JPH0233087B2 - - Google Patents

Info

Publication number
JPH0233087B2
JPH0233087B2 JP60287369A JP28736985A JPH0233087B2 JP H0233087 B2 JPH0233087 B2 JP H0233087B2 JP 60287369 A JP60287369 A JP 60287369A JP 28736985 A JP28736985 A JP 28736985A JP H0233087 B2 JPH0233087 B2 JP H0233087B2
Authority
JP
Japan
Prior art keywords
ice
water
cold air
test chamber
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60287369A
Other languages
Japanese (ja)
Other versions
JPS62145132A (en
Inventor
Kenji Tsukioka
Yoshio Aida
Katsuyoshi Takekuma
Yoshio Kayo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toyo Seisakusho KK
Original Assignee
Mitsubishi Heavy Industries Ltd
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toyo Seisakusho KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60287369A priority Critical patent/JPS62145132A/en
Publication of JPS62145132A publication Critical patent/JPS62145132A/en
Publication of JPH0233087B2 publication Critical patent/JPH0233087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/20Designing vessels; Predicting their performance using towing tanks or model basins for designing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は砕氷船や極地船、極地用海上構造物等
の縮尺モデルを用いた砕氷や構造物結氷災害等の
シユミレーシヨンを行なう実験装置に用いられる
氷層を形成するための模擬氷海製造方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to an experimental device for simulating ice-breaking and structural icing disasters using scale models of icebreakers, polar ships, polar offshore structures, etc. This invention relates to a method for producing a simulated ice sea for forming an ice layer.

〔従来の技術〕[Conventional technology]

砕氷船や極地船、或は石油プラツトホーム等の
極地海上構造物は設計段階で縮尺モデルを作り、
実際の氷海に擬した氷層で模擬実験を行ない、
種々の条件下における船形や構造上の耐久力等の
試験を行なつている。
For polar offshore structures such as icebreakers, polar ships, or oil platforms, scale models are created at the design stage.
We conducted a simulation experiment using an ice layer that simulated an actual ice sea.
We are conducting tests on ship shape and structural durability under various conditions.

このような実験装置としては、水槽を配置した
試験室内の天井に大型の冷却コイルを設けて試験
室内全体を自然対流により冷却する方式のものが
ある。
One example of such experimental equipment is one in which a large cooling coil is installed on the ceiling of a test chamber in which a water tank is placed, and the entire test chamber is cooled by natural convection.

しかし、試験室及び水槽の水を冷却、凍結させ
る手段において次の問題点があつた。
However, the following problems arose in the means for cooling and freezing water in the test chamber and aquarium.

(1) 水槽内の氷の結氷速度が遅く、1回の実験サ
イクルが長くて実験を多くできない。
(1) The freezing rate of ice in the tank is slow, and one experiment cycle is long, making it impossible to conduct many experiments.

(2) 氷層の氷質が良好でない。(2) The ice quality of the ice layer is not good.

(3) 氷上面にアバタが生じる。(3) Avatars appear on the ice surface.

(4) 結氷終了時の氷厚偏差が多く、水槽内の場所
により氷厚が異なるため正確な実験結果が期待
できない。
(4) Accurate experimental results cannot be expected because there are many deviations in the ice thickness at the end of freezing, and the ice thickness varies depending on the location in the tank.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述した問題点を解決するため、氷点
下の低温空気を試験室内へ強制的に、しかも所要
時間毎に吹き出し方向を変えて送り込むことによ
り結氷速度を上昇させ、しかも氷層は噴霧ノズル
からの霧を瞬間的に結氷せしめた氷晶核を水槽内
に均一に撒布し均一な氷層成長を促進せしめるよ
うにした。
In order to solve the above-mentioned problems, the present invention increases the rate of freezing by forcibly feeding sub-zero low temperature air into the test chamber, changing the blowing direction every required time, and furthermore, the ice layer is removed from the spray nozzle. Ice crystal nuclei, which are made by instantaneously freezing the fog, are evenly distributed in the water tank to promote uniform ice layer growth.

