JPH0233168Y2 - - Google Patents

Info

Publication number
JPH0233168Y2
JPH0233168Y2 JP14834582U JP14834582U JPH0233168Y2 JP H0233168 Y2 JPH0233168 Y2 JP H0233168Y2 JP 14834582 U JP14834582 U JP 14834582U JP 14834582 U JP14834582 U JP 14834582U JP H0233168 Y2 JPH0233168 Y2 JP H0233168Y2
Authority
JP
Japan
Prior art keywords
measurement
section
flow resistance
fluid
mixed liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14834582U
Other languages
Japanese (ja)
Other versions
JPS5952457U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14834582U priority Critical patent/JPS5952457U/en
Publication of JPS5952457U publication Critical patent/JPS5952457U/en
Application granted granted Critical
Publication of JPH0233168Y2 publication Critical patent/JPH0233168Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は体液を流動させつつ該体液中の特定成
分を測定する成分測定装置に関し、詳細には血液
等を検査対象として血糖値等を測定するにあた
り、血液等を流動緩衝液に注入混合し、流動状態
で酵素電極に接触させて測定する装置中に気泡発
生防止用の流動抵抗部を設けた該測定装置に関す
るものである。 例えば血糖値の測定は糖尿病の判定に当つて不
可欠であり、糖尿病の増大に伴なつて医療機関に
おける検査頻度は激増しつつある。又血糖値に限
らず現今の医療における生化学検査の重要度は
益々高まつて、自動測定装置の開発が進められて
おり、既に特願昭55−160970号(特開昭57−
84346号公報)等によつて各種体液(血液・尿等
を含む)中の化学成分を酸素反応的に比較的精度
よく且つ迅速に測定し得た装置が提供されてい
る。ところで上記測定装置は被検体液を流動させ
つつ測定するに当り、ポンプによつて該液を送り
こむ為と、使用される緩衝液を体温まで昇温する
予熱コイルや上記緩衝液に被検体液を注入した混
合液を均一に混合する為の混合装置で気泡が発生
することがあつた。この様な気泡が混合液と共に
測定装置内を流れ酵素電極部を通過したり電極面
側に付着すると、酵素反応による電界分布パター
ンが崩れて測定ノイズが現われ、被検体液中の化
学成分の測定精度が低くなる。そこで本考案者等
は上記装置内部に気泡の発生するのを可及的に防
止することによつて測定精度を高めることのでき
る装置を提供しようとするものである。即ち上記
目的を達成し得た本考案の構成とは、流動緩衝液
中に被検体液を注入する注入部と、これらの液を
混合する混合装置と、混合液体を流動状態で酵素
電極に接触させる測定部と、測定済みの混合液を
系外に放出する放出部が、ラインパイプにより連
接されてなる体液成分測定装置において、上記測
定部の下流側であつて上記放出部直前に設けた3
方コツクより上流側のラインパイプに、流体の流
動抵抗部を設けたことを要旨とするものである。 以下実施例たる図面にづいて本考案の構成及び
作用効果を具体的に説明するが、下記実施例は一
具体例にすぎず、もとより前・後記の趣旨に徴し
て流動抵抗部の設計を変更するこは、いずれも本
考案の技術的範囲に含まれる。 第1図は本考案の適用される体液成分測定装置
の概念を示す系統図で、緩衝液貯留部Aから分岐
部Bに至る測定ラインXと、分岐部Bから緩衝液
貯留部Aに戻る返送ラインYと、分岐部Bから排
出部Cに至る排出ラインZからなり、これらはラ
インパイプによつて連結されている。緩衝液貯留
部Aの緩衝液はインラインポンプ8によつて吸い
上げられ、測定ラインXに供給されてきた緩衝液
は、予熱コイル1によつて測定至適温度(通常は
37℃)まで昇温する。加熱された緩衝液はサンプ
ルポート2に至り、該ポート2内を流動する緩衝
液に対して被検体液が注入される上記被検体液の
注入は、ラインパイプ内における圧力損失の大き
いことを考慮して大気圧以上の圧力で行つている
ので、大気をシールした手動方式による圧入が行
なわれている。あるいは手動方式に代えてオート
サンプラー17等による自動注入式を採用すると
もできる。サンプル注入を受けた流動緩衝液は、
測定部5へ至るまでに十分混合しておく必要から
設けられたら旋状の細管からなる混合装置3に至
りここでサンプルと緩衝液は十分混合され(以下
混合液という)、次に測定部5に至る。測定部5
では混合液を流動状態で酵素電極4に接触させる
方式となつており、流動混合物が酵素電極に接す
ると酵素電極の作用によつて被検体液中の対象成
分の濃度を求める。測定部5は外部から混入して
くる空気、あるいは内部において発生するガス等
に基づく測定誤差を防止でき、且つ酵素電極表面
に到達した混合液を該表面に十分接触させ、しか
も速やかに流出させ得る様な構造のフローセル方
式となつている。又上記対象成分の濃度の演算及
び記録等はコンピユータ13によつて行なわれ
る。測定の終了した混合液は測定部5と排出部C
の直前にある分岐路Bに設けた3方コツク7との
間のラインパイプに設けた流動抵抗部6を通る。
該流動抵抗部6の構成は任意であるが要はライン
パイプ内を流れる被検体液に背圧を与え、ポンプ
による液の流動と、予熱コイル及び混合装置等に
よつて系内に発生した気泡を膨張させない為に設
けられたものであるから、系内の液圧をあげる目
的の流体抵抗部は全て本考案に利用できる。 第2図は流動抵抗部6の一例についてこれを拡
大して示す一部破断断面図で、芯用金具9の回り
にはラインパイプとほぼ同径のフツ素樹脂管10
がら旋状に巻きつけられている。適宜用いる樹脂
管の内径は0.5〜1mm及び長さ1000mm程度のもの
が推奨される。そして流動抵抗部6の供給口11
より進入した混合液は排出口12より排出され
る。即ち該混合液はインラインポンプ8によつて
進行し流動抵抗部6の供給口11より流入する
が、上記ら旋管中を旋回進行させることにより流
動抵抗を発揮するわけで、測定ラインX内の緩衝
液及び混合液の背圧をあげる結果となり、測定ラ
インX内での気泡の発生を防止し、更には発生し
た気泡の膨張をおさえて表面積を小さくする効果
を発揮する。一方流動抵抗部6の排出口12より
出た混合液は分岐点Bに設けた3方コツク7を経
て排出ラインZから排出部Cへ排出させる。上記
3方コツク7は、測定時間外は測定ラインXから
返送ラインYにわたる閉ループを形成しておき、
測定を行なう段階でサンプルを注入すると同時に
3方コツク7を切換えて測定ラインXを排出ライ
ンZに接続するわけである。従つて平時は緩衝液
を循環させて測定開始に備える態勢を整えてお
き、サンプルを注入した後は、サンプルを排出ラ
インZへ放出する様にコツク7の切換えを行なう
様に取付てある。又系内に発生した気泡が残つた
場合、次回測定に備えてこれらの気泡を排出する
手段としてインラインポンプ8の上流に別の3方
コツク14を設けておき、測定終了後に上記3方
コツク14を切換えてエアコンプレツサー等によ
り系内に空気を吹込み、該空気と共に脱泡するこ
とが可能である(詳細は別途出願済み)。 流動抵抗部6の有無が測定結果に与える影響を
調べるために、濃度が150mg/dlであるグルコー
ス標準液を用いて、同一の体液成分測定装置によ
り濃度の測定を行つた。まず流動抵抗部を配設し
て測定し、次に該流動抵抗部をはずして測定し、
さらに流動抵抗部を再び配設して測定するという
様に繰り返し、各々3回ずつの測定実験を行つ
た。1回当たりのデータ数は36とし、平均値、標
準偏差、CV値及びCV値の平均を求めた。結果は
第1表に示す。
The present invention relates to a component measuring device that measures a specific component in a body fluid while flowing the body fluid. Specifically, when measuring blood glucose level etc. with blood etc. as a test subject, blood etc. is injected into a flowing buffer solution and mixed. The present invention relates to a measuring device in which a flow resistance section for preventing bubble generation is provided in the device, which measures by contacting an enzyme electrode in a flowing state. For example, measuring blood sugar levels is essential in determining diabetes, and as the prevalence of diabetes increases, the frequency of testing at medical institutions is rapidly increasing. In addition, the importance of biochemical tests in modern medical care, not just blood sugar levels, is increasing, and automatic measuring devices are being developed.
