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length between endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐溶剤性の改善されたメタクリル樹
脂板の製造法に関する。 2枚の鋳型の間で、メタクリル酸メチル単量体
もしくはメタクリル酸メチルを主成分とする重合
性不飽和単量体を重合することによつて得られる
メタクリル樹脂板は、そのすぐれた透明性、光
沢、耐候性等により、多くの分野で使用されてい
る。製造に使用される鋳型には、従来より強化ガ
ラス板が用いられてきたが、近年生産性の向上を
目的として、鏡面研摩されたステンレス鋼板を鋳
型として用いた連続製板方式が工業的に採用され
るようになつた。このような鏡面研摩されたステ
ンレス鋼板を鋳型として用いた鋳込みメタクリル
樹脂板は、従来の通常の用途に対しては外観、加
工性において強化ガラス板を使用したものと比
べ、全く遜色がないものの過酷な加工条件、使用
状態では、場合によつては樹脂板表面に欠陥が発
生することがあり、早急に解決策が要求されてい
た。この樹脂板表面の欠陥とは耐溶剤性の低下で
あり、耐溶剤性の低下とは、良溶剤の蒸気と接触
した際に樹脂板表面にくもりが発生することであ
る。例えば樹脂板同志を溶剤接着する場合等に、
溶剤蒸気との接触によつて接着部分近辺にくもり
が発生すると、メタクリル樹脂板の特徴であるす
ぐれた透明性、光沢が失われ、商品価値が著しく
低下することになる。 このように加工時に表面欠陥を生ずるメタクリ
ル樹脂板の生成機構については不明な点が多い
が、鋳込み重量の際にステンレス鋼板の鋳型表面
が重合系に作用を及ぼし、樹脂板表面に特異性を
もたらすためと推定される。 本発明者等は、ステンレス鋼製の鋳型表面の作
用によると考えられるメタクリル樹脂板の耐溶剤
性の低下を抑え、すぐれた耐溶剤性を有する樹脂
板の製造法について鋭意検討した結果、以下に示
すような方法で、鋳型として用いるステンレス鋼
板に電解処理を施すことにより、耐溶剤性のすぐ
れたメタクリル樹脂板が得られることを見出し、
本発明を完成した。 すなわち本発明は、ステンレス鋼板を鋳型とし
て用い、メタクリル酸メチル単量体またはメタク
リル酸メチルを主成分とする重合性不飽和単量体
混合物あるいはその部分重合物を重合して、重合
体シートを製造するに当り、鋳型として1.0V/
cm以上の電界強度下で水分を20%以上含有する媒
体を界して陽極電解処理したステンレス鋼板を用
いることを特徴とするメタクリル酸樹脂板の製造
法である。 本発明に使用する鋳型として用いるステンレス
鋼板の、電解に用いられる電源としては通常に使
用される直流電源(電池を含む)、及び低周波交
流電源があげられる。 水分を20%以上含有する媒体の具体例として
は、水、寒天状物、含水布、含水スポンジ等があ
げられるが、電極間の電流が流れやすい媒体であ
ればよい。媒体の水分含有率が20%以下になれ
ば、電導度が大巾に低下し、長時間電解処理を必
要とするため作業性が低下する。 電解処理の際の電解強度は耐溶剤性の向上を効
果あらしめるためには1.0V/cm以上となるよう
電圧を与えることが必要である。電界強度が
1.0V/cmに満たない場合は処理効果が充分に達
成されない。 本発明に使用されるメタクリル酸メチル及びそ
の部分重合物と共重合可能な単量体の具体例とし
ては、炭素数1〜18のアルコールとアクリル酸と
のエステル、アクリル酸、メタクリル酸、アクリ
ロニトリル、メタクリロニトリル、アクリルアミ
ド及びその誘導体、メタクリルアミド及びその誘
導体、スチレン、α−メチルスチレン等をあげる
ことができる。これらの単量体のメタクリル酸メ
チル及びその部分重合物中への添加量は、通常用
いられる範囲、すなわちメタクリル酸メチル及び
その部分重合物に対して40重量%以下、好ましく
は20重量%以下、さらに好ましくは10重量%以下
の範囲である。 本発明において、メタクリル酸メチルを主成分
とする重合性不飽和単量体の部分重合物を用いる
場合、その重合体の濃度は通常の範囲内、すなわ
ち全シロツプ中の30重量%以下であるのが好まし
い。 これらの重合性不飽和単量体あるいは、その部
分重合物には、通常のメタクリル樹脂板あるいは
その変性品を製造する際に用いられる種々の添加
剤を加えることもできる。ここでいう添加剤と
は、着色に用いられる染料、顔料あるいは酸化防
止剤、紫外線吸収剤等の安定剤あるいは難燃剤、
可塑剤あるいは樹脂板の鋳型よりの剥離を容易に
する剥離剤、連鎖移動剤、架橋剤といつたもので
ある。 本発明に使用される重合開始剤の具体例として
は、通常のラジカル重合開始剤として用いられる
アゾ化合物である2,2′−アゾビスイソブチロニ
トリル、2,2′−アゾビス(2,4−ジメチルバ
レロニトリル、2,2′−アゾビス(2,4−ジメ
チル−4−メトキシバレロニトリル)等及び有機
過酸化物であるベンゾイルパーオキサイド、ラウ
ロイルパーオキサイド等あるいはレドツクス系の
重合開始剤、例えば有機過酸化物とアミン類との
組み合わせ等をあげることができる。これらの開
始剤の添加量は重合性不飽和単量体あるいはその
部分重合物100重量部に対して0.001〜0.5重量部
の範囲に設定するのが好ましい。 メタクリル酸メチルを主成分とする重合性不飽
和単量体あるいはその部分重合物の重合は加熱に
より行なわれ、重合温度は使用するラジカル重合
開始剤の種類によつて異なるが、一般に40〜140
℃であり、第1段目を40〜90℃、第2段目を100
〜140℃とする2段階の重合温度で重合すること
が好ましい。 本発明で用いられるステンレス製の鋳型の材質
に関しては特に限定されず、オーステナイト鋼、
フエライト鋼、マルテンサイト鋼、加工変態等に
よつてマルテンサイト相の生成したオーステナイ
ト−マルテンサイト2相鋼の中で、どれを鋳型と
して用いた場合についてもあらかじめ陽極電解処
理することにより得られる樹脂板の耐溶剤性の向
上が認められる。このように鋳型として用いるス
テンレス鋼板を陽極電解処理することにより合成
樹脂板の耐溶剤性が向上する現象は、メタクリル
酸単量体またはメタクリル酸メチルを主成分とす
る重合性不飽和単量体混合物あるいはその部分重
合物を、ステンレス鋼板を鋳型として用い、鋳込
み重合して得られるメタクリル樹脂板に一般的に
認められる現象である。 本発明の方法はある間隔をもつて対向して走行
する2個のステンレス鋼製エンドレスベルトを使
用する連続製板方法に特に効果的であるが、鋳型
にステンレス鋼板を用いるバツチ式製板方法にも
適用することができ、この方法を採用することに
より耐溶剤性の著しい向上効果が得られる。 鋳型として用いるステンレス鋼板は表面が鏡面
研摩されたものが好ましく、その程度は得られた
樹脂板の表面の平滑性が商品として許容しうる範
囲の程度であればよく、鋳型の内面となる片面の
み鏡面研摩されていればよい。 以下、本発明を実施例によりさらに詳細に説明
する。 なお、実施例中において部は重量部を表わし、
樹脂板の耐溶剤性の評価は、23℃の条件で内径45