〔問題点を解決するための手段〕[Means for solving problems]

しかして本発明の模擬氷海製造方法は、水を入
れた水槽を備える試験室内へ氷点下の低温冷風を
水槽内の水の表面に沿うように高速送風して試験
室内を急速冷却するとともに水槽内の水の表面に
薄氷を形成し、次いで同試験室内への送風を一時
停止し、急速冷却により生成された強度が不均一
な前記薄水を適宜除去した後、試験室内へ水を霧
状に噴霧してその霧を瞬間的に氷結せしめた氷晶
核を降下させることにより水槽内の水の表面に氷
晶核を均一に撒布し、次いで低温の冷風を氷層に
沿うように、しかも気流の流れ方向が所要時間毎
に逆転する交番気流となるように送風することに
より、ムラのない厚さの氷層を生成せしめること
ができるようにしたことを特徴とする。
Therefore, the method for producing a simulated ice sea of the present invention rapidly cools the test chamber by blowing sub-zero cold air at high speed along the surface of the water in the test chamber, which is equipped with a water tank. Thin ice is formed on the surface of the water, then the air blowing into the test chamber is temporarily stopped, the thin water with uneven strength generated by rapid cooling is appropriately removed, and then water is sprayed into the test chamber in the form of a mist. The ice crystal nuclei that instantly freeze the fog are then lowered to uniformly spread the ice crystal nuclei on the surface of the water in the aquarium, and then the low-temperature cold air is directed along the ice layer, and the airflow is The ice layer is characterized by being able to generate an ice layer with an even thickness by blowing air so as to create an alternating air flow in which the direction of flow is reversed every required time.

〔作用〕[Effect]

実験用氷層をつくる前段階において試験室内は
急速に冷却され、これにより水の表面に薄氷が生
成されるが、この薄氷は急生成されているため厚
さや強度が不均一である。
Before creating the experimental ice layer, the inside of the test chamber is rapidly cooled, which forms thin ice on the surface of the water, but because this thin ice forms rapidly, it is uneven in thickness and strength.

この薄氷が一旦除去された後、氷晶核が静かに
均一に水面に撒布され、次いでこの水面へ交番気
流を送風することにより氷が成長して、厚さ、強
度の均一な実験用模擬氷海が形成される。
Once this thin ice is removed, the ice crystal nuclei are quietly and evenly scattered on the water surface, and then an alternating air current is sent to the water surface to grow the ice, creating a simulated ice sea with uniform thickness and strength for experiments. is formed.

〔実施例〕〔Example〕

以下本発明の一実施例を添付図面に示す一具体
例により詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to a specific example shown in the accompanying drawings.

第1図において、断熱構造室体1により構成さ
れる試験室2内の底部には水4を溜めた水槽3が
設けられている。また試験室内の左右には、上端
をチヤンバー12a,12bに接続し、下端には
冷風出入口11a,11bを開口せしめたダクト
13a,13bよりなる左右一対の冷風供給器1
4a,14bを設けてあり、前記冷風出入口11
a,11bは、冷風を水槽内の水の表面へこれに
沿つて吹き出すように斜傾せしめて開口してあ
る。
In FIG. 1, a water tank 3 containing water 4 is provided at the bottom of a test chamber 2 constituted by a heat-insulating structure chamber body 1. In addition, on the left and right sides of the test chamber, there are a pair of left and right cold air supply devices 1, each consisting of ducts 13a and 13b whose upper ends are connected to chambers 12a and 12b, and whose lower ends have cold air inlets and outlets 11a and 11b.
4a and 14b are provided, and the cold air inlet/outlet 11
The openings a and 11b are slanted and opened so that cold air is blown out along the surface of the water in the aquarium.

さらに試験室内の上部には水を噴霧する噴霧ノ
ズル5が多数設けられ、各ノズル5には散水装置
8からの水が散水パイプ6を通じて圧送されるよ
うになつている。
Further, a large number of spray nozzles 5 for spraying water are provided in the upper part of the test chamber, and water from a water sprinkler 8 is force-fed to each nozzle 5 through a water spray pipe 6.