No. 84346) and the like provide an apparatus that can relatively accurately and quickly measure chemical components in various body fluids (including blood, urine, etc.) using oxygen reactions. By the way, when measuring while flowing the sample body fluid, the above measuring device uses a pump to send the sample fluid, a preheating coil that heats the buffer solution to body temperature, and a preheating coil that heats the buffer solution to the body temperature. Bubbles were sometimes generated in the mixing device used to uniformly mix the injected liquid mixture. If such bubbles flow through the measurement device together with the mixed liquid and pass through the enzyme electrode or adhere to the electrode surface, the electric field distribution pattern caused by the enzyme reaction will be disrupted and measurement noise will appear, making it difficult to measure the chemical components in the sample body fluid. Accuracy decreases. Therefore, the inventors of the present invention have attempted to provide a device that can improve measurement accuracy by preventing the generation of bubbles inside the device as much as possible. In other words, the configuration of the present invention that achieves the above object is as follows: an injection part for injecting a sample liquid into a flowing buffer solution, a mixing device for mixing these liquids, and a device for bringing the mixed liquid into contact with an enzyme electrode in a flowing state. In a body fluid component measuring device in which a measuring section for measuring the measured liquid and a discharging section for discharging the measured mixed liquid to the outside of the system are connected by a line pipe, a 3.
The gist of this is that a fluid flow resistance section is provided in the line pipe upstream of the pipe. The configuration and effects of the present invention will be specifically explained below with reference to the drawings, which are examples. However, the following example is just one specific example, and the design of the flow resistance part is changed in accordance with the purpose described above and below. All of these are included within the technical scope of the present invention. Figure 1 is a system diagram showing the concept of the body fluid component measuring device to which the present invention is applied, showing a measurement line It consists of a line Y and a discharge line Z extending from a branch part B to a discharge part C, and these are connected by a line pipe. The buffer solution in the buffer solution storage section A is sucked up by the inline pump 8, and the buffer solution supplied to the measurement line X is heated to the optimum measurement temperature (usually
Increase the temperature to 37℃). The heated buffer solution reaches the sample port 2, and the test body fluid is injected into the buffer solution flowing inside the port 2. The injection of the test body fluid described above takes into consideration the large pressure loss within the line pipe. Since the injection is carried out at a pressure higher than atmospheric pressure, manual press-fitting is performed with the atmosphere sealed. Alternatively, instead of the manual method, an automatic injection method using an autosampler 17 or the like may be adopted. The flow buffer that received the sample injection was
The sample and buffer solution are mixed sufficiently (hereinafter referred to as mixed solution) by a mixing device 3, which is provided in order to ensure sufficient mixing before reaching the measuring section 5. leading to. Measuring part 5