m/m、高さ18m/mのガラス製シヤーレの中に
ジクロルメタンを5ml入れ、その上部に樹脂板を
置いて密閉し、密閉して4分間樹脂板表面をジク
ロルメタンの蒸気に接触させ、蒸気接触後と蒸気
接触前との光沢度の比、すなわち光沢度保持率で
表わした。なお、光沢度は東京電色製グロスメー
タを用い、入射角60゜で測定した。 実施例 1 第1図に示したように不織布1を片面に貼り付
けたステンレス鋼板2を陽極をアースした直流電
源5の陰極に接続し、9でアースされ、主プーリ
4により張力を与えられる厚さ1.5mm、幅1200mm
のステンレス鋼製エンドレスベルト3上に不織布
1をはさむように取り付け、不織布1には気泡が
はいらないように十分水を吸収させてステンレス
鋼製エンドレスベルト3との間に全幅にわたり長
さ方向に10cmにわたつて水層を形成させる。この
含水層を通し電界強度10V/cmの電圧を印加し、
10mA/cm2の電流密度で2m/分の速度でステン
レス鋼製エンドレスベルトを移動しながら電解処
理を行なつた。 このステンレス鋼製エンドレスベルトとその両
側辺部において両エンドレスベルトと同一速度で
走行する一対の連続した軟質塩化ビニル製ガスケ
ツトとで成形空間を構成し、最終的に得られる注
型重合板の厚みが4mmとなるように間隔を調整し
て、その上流端から脱泡処理を行なつた重合率
21.2%のメタクリル酸メチル部分重合物100部、
チヌビン−P(チバガイギー社製紫外線吸収剤)
0.01部、エアゾール−OT(アメリカンシアナミド
社製剥離剤)0.001部、2,2′−アゾビス(2,
4−ジメチルバレロニトリル)0.057部を組成物
を連続的に注入し、80℃の第1重合帯域を28分間
で通過させた後、最高温度135℃まで加熱される
第2重合帯域および徐冷ゾーンを14分間で通過さ
せ、下流より連続的に厚さ4mmの無色透明のメタ
クリル樹脂板を得た。このメタクリル樹脂板の耐
溶剤特性を前述の方法で測定したところ光沢度保
持率は98%であつた。 実施例 2 第2図に示したように片面鏡面研摩した長さ
320mm、幅320mmのステンレス鋼板10を水道水1
1のはいつた水槽12の中に浸漬し、他のステン
レス鋼板13を対電極として用い、電界強度
2V/cmの直流電圧を印加して鏡面部を10秒間陽
極電解処理した。このときの電流密度は3mA/
cm2であつた。この陽極電解処理したステンレス鋼
板2枚を鏡面部が内壁となるよう軟質塩化ビニル
製ガスケツトで周囲を囲み、厚さ4mm、長さ300
mm、幅300mmの空間を形成させた。この空間にあ
らかじめ脱泡処理した重合率6.6%のメタクリル
酸メチル部分重合物100部、シリコンオイルKF96
(信越化学工業社製剥離剤)0.0005部、2,2′−
アゾビス(2,4−ジメチルバレロニトリル)
0.012部からなる組成物を注入し、上下のステン
レス鋼板の間隔を3mmに調整した後、65℃の水浴
槽に5時間浸漬し、次いで120℃の空気加熱炉で
2時間加熱して重合を完了させ、室温に冷却後、
ステンレス鋼セルより剥離して無色透明なメタク
リル樹脂板を得た。 この樹脂板の耐溶剤性は前述の方法によるジク
ロルメタン蒸気接触後の光沢度保持率98%であ
り、耐溶剤性にすぐれていた。 実施例3〜10、比較例1〜2 鋳型として使用するステンレス鋼板の電解処理
条件を変化された以外は実施例2と全く同様にし
て重合し、得られたメタクリル樹脂板の耐溶剤特
性を測定した。結果を第1表に示す。
The present invention relates to a method for manufacturing a methacrylic resin board with improved solvent resistance. The methacrylic resin plate obtained by polymerizing methyl methacrylate monomer or a polymerizable unsaturated monomer mainly composed of methyl methacrylate between two molds has excellent transparency, It is used in many fields due to its gloss and weather resistance. Tempered glass plates have traditionally been used as molds for manufacturing, but in recent years, a continuous plate-making method using mirror-polished stainless steel plates as molds has been adopted industrially to improve productivity. It started to be done. Cast-in methacrylic resin sheets made using mirror-polished stainless steel sheets as molds are comparable in appearance and workability to those made from tempered glass sheets in terms of appearance and workability, but they cannot be used under harsh conditions. Under such processing conditions and usage conditions, defects may occur on the surface of the resin plate in some cases, and a solution was urgently required. This defect on the resin plate surface is a decrease in solvent resistance, and the decrease in solvent resistance is the occurrence of cloudiness on the resin plate surface when it comes into contact with the vapor of a good solvent. For example, when bonding resin plates together with solvent,