また水槽3の左右にはレール10a,10bが
敷設され、レール10a,10b上には水槽3を
跨ぐようにして試験室2の長手方向に移動可能な
測定室兼用のキヤリア28が設けられ、そのキヤ
リア28の下部には、水槽3内の氷26を砕いて
移動させられる実験用の模擬船25がロツド27
により取り付けられている。
Furthermore, rails 10a and 10b are laid on the left and right sides of the water tank 3, and a carrier 28 that can be moved in the longitudinal direction of the test chamber 2 so as to straddle the water tank 3 is provided on the rails 10a and 10b. At the bottom of the carrier 28, there is a rod 27 with a mock ship 25 for experiments that can be moved by breaking the ice 26 in the water tank 3.
It is attached by.

一方試験室2の外部には、ケーシング15内に
送風機16と加熱器17、及び冷凍機18から冷
媒管7により冷媒が供給される冷媒コイル19が
配設された冷風発生器20が設けられ、吸入口1
5より吸入した空気を冷却して吹き出す冷風出口
15aには送風ダクト22が接続され、同ダクト
にはそれぞれダンパ21a,21bを有する分岐
ダクト22a,22bが接続されており、各分岐
ダクトは冷風供給器のチヤンバー12a,12b
へそれぞれ接続されている。しかしてチヤンバー
12a,12bからは各々ダンパ23a,23b
を有する戻りダクト24a,24bが冷風発生器
20の吸入口15bへ接続されている。
On the other hand, outside the test chamber 2, a cold air generator 20 is provided in which a blower 16, a heater 17, and a refrigerant coil 19 to which a refrigerant is supplied from a refrigerator 18 through a refrigerant pipe 7 are arranged. Inlet 1
A blower duct 22 is connected to a cold air outlet 15a that cools and blows out the air sucked in from the air outlet 5, and branch ducts 22a and 22b each having dampers 21a and 21b are connected to the same duct, and each branch duct supplies cold air. Chamber chambers 12a, 12b
are connected to each. Therefore, from the chambers 12a and 12b, there are dampers 23a and 23b, respectively.
A return duct 24a, 24b having a diameter is connected to the intake port 15b of the cold air generator 20.

上述した装置で交番冷気流を発生させるには、
まず冷風発生器20の吸入口15bより吸入した
空気を冷却コイル19により冷却して送風ダクト
22a,22bから各チヤンバー12a,12b
へ送出する。ここでダンパ21b,23bを開、
ダンパ21a,23aを閉とすることにより冷風
は実線矢印の方向へ流れてチヤンバー12aへ送
られ、冷風出入口11aから結氷用水槽3の水面
上へ吹き出される。
To generate an alternating cold air flow with the device described above,
First, the air sucked from the intake port 15b of the cold air generator 20 is cooled by the cooling coil 19, and then passed through the air ducts 22a, 22b to each chamber 12a, 12b.
Send to. Here, dampers 21b and 23b are opened,
By closing the dampers 21a and 23a, the cold air flows in the direction of the solid arrow, is sent to the chamber 12a, and is blown out onto the water surface of the freezing water tank 3 from the cold air inlet/outlet 11a.

この空気は冷風出入口11bで吸収されて戻り
ダクト24bから冷風発生器20へ戻される。
This air is absorbed by the cold air inlet/outlet 11b and returned to the cold air generator 20 through the return duct 24b.

また、冷風方向を逆転させるにはダンパ21
a,23aを開、ダンパ21b,23bを閉とす
ることにより冷風の流れは逆転し、冷風は冷風出
入口11bから出入口11aへ流れる破線矢印方
向の流れとなる。
Also, in order to reverse the direction of the cold air, the damper 21
By opening a, 23a and closing dampers 21b, 23b, the flow of cold air is reversed, and the cold air flows in the direction of the dashed arrow from the cold air inlet/outlet 11b to the inlet/outlet 11a.

ここで交番気流にした理由は、気流の下流側の
伝熱は低下するため、同一方向の流れの気流であ
ると下流側程氷層は薄いものとなつて、上流側と
下流側とでは氷厚に偏差が生じるので、これを補
正するためである。
The reason for using alternating airflow here is that the heat transfer on the downstream side of the airflow decreases, so if the airflow flows in the same direction, the ice layer will be thinner on the downstream side, and the ice layer will be thinner on the upstream and downstream sides. This is to correct the deviation in thickness that occurs.