In this method, the liquid mixture is brought into contact with the enzyme electrode 4 in a fluid state, and when the liquid mixture comes into contact with the enzyme electrode, the concentration of the target component in the body fluid to be examined is determined by the action of the enzyme electrode. The measurement unit 5 can prevent measurement errors due to air entering from the outside or gas generated inside, and can also allow the liquid mixture that has reached the surface of the enzyme electrode to sufficiently contact the surface and quickly flow out. It is a flow cell type with a similar structure. Further, the computer 13 performs the calculation and recording of the concentration of the target component. The mixed liquid after the measurement is transferred to the measuring section 5 and the discharging section C.
It passes through a flow resistance section 6 provided in the line pipe between the three-way tank 7 provided in the branch road B immediately before the flow.
Although the configuration of the flow resistance section 6 is arbitrary, the essential point is that it applies back pressure to the sample liquid flowing in the line pipe, and prevents the flow of the liquid by the pump and the air bubbles generated in the system by the preheating coil, mixing device, etc. Since it is provided to prevent the fluid from expanding, any fluid resistance section for the purpose of increasing the fluid pressure within the system can be used in the present invention. FIG. 2 is a partially cutaway sectional view showing an example of the flow resistance section 6 in an enlarged manner.
It is wrapped in a spiral shape. It is recommended that the inner diameter of the appropriately used resin tube be 0.5 to 1 mm and the length be about 1000 mm. And the supply port 11 of the flow resistance section 6
The mixed liquid that has entered further is discharged from the discharge port 12. That is, the mixed liquid is advanced by the in-line pump 8 and flows in through the supply port 11 of the flow resistance section 6, but it exhibits flow resistance by rotating in the spiral tube. This results in an increase in the back pressure of the buffer solution and mixed solution, which prevents the generation of bubbles within the measurement line X, and further suppresses the expansion of the generated bubbles to reduce the surface area. On the other hand, the mixed liquid discharged from the discharge port 12 of the flow resistance section 6 is discharged from the discharge line Z to the discharge section C via the three-way tank 7 provided at the branch point B. The three-way kettle 7 forms a closed loop extending from the measurement line X to the return line Y outside the measurement time.
At the stage of measurement, the sample is injected and at the same time the three-way socket 7 is switched to connect the measurement line X to the discharge line Z. Therefore, during normal times, the buffer solution is circulated to prepare for the start of measurement, and after the sample is injected, the tank 7 is switched so as to discharge the sample to the discharge line Z. In addition, if air bubbles generated in the system remain, another three-way pump 14 is provided upstream of the in-line pump 8 as a means for discharging these bubbles in preparation for the next measurement. It is possible to blow air into the system using an air compressor or the like by switching the air pressure and degassing the air together with the air (details have been filed separately). In order to investigate the influence of the presence or absence of the flow resistance section 6 on the measurement results, the concentration was measured using the same body fluid component measuring device using a glucose standard solution with a concentration of 150 mg/dl. First, a flow resistance part is installed and measured, then the flow resistance part is removed and measured,
Furthermore, the measurement experiment was repeated by disposing the flow resistance section again and performing the measurement three times. The number of data per run was 36, and the average value, standard deviation, CV value, and average of the CV values were determined. The results are shown in Table 1.