If cloudiness occurs near the bonded area due to contact with solvent vapor, the excellent transparency and gloss that characterize methacrylic resin plates will be lost, and the commercial value will be significantly reduced. Although there are many unknowns about the formation mechanism of methacrylic resin plates that cause surface defects during processing, the mold surface of the stainless steel plate acts on the polymerization system during casting, resulting in specificity on the resin plate surface. It is estimated that this is due to The inventors of the present invention have conducted extensive research on a method for manufacturing a resin plate that has excellent solvent resistance by suppressing the decrease in solvent resistance of a methacrylic resin plate that is thought to be caused by the effect of the surface of a stainless steel mold. We have discovered that a methacrylic resin plate with excellent solvent resistance can be obtained by electrolytically treating a stainless steel plate used as a mold using the method shown below.
The invention has been completed. That is, the present invention uses a stainless steel plate as a mold to polymerize a methyl methacrylate monomer or a polymerizable unsaturated monomer mixture containing methyl methacrylate as a main component, or a partial polymer thereof, to produce a polymer sheet. 1.0V/as a mold.
This is a method for producing a methacrylic acid resin plate characterized by using a stainless steel plate that has been subjected to anodic electrolysis treatment under an electric field strength of cm or more and a medium containing 20% or more water. Power sources used for electrolysis of the stainless steel plate used as the mold used in the present invention include commonly used DC power sources (including batteries) and low-frequency AC power sources. Specific examples of the medium containing 20% or more of water include water, agar-like material, water-containing cloth, water-containing sponge, etc., but any medium that allows current to easily flow between the electrodes may be used. If the moisture content of the medium is below 20%, the conductivity will drop significantly and the electrolytic treatment will be required for a long time, resulting in a decrease in workability. For the electrolytic strength during electrolytic treatment to be effective in improving solvent resistance, it is necessary to apply a voltage of 1.0 V/cm or more. electric field strength
If it is less than 1.0V/cm, the treatment effect will not be sufficiently achieved. Specific examples of monomers copolymerizable with methyl methacrylate and its partial polymer used in the present invention include esters of alcohols having 1 to 18 carbon atoms and acrylic acid, acrylic acid, methacrylic acid, acrylonitrile, Examples include methacrylonitrile, acrylamide and its derivatives, methacrylamide and its derivatives, styrene, α-methylstyrene, and the like. The amount of these monomers added to methyl methacrylate and its partial polymer is within the range normally used, that is, 40% by weight or less, preferably 20% by weight or less, based on methyl methacrylate and its partial polymer. More preferably, the amount is 10% by weight or less. In the present invention, when a partial polymer of a polymerizable unsaturated monomer containing methyl methacrylate as a main component