次に実験に使用される氷層を水面上に形成せし
める方法を第3,4図を参照して説明する。
Next, a method for forming an ice layer on the water surface used in the experiment will be explained with reference to FIGS. 3 and 4.

〔過程〕 最初高速風(0.5〜1.0m/sec)により+2℃か
ら−10℃まで試験室内を急速に冷却する。これに
より水面上には約1〜2mm厚の薄氷26aが全面
に生成される〔第3図a〕。
[Process] First, the test chamber is rapidly cooled from +2°C to -10°C using high-speed wind (0.5 to 1.0 m/sec). As a result, thin ice 26a having a thickness of about 1 to 2 mm is formed on the entire surface of the water (FIG. 3a).

この−10℃まで冷却した時点で冷風供給を一旦
停止し、スクレーパー等で薄氷を全て排除する。
これは氷の結晶が大きいため、表面だけが強度の
大きい不均一な氷になつているからである〔第3
図b〕。
Once the ice has cooled down to -10°C, the cold air supply is temporarily stopped and all thin ice is removed using a scraper or the like.
This is because the ice crystals are large, so only the surface becomes strong and uneven ice [Part 3]
Figure b].

次いでS点からは風速0mの無風状態で散水装
置8を作動させ、ノズル5から霧状に水を噴出さ
せる。この時の試験室2内の温度は−10℃前後で
あるため、霧は瞬間的に氷結し、直径的30μ以下
の氷晶核となつて0℃近い温度の水面上に均一に
降り、水面に氷晶核の浮遊層26bが形成される
〔第3図c〕。
Next, from point S, the water sprinkler 8 is operated in a calm state with a wind speed of 0 m, and water is spouted from the nozzle 5 in the form of mist. Since the temperature inside test chamber 2 at this time is around -10℃, the fog freezes instantaneously, becomes ice crystal nuclei with a diameter of 30μ or less, and falls uniformly on the water surface whose temperature is close to 0℃. A floating layer 26b of ice crystal nuclei is formed [FIG. 3c].

〔過程〕 風速約0.3〜0.5m/secの、しかも風向きが所定
時間毎に交互に反対方向をなす交番低速風を、水
面上の氷層が流されないようにして−15℃程度ま
で冷却する。
[Process] Alternating low-speed wind with a wind speed of approximately 0.3 to 0.5 m/sec, and in which the wind direction alternates in opposite directions at predetermined intervals, is used to cool the ice layer on the water surface to about -15°C without being washed away.

氷厚が約3mm以上に成長したu点からは0.5〜
1.0m/secの高速で、しかも−21℃の低温冷風に
て再冷却して氷層を増大させる〔第3図d〕。
From point u, where the ice thickness has grown to about 3 mm or more, it is 0.5~
The ice layer is increased by re-cooling at a high speed of 1.0 m/sec and with cold air at -21℃ [Figure 3 d].

〔過程〕 次いで実験用の種々の強度の氷層を作り出すた
め、温度を上昇させる運転を行なう。前記装置で
は冷風発生装置20の加熱器17を作動させるこ
とにより温度の高い空気を試験室2内へ送り込
む。
[Process] Next, in order to create ice layers of various strengths for experiments, an operation was performed to increase the temperature. In the device, high temperature air is sent into the test chamber 2 by operating the heater 17 of the cold air generator 20.

〔過程〕 氷海模擬実験を行なう過程で、高速風又は低速
風を選択し、かつ試験室内温度を一定に保持す
る。この状態で第1,2図に示すキヤリア28全
体をレール10a,10bに沿つて移動させるこ
とにより模擬船25を氷の中で走行させる。
[Process] In the process of conducting the ice sea simulation experiment, select high-speed wind or low-speed wind and maintain the temperature in the test room constant. In this state, the entire carrier 28 shown in FIGS. 1 and 2 is moved along the rails 10a and 10b to cause the simulated ship 25 to run in the ice.