【表】 第1表から本発明に係る流動抵抗部を設けるこ
とによつてデータのバラツキが少なくなり、安定
した測定結果が得られることがわかる。 本考案装置は上記の如く構成されているので、
気泡の発生を防止して測定値のバラツキを少なく
し、精度よくしかも迅速に体液中の特定成分を測
定することができるようになつた。
[Table] It can be seen from Table 1 that by providing the flow resistance section according to the present invention, variations in data are reduced and stable measurement results can be obtained. Since the device of the present invention is constructed as described above,
It has become possible to prevent the generation of air bubbles, reduce variations in measured values, and quickly and accurately measure specific components in body fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置全体の概念を示す系統図、
第2図は要部を拡大した一部破断断面図である。 A……緩衝液貯留部、B……分岐部、C……排
出部、1……予熱コイル、2……サンプルポー
ト、3……混合装置、4……酵素電極、5……測
定部、6……流動抵抗部、7……3方コツク、8
……インラインポンプ、9……芯用金具、10…
…フツ素樹脂管、11……供給口、12……排出
口、13……コンピユータ、14……3方コツ
ク。
Figure 1 is a system diagram showing the overall concept of the device of the present invention;
FIG. 2 is a partially cutaway sectional view showing an enlarged main part. A... Buffer storage part, B... Branch part, C... Discharge part, 1... Preheating coil, 2... Sample port, 3... Mixing device, 4... Enzyme electrode, 5... Measuring part, 6... Flow resistance part, 7... 3-way lock, 8
...Inline pump, 9... Core fitting, 10...
...Fluorine resin pipe, 11... Supply port, 12... Discharge port, 13... Computer, 14... 3-way socket.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流動緩衝液中に被検体液を注入する注入部と、
これらの液を混合する混合装置と、混合液体を流
動状態で酵素電極に接触させる測定部と、測定済
みの混合液を系外に放出する放出部が、ラインパ
イプにより連接されて構成されてなる体液成分測
定装置において、上記測定部の下流側であつて上
記放出部直前に設けた3方コツクより上流側のラ
インパイプに、流体の流動抵抗部を設けたことを
特徴とする体液成分測定装置。
an injection part for injecting a sample fluid into the flow buffer;
It consists of a mixing device that mixes these liquids, a measurement unit that brings the mixed liquid into contact with the enzyme electrode in a fluid state, and a discharge unit that discharges the measured mixed liquid to the outside of the system, all connected by a line pipe. A body fluid component measuring device, characterized in that a fluid flow resistance section is provided in a line pipe downstream of the measuring section and upstream of a three-way socket provided immediately before the discharge section. .
JP14834582U 1982-09-29 1982-09-29 Body fluid component measuring device Granted JPS5952457U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14834582U JPS5952457U (en) 1982-09-29 1982-09-29 Body fluid component measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14834582U JPS5952457U (en) 1982-09-29 1982-09-29 Body fluid component measuring device