is used, the concentration of the polymer is within the normal range, that is, 30% by weight or less of the total syrup. is preferred. Various additives used in producing ordinary methacrylic resin plates or modified products thereof can also be added to these polymerizable unsaturated monomers or their partial polymers. The additives mentioned here include dyes, pigments or antioxidants used for coloring, stabilizers such as ultraviolet absorbers, or flame retardants,
These include plasticizers, release agents that facilitate the release of the resin plate from the mold, chain transfer agents, and crosslinking agents. Specific examples of the polymerization initiator used in the present invention include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4 -dimethylvaleronitrile, 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile), etc. and organic peroxides such as benzoyl peroxide and lauroyl peroxide, or redox-based polymerization initiators, such as organic peroxides, such as benzoyl peroxide and lauroyl peroxide, etc. Examples include combinations of peroxides and amines.The amount of these initiators added is in the range of 0.001 to 0.5 parts by weight per 100 parts by weight of the polymerizable unsaturated monomer or its partial polymer. Polymerization of a polymerizable unsaturated monomer containing methyl methacrylate as a main component or a partial polymer thereof is carried out by heating, and the polymerization temperature varies depending on the type of radical polymerization initiator used. , generally 40-140
°C, the first stage is 40 to 90 °C, the second stage is 100 °C
Preferably, the polymerization is carried out at a two-step polymerization temperature of ~140°C. The material of the stainless steel mold used in the present invention is not particularly limited, and includes austenitic steel,
A resin plate obtained by subjecting any of ferritic steel, martensitic steel, and austenitic-martensitic dual-phase steel in which a martensitic phase has been generated through processing transformation, etc., to anodic electrolysis treatment when used as a mold. Improvement in solvent resistance was observed. The phenomenon in which the solvent resistance of synthetic resin plates is improved by anodic electrolysis treatment of stainless steel plates used as molds is due to the fact that a mixture of polymerizable unsaturated monomers containing methacrylic acid monomer or methyl methacrylate as the main component Alternatively, this is a phenomenon generally observed in methacrylic resin plates obtained by casting and polymerizing a partially polymerized product using a stainless steel plate as a mold. The method of the present invention is particularly effective in a continuous plate making method using two stainless steel endless belts running opposite each other at a certain interval, but it is particularly effective in a batch type plate making method using stainless steel plates as molds. This method can also be applied, and by employing this method, the effect of significantly improving solvent resistance can be obtained. The surface of the stainless steel plate used as the mold is preferably mirror-polished, as long as the surface smoothness of the resulting resin plate is acceptable as a product, and only one side, which will be the inner surface of the mold, is used. It only needs to be mirror polished. Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, in the examples, parts represent parts by weight,