なお、キヤリア28内では砕氷状態などをモニ
ターする。
Furthermore, inside the carrier 28, the state of ice breaking, etc. is monitored.

実験終了後は残つた氷を排除し、再度実験を繰
り返す場合は過程より同様の動作を繰り返す。
After the experiment is finished, remove the remaining ice, and if you want to repeat the experiment again, repeat the same operation from the beginning.

以上の動作指令はタイマー又はプログラムコン
トローラなどの指令により行なわれ、送風速度は
送風機用モータのインバータ制御、その他の種々
の電動機回転数制御の方法を用いることができ
る。
The above operation commands are performed by commands from a timer or a program controller, and the blowing speed can be controlled by an inverter of the blower motor or by various other methods of controlling the motor rotation speed.

〔本発明の効果〕[Effects of the present invention]

上述した本発明によれば次の効果がある。 According to the present invention described above, there are the following effects.

(1) 本発明では、実験用氷層よりなる氷海をつく
る前段階として試験室内を所定温度まで降下さ
せるが、それは高速送風により急速に冷却して
行うので、前段階の室温低下を短時間に行うこ
とができる。
(1) In the present invention, the temperature inside the test chamber is lowered to a predetermined level as a pre-stage to create an ice sea consisting of an ice layer for experiments, but this is done by rapidly cooling with high-speed air blowing, so the room temperature decrease in the previous step can be reduced in a short time. It can be carried out.

この急速冷却により水槽内の水の表面に薄氷
が生成されるが、その薄氷は急速冷却のため、
また交番気流でないため、厚さが不均一であ
り、強度にも部分にバラツキがある。
This rapid cooling produces thin ice on the surface of the water in the aquarium, but because the thin ice is rapidly cooling,
Furthermore, since there is no alternating air flow, the thickness is uneven and the strength also varies from part to part.

しかし本発明では、この厚さ、強度の不均一
な薄氷を一旦除去し、次いで、氷晶核を無風ま
たは微風状態で静かに水面へ均一に降下せしめ
て、冷風を交番気流となるように強制的に水面
に沿うように送風することにより氷の成長を促
進せしめるもので、一方向の送風のばあいのよ
うに風の上流側と下流側で厚さや強度に差ので
きる氷層となるようなことはなく、前面に亘つ
て厚さの均一な、強度にムラのない氷層の模擬
氷海をつくることができる。
However, in the present invention, this thin ice with uneven thickness and strength is removed once, and then the ice crystal nuclei are allowed to fall calmly and uniformly to the water surface in no wind or light wind conditions, forcing the cold air to become an alternating air current. This method promotes the growth of ice by blowing air along the water surface, and when air is blown in one direction, the ice layer forms with a difference in thickness and strength between the upstream and downstream sides of the wind. It is possible to create a simulated ice sea with an ice layer of uniform thickness and even strength over the entire front surface.

(2) 氷の結氷速度は水と空気の伝熱係数に比例す
るため、冷却空気流を強制対流方式にしたこと
により単位時間当りの空気流の水(氷)から奪
う熱量がが増加し、結氷速度が従来の2.0〜2.5
mm/hから3〜3.5mm/hと速くなり、実験サイク
ルを短くできる。
(2) Since the freezing rate of ice is proportional to the heat transfer coefficient between water and air, by using the forced convection method for the cooling air flow, the amount of heat taken from the water (ice) by the air flow per unit time increases. Freezing rate is 2.0 to 2.5 compared to conventional
The speed increases from mm/h to 3 to 3.5 mm/h, making it possible to shorten the experimental cycle.