Publications (2)

Publication Number Publication Date
JPS5952457U JPS5952457U (en) 1984-04-06
JPH0233168Y2 true JPH0233168Y2 (en) 1990-09-06

Family

ID=30329615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14834582U Granted JPS5952457U (en) 1982-09-29 1982-09-29 Body fluid component measuring device

Country Status (1)

Country Link
JP (1) JPS5952457U (en)

Also Published As

Publication number Publication date
JPS5952457U (en) 1984-04-06

Similar Documents

Publication Publication Date Title
JP4606543B2 (en) Method for confirming amount of solution to be measured and measuring system control method in optical property measuring apparatus
JPS6225262A (en) Method and device for measuring hematocrit value of blood sample
JPS60128369A (en) Device and method for executing qualitative enzyme immunity test
JP2007114201A (en) Dissolution test equipment and test method
CN104215769A (en) Latex enhanced immunoturbidimetry NGAL detection kit
CN110270564A (en) A kind of cleaning method and sample analyser of reactant
JPH0233168Y2 (en)
CN215575159U (en) Blood analyzer and detection device thereof
CN103543180B (en) For immune impedance biosensor detection method and the pick-up unit of rapid detection for pesticide residue
JPH0449576Y2 (en)
JPH07198554A (en) Method for mixing two kinds of starting solution and device for executing method thereof
JPS5861459A (en) Analyzing device for creatine and creatinine
CN113866417A (en) Specific protein measurement method
Garcia et al. Extending the dynamic range of flame atomic absorption spectrometry: a comparison of procedures for the determination of several elements in milk and mineral waters using on-line dilution
Scherp The diffusion coefficient of crystalline trypsin
JPS6130205Y2 (en)
Burnett et al. IFCC reference measurement procedure for substance concentration determination of total carbon dioxide in blood, plasma or serum
CN106546755B (en) A kind of occult blood speed is surveyed with capillary array preparation method and application
Sturgess Interpreting liver parameters in cats and dogs—getting the most out of my blood work
JPH07209239A (en) Inspection equipment for electrode
CN114088648B (en) Gas-liquid dual isolation method for sampling micro-reagent of multi-way valve
BR102022010978A2 (en) DEVICE FOR CALIBRATION OF DISSOLVED OXYGEN DETERMINATION SENSORS
CN210572282U (en) Constant volume component and standard recovery rate testing device
JPS6018751A (en) Flow cell washing method
JPH0515081Y2 (en)