The evaluation of the solvent resistance of the resin plate was conducted at 23°C with an inner diameter of 45 mm.
Pour 5 ml of dichloromethane into a glass tray with a height of 18 m/m and place a resin plate on top of it, seal it, and bring the surface of the resin plate into contact with the dichloromethane vapor for 4 minutes. It was expressed as the ratio of gloss after and before contact with steam, that is, gloss retention. The glossiness was measured using a Tokyo Denshoku gloss meter at an incident angle of 60°. Example 1 As shown in FIG. 1, a stainless steel plate 2 with a nonwoven fabric 1 pasted on one side is connected to the cathode of a DC power source 5 whose anode is grounded, and the thickness is such that it is grounded at 9 and tension is applied by the main pulley 4. length 1.5mm, width 1200mm
The non-woven fabric 1 is sandwiched between the stainless steel endless belt 3 and the non-woven fabric 1 absorbs enough water to avoid air bubbles, and the length is 10 cm across the entire width between the non-woven fabric 1 and the stainless steel endless belt 3. Form an aqueous layer over a period of time. A voltage with an electric field strength of 10 V/cm is applied through this water-containing layer,
The electrolytic treatment was carried out while moving on an endless stainless steel belt at a speed of 2 m/min at a current density of 10 mA/cm 2 . This stainless steel endless belt and a pair of continuous soft vinyl chloride gaskets running at the same speed as both endless belts on both sides constitute a molding space, and the thickness of the final cast-polymerized sheet is Polymerization rate after adjusting the interval to 4 mm and degassing from the upstream end.
100 parts of 21.2% methyl methacrylate partial polymer;
Tinuvin-P (UV absorber manufactured by Ciba Geigy)
0.01 part, Aerosol-OT (removal agent manufactured by American Cyanamid) 0.001 part, 2,2'-Azobis (2,
After continuously injecting 0.057 parts of 4-dimethylvaleronitrile into the composition and passing through the first polymerization zone at 80°C for 28 minutes, the second polymerization zone and slow cooling zone are heated to a maximum temperature of 135°C. was passed for 14 minutes, and a colorless and transparent methacrylic resin plate with a thickness of 4 mm was obtained continuously from the downstream side. When the solvent resistance of this methacrylic resin plate was measured by the method described above, the gloss retention rate was 98%. Example 2 Length mirror polished on one side as shown in Figure 2
10 stainless steel plates of 320 mm and 320 mm width and 1 tap water
1 is immersed in a heated water tank 12, and the other stainless steel plate 13 is used as a counter electrode to measure the electric field strength.