(3) 氷上の飽和水蒸気分圧と冷却空気の水蒸気分
圧間には20mmHg程度の分圧差が生じるが、試
験室内は強制対流を行なつており、氷面上に発
生した霧は試験室外の冷風発生器に吸入、捕捉
され、冷風発生器側でデフロストなどにより除
去できるため、自然対流方式時の冷却器に生成
される霜の塊の落下やデフロスト時のドレンの
落下によつて氷上にアバタが生じるという現象
がなくなる。
(3) There is a partial pressure difference of about 20 mmHg between the saturated water vapor partial pressure on the ice and the water vapor partial pressure in the cooling air, but forced convection is occurring in the test room, and the fog that forms on the ice surface is transferred to the outside of the test room. It is sucked in and captured by the cold air generator, and can be removed by defrosting etc. on the cold air generator side. Therefore, avatars on the ice are caused by falling lumps of frost generated on the cooler during natural convection method or falling condensate during defrosting. This eliminates the phenomenon that occurs.

(4) 冷却コイルに強制的に空気を送り込んで冷気
を作り出す方法であるため、空気に対する熱通
過率が高く、風速2.5m/s程度にした場合、熱
通過率が約20〜30Kcal/m2・h・℃にもなり、
従来の冷却コイルと比較して伝熱面積が4分の
1程度で済み、実験装置のコストの低減を期せ
る。
(4) Since this method creates cold air by forcing air into the cooling coil, the heat transfer rate to the air is high, and when the wind speed is approximately 2.5 m/s, the heat transfer rate is approximately 20 to 30 Kcal/m 2・h・℃,
Compared to conventional cooling coils, the heat transfer area is only about one-fourth, and the cost of experimental equipment can be reduced.

(5) なお、30μ以下の氷晶核から高速で氷を形成
する方法は実験的に氷質を良好にすることが確
認されており、正確な実験が可能となつた。
(5) It has been experimentally confirmed that the method of forming ice at high speed from ice crystal nuclei of 30 μm or less improves ice quality, making it possible to conduct accurate experiments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る模擬氷海製造方法を実施
する実験装置の一例を示す図、第2図は同縦断側
面図、第3図a〜dは水槽内の結氷過程を示す
図、第4図は試験室内の温度変化を示す図であ
る。 図中 1…断熱構造室体、2…試験室、3…水
槽、4…水、5…ノズル、6…散水パイプ、7…
冷媒管、8…散水装置、11a,11b…冷風出
入口、10a,10b…レール、13a,13b
…冷風ダクト、12a,12b…チヤンバー、1
5…ケーシング、14a,14b…冷風供給器、
15b…吸入側、15a…冷風出口、16…送風
機、17…加熱器、18…冷凍機、19…冷却コ
イル、20…冷風発生器、21a,21b,23
a,23b…ダンパ、22…送風ダクト、22
a,22b…分岐ダクト、24a,24b…戻り
ダクト、25…模擬船、26…氷、27…ロツ
ド、28…キヤリア。
Fig. 1 is a diagram showing an example of an experimental apparatus for carrying out the method for producing a simulated ice sea according to the present invention, Fig. 2 is a longitudinal sectional side view of the same, Figs. The figure is a diagram showing temperature changes in the test chamber. In the figure: 1...Insulated chamber body, 2...Test chamber, 3...Water tank, 4...Water, 5...Nozzle, 6...Water pipe, 7...
Refrigerant pipe, 8... Water sprinkler, 11a, 11b... Cold air inlet/outlet, 10a, 10b... Rail, 13a, 13b
...Cold air duct, 12a, 12b...Chamber, 1
5...Casing, 14a, 14b...Cold air supply device,
15b...Suction side, 15a...Cold air outlet, 16...Blower, 17...Heater, 18...Freezer, 19...Cooling coil, 20...Cold air generator, 21a, 21b, 23
a, 23b...Damper, 22...Blower duct, 22
a, 22b...branch duct, 24a, 24b...return duct, 25...mock ship, 26...ice, 27...rod, 28...carrier.