A DC voltage of 2 V/cm was applied and the mirror surface was subjected to anodic electrolysis treatment for 10 seconds. The current density at this time is 3mA/
It was warm in cm2 . These two anodic electrolyzed stainless steel plates are surrounded by a soft vinyl chloride gasket so that the mirror surface becomes the inner wall, and the thickness is 4 mm and the length is 30 mm.
mm, a space with a width of 300 mm was formed. In this space, 100 parts of methyl methacrylate partial polymer with a polymerization rate of 6.6%, which has been degassed in advance, and silicone oil KF96
(Removal agent manufactured by Shin-Etsu Chemical Co., Ltd.) 0.0005 parts, 2,2'-
Azobis(2,4-dimethylvaleronitrile)
After injecting a composition consisting of 0.012 parts and adjusting the interval between the upper and lower stainless steel plates to 3 mm, it was immersed in a 65°C water bath for 5 hours, and then heated in an air heating oven at 120°C for 2 hours to complete polymerization. After cooling to room temperature,
A colorless and transparent methacrylic resin plate was obtained by peeling from the stainless steel cell. This resin plate had excellent solvent resistance, with a gloss retention rate of 98% after contact with dichloromethane vapor by the method described above. Examples 3 to 10, Comparative Examples 1 to 2 Polymerization was carried out in the same manner as in Example 2 except that the electrolytic treatment conditions of the stainless steel plate used as the mold were changed, and the solvent resistance properties of the obtained methacrylic resin plate were measured. did. The results are shown in Table 1.

【表】 実施例11〜13、比較例3〜4 スポンジを片面に貼りつけたアルミ板を陽極を
アースした直流電源の陰極に接続し、アースされ
た片面鏡面研摩されたステンレス鋼板上にスポン
ジをはさみ込むようにセツトし、スポンジの含水
率を変化させ、電界強度10V/cmの直流電圧を印
加して鏡面部を陽極電解処理した。このステンレ
ス鋼板を用いて実施例2と同様の方法でメタクリ
ル樹脂板を製板し、光沢度保持率を測定し、耐溶
剤性を評価した。結果を第2表に示す。
[Table] Examples 11 to 13, Comparative Examples 3 to 4 An aluminum plate with a sponge pasted on one side was connected to the cathode of a DC power source whose anode was grounded, and the sponge was placed on a grounded stainless steel plate with a mirror-polished surface on one side. The sponge was set so as to be sandwiched between the sponges, the moisture content of the sponge was varied, and a DC voltage with an electric field strength of 10 V/cm was applied to perform anodic electrolysis on the mirror surface. Using this stainless steel plate, a methacrylic resin plate was produced in the same manner as in Example 2, the gloss retention rate was measured, and the solvent resistance was evaluated. The results are shown in Table 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はステンレス鋼製エンドレスベルトの電
解処理方法の一例を示す図である。第2図はステ
ンレス鋼板の電解処理装置の一例を示す図であ
る。 図において、5……直流電源、6……電圧計、
7……電流計、8,9……アースを示す。
FIG. 1 is a diagram showing an example of an electrolytic treatment method for a stainless steel endless belt. FIG. 2 is a diagram showing an example of an apparatus for electrolytic treatment of stainless steel sheets. In the figure, 5...DC power supply, 6...Voltmeter,
7... Ammeter, 8, 9... Indicates earth.

Claims (1)

【特許請求の範囲】 1 ステンレス鋼板を鋳型として用い、メタクリ
ル酸メチル単量体またはメタクリル酸メチルを主
成分とする重合性不飽和単量体混合物あるいはそ
の部分重合物を重合して、重合体シートを製造す
るに当り、鋳型として1.0V/cm以上の電界強度
下で水分を20%以上含有する媒体を界して陽極電
解処理したステンレス鋼板を用いることを特徴と
するメタクリル樹脂板の製造法。 2 ステンレス鋼板がある間隔をもつて対向して
走行する2個のエンドレスベルトである特許請求
の範囲第1項記載のメタクリル樹脂板の製造法。 3 ステンレス鋼板が少なくとも片面が鏡面研摩
された2枚の板であることを特徴とする特許請求
の範囲第1項記載のメタクリル樹脂板の製造法。
[Claims] 1. A polymer sheet is produced by polymerizing methyl methacrylate monomer, a polymerizable unsaturated monomer mixture containing methyl methacrylate as a main component, or a partial polymer thereof using a stainless steel plate as a mold. A method for producing a methacrylic resin plate, characterized in that a stainless steel plate that has been subjected to anodic electrolysis treatment under an electric field strength of 1.0 V/cm or more and a medium containing 20% or more moisture is used as a mold. 2. The method for manufacturing a methacrylic resin plate according to claim 1, wherein the stainless steel plates are two endless belts running opposite each other with a certain interval. 3. The method for manufacturing a methacrylic resin plate according to claim 1, wherein the stainless steel plates are two plates having at least one side mirror-polished.
JP1833881A 1981-02-10 1981-02-10 METAKURIRUJUSHIBANNOSEIZOHO Expired - Lifetime JPH0233490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1833881A JPH0233490B2 (en) 1981-02-10 1981-02-10 METAKURIRUJUSHIBANNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1833881A JPH0233490B2 (en) 1981-02-10 1981-02-10 METAKURIRUJUSHIBANNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS57131516A JPS57131516A (en) 1982-08-14
JPH0233490B2 true JPH0233490B2 (en) 1990-07-27

Family

ID=11968858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1833881A Expired - Lifetime JPH0233490B2 (en) 1981-02-10 1981-02-10 METAKURIRUJUSHIBANNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0233490B2 (en)

Also Published As

Publication number Publication date
JPS57131516A (en) 1982-08-14

Similar Documents

Publication Publication Date Title
GB1327990A (en) Dialysis and ultrafiltration of a liquid
US3872197A (en) Process and an apparatus for continuously casting a sheet and the like
US4089918A (en) Process for the continuous casting of liquid polymerizable compositions
US4803026A (en) Process for preparation of acrylic resin sheets having excellent moldability and solvent resistance
JPS6045209B2 (en) Continuous polymerization method
JPH0233490B2 (en) METAKURIRUJUSHIBANNOSEIZOHO
JPS56158140A (en) Production of polymer coated body
JPS591518A (en) Production of lowly hygroscopic methacrylate resin sheet
JP2941332B2 (en) Production method of resin plate by casting polymerization method and cell set for casting polymerization
US2071907A (en) Preparation of polymers in sheet or block form
JP3568295B2 (en) Method for producing plate polymer
JP4763916B2 (en) Methacrylic resin composition and method for producing methacrylic resin molded product
US4165419A (en) Metal surfaces coated with aliphatic acids containing 12 carbon atoms or more to eliminate polymer build-up on reactor walls during the polymerization of water-soluble cationic polymers
JP3679615B2 (en) Impact-resistant methacrylate resin plate with excellent molding appearance and its production method
JPH04370123A (en) Production of modified fluororesin
DE1504684A1 (en) Process for the production of castings from acrylic resins
JPH08132455A (en) Production of methacrylic resin cast plate
JP2009061713A (en) Manufacturing method of methacrylate resin plate
JP2004268288A (en) Method and apparatus for manufacturing sheetlike product
KR910003737B1 (en) Methacrylic resin cast plate having excellent antistatic property and process for preparation thereof
JPH08151403A (en) Production of platy methacrylate polymer
JPS6310610A (en) Production of methacrylate resin composition
AU773365B2 (en) Methacrylic resin board used for producing sanitary goods and process for producing said board
JP2003040906A (en) Method for producing methacrylic resin plate
JPH11209407A (en) Production unit for plate-type polymer and manufacture thereof