Claims (1)

【特許請求の範囲】[Claims] 1 水を入れた水槽を備える試験室内へ氷点下の
低温冷風を水槽内の水の表面に沿うように高速送
風して試験室内を急速冷却するとともに水槽内の
水の表面に薄氷を形成し、次いで同試験室内への
送風を一時停止し、急速冷却により生成された強
度が不均一な前記薄氷を適宜除去した後、試験室
内へ水を霧状に噴霧してその霧を瞬間的に氷結せ
しめた氷晶核を水槽内の水の表面に均一に撒布
し、次いで低温の冷風を氷層に沿うように、しか
も気流の流れ方向が所要時間毎に逆転する交番気
流となるように送風することにより水槽内の氷晶
核を成長させて氷層を形成することを特徴とする
模擬氷海製造方法。
1. A low-temperature cold air below freezing is blown at high speed along the surface of the water in the tank into a test chamber equipped with a water tank to quickly cool the inside of the test room and form thin ice on the surface of the water in the tank. After temporarily stopping air blowing into the test chamber and appropriately removing the thin ice with uneven strength generated by rapid cooling, water was sprayed into the test chamber in the form of a mist, and the mist instantly froze. By uniformly scattering ice crystal nuclei on the surface of the water in the aquarium, and then blowing low-temperature cold air along the ice layer, and creating an alternating airflow in which the direction of the airflow reverses every required time. A method for producing a simulated ice sea characterized by growing ice crystal nuclei in an aquarium to form an ice layer.
JP60287369A 1985-12-19 1985-12-19 Manufacture of simulated frozen sea Granted JPS62145132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287369A JPS62145132A (en) 1985-12-19 1985-12-19 Manufacture of simulated frozen sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287369A JPS62145132A (en) 1985-12-19 1985-12-19 Manufacture of simulated frozen sea

Publications (2)

Publication Number Publication Date
JPS62145132A JPS62145132A (en) 1987-06-29
JPH0233087B2 true JPH0233087B2 (en) 1990-07-25

Family

ID=17716468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287369A Granted JPS62145132A (en) 1985-12-19 1985-12-19 Manufacture of simulated frozen sea

Country Status (1)

Country Link
JP (1) JPS62145132A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102616A1 (en) * 1990-11-13 1992-05-14 Hamburgische Schiffbau Versuch METHOD FOR GENERATING AN ICE COVER, IN PARTICULAR FOR SHIP MODEL TRIALS
CN114252233A (en) * 2021-12-06 2022-03-29 中国船舶工业集团公司第七0八研究所 Ice feeding device for cavitation water drum test

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115956A (en) * 1982-12-17 1984-07-04 オ−ワイ・ワルトシラ・アクチ−ボラグ Manufacture of ice layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115956A (en) * 1982-12-17 1984-07-04 オ−ワイ・ワルトシラ・アクチ−ボラグ Manufacture of ice layer

Also Published As

Publication number Publication date
JPS62145132A (en) 1987-06-29

Similar Documents

Publication Publication Date Title
US3427820A (en) Cryogenic flash freezing machines
JP6725366B2 (en) Environmental test equipment
JP5143597B2 (en) Frozen product manufacturing method and manufacturing apparatus
ES2204083T3 (en) PROCEDURE AND FREEZE APPLIANCE OF PRODUCTS ONLINE.
JPH0233087B2 (en)
US5102044A (en) Method for producing snow and apparatus therefor
JP7348855B2 (en) Snowfall equipment, artificial weather chambers and snowfall methods
EP1528340A1 (en) Apparatus and process for cooling products
EP1444469B1 (en) Snow making
CN114893937B (en) Temperature-controllable supercooled large water drop generation system
US20160223246A1 (en) Method for defrosting a gas cooling arrangement of a freezer
CN111750583B (en) Snowing device, artificial weather room and snowing method
JPH0573478U (en) Snowfall
JPH087324Y2 (en) Artificial snow making equipment
CN209207270U (en) A kind of device preparing ice pellets gas jet using subcooled water
CN206963912U (en) Circulating water food quick-thawing antistaling cabinet
JPH0634245A (en) Artificial snow making device
CN109262474A (en) A kind of device and method preparing ice pellets gas jet using subcooled water
JP2019056551A (en) Wet snow producing device
JPH0228426Y2 (en)
US20240230200A9 (en) Artificial snowmaking equipment
US20240133608A1 (en) Artificial snowmaking equipment
CN106578845A (en) Fresh keeping refrigerator for quickly unfreezing frozen foods with circulated water
JPH0517466U (en) Artificial snowfall equipment
JPH0469539A (en) Liquid particulate generating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees