JPH0233069B2 - NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO - Google Patents

NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO

Info

Publication number
JPH0233069B2
JPH0233069B2 JP7970984A JP7970984A JPH0233069B2 JP H0233069 B2 JPH0233069 B2 JP H0233069B2 JP 7970984 A JP7970984 A JP 7970984A JP 7970984 A JP7970984 A JP 7970984A JP H0233069 B2 JPH0233069 B2 JP H0233069B2
Authority
JP
Japan
Prior art keywords
resin
softening point
cationic
voltage
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7970984A
Other languages
Japanese (ja)
Other versions
JPS60223875A (en
Inventor
Akira Kubo
Tomoharu Saito
Ko Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Paint Co Ltd
Original Assignee
Shinto Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Paint Co Ltd filed Critical Shinto Paint Co Ltd
Priority to JP7970984A priority Critical patent/JPH0233069B2/en
Publication of JPS60223875A publication Critical patent/JPS60223875A/en
Publication of JPH0233069B2 publication Critical patent/JPH0233069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は従来の電着塗装に比して短時間で厚膜
を得ることが可能で、しかも形成された塗膜が耐
蝕性良好なエポキシ系下層と、耐候性良好なアク
リル系上層の二層構造を有してなる電着塗料組成
物及びその電着塗装方法に関するものである。 一般に電着塗装は電気泳動性を有する荷電樹脂
粒子を含む電解質(電着浴液)中に導電性被塗物
及び対極を浸漬し、直流電圧を印加すると電着浴
液を通して被塗物に電流が流れると同時に荷電樹
脂粒子は被塗物に泳動し、流れた電流量にほぼ比
例して被塗物上に塗膜として析出するものであ
り、膜厚の均一性が特徴としてあげられるが、一
方40μ以上の厚膜が得られない耐蝕性と耐候性を
兼備した塗膜の形成は困難である等の欠点を有す
るものである。 特に自動車車体等の電着塗装においては、外板
部は厚膜で、しかも耐蝕性及び耐候性が良好な塗
膜を形成し、紫外線対策をあまり必要としない内
板部は薄膜で耐蝕性が良好な塗膜を形成するのが
性能的、経済的に理想とされるが、前記の如き欠
点を有するため、かかる塗膜の形成は困難であつ
た。 本発明の目的は前記の如き自動車車体等の電着
塗装において理想とされる塗膜の形成が可能であ
る電着塗料組成物及び電着塗料方法を提供するこ
とである。 本発明者らは前記の目的を達成すべく、まず電
着塗装における厚膜が得られない欠点に関し研究
を行つたところ、電着により被塗物上に析出した
塗膜は一般に有機絶縁体であり、電気抵抗が大で
あるがために被塗物のすべての部位にも塗膜が析
出するが、逆に塗膜が析出した部位には電気抵抗
が増大し次々に塗膜が析出して厚膜化することが
妨げられるためである。 また、析出した塗膜が電気抵抗を持つに至る理
由は、電着浴液中に分散された荷電樹脂粒子が被
塗物に泳動し、被塗物上に析出していく際各樹脂
粒子は粒状のまま単に蓄積または積層するのであ
れば前記の如き高電気抵抗を発現することは困難
であるが、通電により発生するジユール熱により
被塗物上に析出した各樹脂粒子が軟化し、粒子間
の空隙を埋めてしまうためであることがわかつ
た。 従つて、通電により発生するジユール熱により
軟化せず空隙を埋めることのない軟化点の高い樹
脂粒子を析出した場合、析出した塗膜が電気抵抗
を作り難く、このため多量の電流量が得られ、結
果として膜厚の厚い塗膜が得られることが判明し
た。 かかる結果にもとづき実用的な範囲について検
討したところ、通常の電着浴液温度(15℃〜35
℃)では軟化点が80℃以上の樹脂を用いた場合、
高膜厚が得られることを見い出した。 次に、本発明者らは耐蝕性と耐候性を兼備した
塗膜の形成について研究を行つたところ、塗膜形
成用樹脂として特定のカチオン性アクリル樹脂と
特定のカチオン性フエノール型エポキシ樹脂をあ
る条件下で併用した場合、耐蝕性と耐候性を兼備
した塗膜が得られることがわかつた。 すなわち両樹脂の相溶性、重量比、軟化点等を
限定した場合、具体的には組成中ベンゼン核を有
するモノマーが50重量%以下であるカチオン性ア
クリル樹脂と該アクリル樹脂より軟化点が低いカ
チオン性フエノール型エポキシ樹脂を重量比で1
〜30対1の割合で配合した場合驚くべきことに、
形成された硬化塗膜は耐蝕性良好なフエノール型
エポキシ樹脂層からなる下層(被塗物側)と耐候
性良好なアクリル樹脂層からなる上層(空気側)
の二層構造を形成することが判明した。 また、前記の如き樹脂を用いた電着塗装方法に
おいて導電性被塗物として自動車車体等の外板部
及び内板部を有する複雑形状物を浸漬し、対極と
の間に電圧を印加して電着塗装するに際し、始め
通常の電圧を印加し、しかる後電圧を変化させ、
始めの電圧の1.5〜15倍の電圧を印加した場合、
始めの電圧の印加により主に外板部に約50μ以上
の厚膜の二層からなる電着塗膜が形成され、その
後の1.5〜15倍の電圧の印加により内板部にも約
5〜30μ程度の電着塗膜が形成されることが判明
した。 以上の結果にもとづき本発明者らは、さらに研
究をつづけたところ軟化点が80℃以上であるカチ
オン性アクリル樹脂と軟化点が75℃以下であるカ
チオン性フエノール型エポキシ樹脂を前記の如き
条件下に用いることにより本発明の目的が達成さ
れることを見い出した。 すなわち、本発明は組成中にベンゼン核を有す
るモノマーを50重量%以下含有し、かつ軟化点が
80℃以上であるカチオン性アクリル樹脂(A)と軟化
点が75℃以下であるカチオン性フエノール型エポ
キシ樹脂(B)とを含有し、(A)対(B)の重量比が1〜30
対1であることを特徴とする二層塗膜形成型厚膜
電着塗料組成物及び前記組成物からなる電着浴液
中に導電性被塗物として自動車車体等の外板部及
び内板部を有する複雑形状物品を浸漬し、対極と
の間に電圧を印加して電着塗装するに際し、始め
通常の電圧を印加して主に外板部に二層からなる
厚膜電着塗膜を形成し、しかる後始めの電圧の
1.5〜15倍の電圧を印加することにより、内板部
に薄膜電着塗膜を形成することを特徴とする電着
塗装方法を提供するものである。 本発明に使用するカチオン性アクリル樹脂は
αβ−不飽和二重結合を有するモノマー、具体的
にはスチレン、ビニルトルエン及びそれらの誘導
体、アクリル酸及びn−ブチルアクリレート等の
アクリル酸誘導体、メタクリル酸、及びメチルメ
タクリレート、ジメチルアミノエチルメタクリレ
ート、グリシジルメタクリレート、2−ヒドロキ
シエチルメタクリレート等のメタクリル酸誘導体
等の共重合物からなり、ジメチルアミノエチルメ
タクリレート等のアミノ基含有モノマーを共重合
物組成中に含む場合は、これをギ酸、酢酸、乳
酸、リン酸等の酸で中和することによりカチオン
性としたもの、またグリシジルメタクリレート等
のエポキシ基含有モノマーを共重合物組成中に含
む場合はエポキシ基にアミン、スルホニウム等を
付加し、これを前記のような酸で中和することに
よりカチオン性としたものが使用できる。 ただし、本発明に用いるカチオン性アクリル樹
脂はベンゼン核を有するモノマーの含有量が全ア
クリル組成中50重量%以下、好ましくは20重量%
以下のもので、しかも軟化点が80℃以上のものを
選択しなければならない。 ベンゼン核を有するモノマーの含有量が50重量
%を超えた場合はフエノール型エポキシ樹脂との
相溶性がよくなるため、電着塗膜は良好な二層が
形成されなくなり、さらに良好な耐候性も発揮し
得ないものとなる。 また、軟化点が80℃未満の場合は前記した如き
本発明の目的の一つである厚膜の電着塗膜が形成
されなくなる。 本発明に使用するカチオン性フエノール型エポ
キシ樹脂としては、ビスフエノールA−エピクロ
ルヒドリン系、ビスフエノールF−エピクロルヒ
ドリン系等のフエノール型エポキシ樹脂フエノー
ルもしくは核置換フエノールホルムアルデヒドノ
ボラツクのグリシジルエーテル等のノボラツク系
フエノール型エポキシ樹脂にアミン、スルフオニ
ウム等を付加し、これをギ酸、酢酸、乳酸、リン
酸等の酸で中和することによりカチオン性とした
ものが使用できるが、軟化点が75℃以下のものを
選択しなければならない。 軟化点が75℃を超えた場合は前記のようにカチ
オン性フエノール型エポキシ樹脂が電着時に多量
に析出し、かつ塗膜焼付時にカチオン性アクリル
樹脂との粘度差が小さくなり、下層にエポキシ樹
脂、上層にアクリル樹脂の二層塗膜が形成されな
くなる。 なお、本発明における樹脂の軟化点は、固形分
100%の該樹脂をJIS−K−5665に基づいて測定さ
れるものである。 本発明の電着塗料組成物は前記カチオン性アク
リル樹脂(A)とカチオン性フエノール型エポキシ樹
脂(B)とが、重量比で1〜30対1となる割合で含有
されなければならない。(A)の含有量の割合が1未
満の場合は、前記エポキシ樹脂(下層)と前記ア
クリル樹脂(上層)の層分離が良好になされず、
良好な防蝕性、耐候性が発揮し得ない。 逆に30を超えた場合は下層において前記エポキ
シ樹脂で被塗物を均一連続的に被覆することが困
難となり、良好な防蝕性を発揮し得ない。 また、本発明の効果をさらに高めるためにはカ
チオン性アクリル樹脂(A)中の極性基とカチオン性
フエノール型エポキシ樹脂(B)中の極性基の当量比
を(A)<(B)となるように、(A)および(B)を選択するの
が望ましい。 即ち、(B)の極性基を(A)の極性基より大とするこ
とにより、電着時に同一電気量当りの(A)の析出し
易さを増加させることが可能となり、下層エポキ
シ樹脂、上層アクリル樹脂の2層形成をより容易
にするからである。 本発明の電着塗料組成物を硬化させるための手
法は、イソシアネート架橋、エステル架橋、メラ
ミン架橋、アマイド架橋等の公知の方法が適用で
きる。 また、本発明の電着塗料組成物は前記成分の他
に通常の電着塗料に使用される架橋剤、顔料樹
脂、溶剤、添加助剤、水等を含有することができ
る。 本発明の電着塗装方法は前記した如き組成から
なる本発明の電着塗料組成物を水で希釈して不揮
発分5〜20%とした15〜35℃の電着浴中に導電性
被塗物を陰極として浸漬し、対極(陽極)との間
におよそ10V〜600Vの電圧を約5秒〜5分間印
加することにより、該被塗物上にエポキシ系下層
とアクリル系上層の二層からなる厚膜電着塗膜を
形成するものである。 また、導電性被塗物として自動車車体等の外板
部及び内板部を有する複雑形状物品を電着塗装す
るに際しては、始め通常の電圧およそ50〜150V
×5秒〜30秒間電圧を印加して主に外板部に二層
からなる厚膜(50〜200μ)電着塗膜を形成し、
しかる後始めの電圧の1.5〜15倍およそ75V〜
750Vの電圧を印加することにより、内板部に膜
厚およそ5〜30μの電着塗膜を形成するものであ
る。 以下実施例により本発明を説明する。 カチオン性アクリル樹脂(A−1)の調製 (1) エチレングリコールモノエチルエーテル
35重量部 (2) イソプロピルアルコール 7 〃 (3) N−n−ブトキシアクリルアミド 4 〃 (4) 2−ヒドロキシエチルメタクリレート
20 〃 (5) n−ブチルメタクリレート 28 〃 (6) スチレン 15 〃 (7) メチルメタクリレート 25 〃 (8) ジメチルアミノエチルメタクリレート
6 〃 (9) アゾビスイソブチロニトリル 2 〃 (10) プロソクイソシアネート(フエバ社製商品名
B−1065) 17 〃 (11) 氷酢酸 3.5 〃 (12) 脱イオン水 1007.5 〃 まず、(1)〜(2)をコルベンに投入して昇温し、
100〜120℃で90分間かけて(3)〜(9)を滴下し、その
後110〜120℃で3時間維持した。次に(10)を110℃
で投入し均一になるまで撹拌した。 このようにして得た樹脂に(11)〜(12)を加えて均一
に撹拌混合し、カチオン性アクリル樹脂(A−
1)を調製した。 得られた樹脂(A−1)の軟化点は95℃、不揮
発分10%、MEQは50であつた。 MEQ:中和に要した酸の樹脂固形分100g当りの
mg当量数。 カチオン性アクリル樹脂(A−2)の調製 (1) エチレングリコールモノエチルエーテル
35重量部 (2) イソプロピルアルコール 7 〃 (3) N−n−ブトキシアクリルアミド 4 〃 (4) 2−ヒドロキシエチルメタクリレート
20 〃 (5) n−ブチルアクリレート 40 〃 (6) メチルメタクリレート 28 〃 (7) ジメチルアミノエチルメタクリレート
6 〃 (8) アゾビスイソブチロニトリル 2 〃 (9) ブロツクイソシアネート(フエバ社製商品名
B−1065) 17 〃 (10) 氷酢酸 3.5 〃 (11) 脱イオン水 1007.5 〃 (1)〜(11)を前記樹脂(A−1)と同様にして反
応・混合してカチオン性アクリル樹脂(A−2)
を調製した。 得られた樹脂(A−2)の軟化点は70℃、不揮
発分10%、MEQは50であつた。 なお、樹脂(A−1)は本発明のカチオン性ア
クリル樹脂に相当するものであるが、樹脂(A−
2)は軟化点が低く、本発明のカチオン性アクリ
ル樹脂には相当しないものである。 カチオン性フエノール型エポキシ樹脂(B−1)
の調製 (1) フエノール型エポキシ樹脂(シエル社製商品
名エピコート#1001) 450重量部 (2) ジエタノールアミン 105 〃 (3) イソプロピルアルコール 270 〃 (4) ブロツクイソシアネート(フエバ社製商品名
B−1065) 55 〃 (5) 氷酢酸 18.3 〃 (6) 脱イオン水 5199 〃 (1)〜(3)を80℃〜85℃にて3時間反応後、85℃に
て(4)を添加し、均一になるまで撹拌混合した。 このようにして得た樹脂に(5)〜(6)を加えて均一
に撹拌混合し、カチオン性フエノール型エポキシ
樹脂(B−1)を調製した。 得られた樹脂(B−1)の軟化点は72℃、不揮
発分10%、MEQは50であつた。 カチオン性フエノール型エポキシ樹脂(B−2)
の調製 (1) フエノール型エポキシ樹脂(シエル社製商品
名エピコート#1004) 1000重量部 (2) ジエタノールアミン 105 〃 (3) イソプロピルアルコール 535 〃 (4) ブロツクイソシアネート(フエバ社商品名B
−1065) 200 〃 (5) 氷酢酸 39.2 〃 (6) 脱イオン水 11173 〃 (1)〜(6)を前記樹脂(B−1)と同様にして反
応・混合してカチオン性フエノール型エポキシ樹
脂(B−2)を調製した。 得られた樹脂(B−2)の軟化点は125℃、不
揮発分10%、MEQは50であつた。 なお、樹脂(B−1)は本発明のカチオン性フ
エノール型エポキシ樹脂に相当するものである
が、樹脂(B−2)は軟化点が高く、本発明のカ
チオン性フエノール型エポキシ樹脂には相当しな
いものである。 第1表に示した如き混合比(固形分)の樹脂
(A−1)または(A−2)と(B−1)または
(B−2)との混合物である各例の電着塗料組成
分からなる浴温25℃の電着浴中に、導電性被塗物
として自動車車体の形状を有し、リン酸亜鉛処理
した鉄板製品を浸漬し、対極である陽極との間
に、始め200Vで20秒間通電し、しかる後電圧を
あげて600Vで2分間通電した。 得られた塗膜の性状、性能は第1表に示す如く
であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention makes it possible to obtain a thicker film in a shorter time than conventional electrodeposition coating, and the formed coating film has an epoxy underlayer with good corrosion resistance and good weather resistance. The present invention relates to an electrodeposition coating composition having a two-layer structure including an acrylic upper layer, and a method for electrodeposition coating thereof. In general, electrodeposition coating involves immersing a conductive object and a counter electrode in an electrolyte (electrodeposition bath liquid) containing charged resin particles with electrophoretic properties, and when a DC voltage is applied, a current flows through the electrodeposition bath liquid to the object. At the same time as the electric current flows, the charged resin particles migrate to the object to be coated, and are deposited as a coating film on the object in approximately proportion to the amount of current flowing, and is characterized by the uniformity of the film thickness. On the other hand, it has the disadvantage that it is difficult to form a coating film having both corrosion resistance and weather resistance, since it is difficult to obtain a thick film of 40 μm or more. Particularly in the electro-deposition coating of automobile bodies, etc., the outer panel forms a thick film with good corrosion and weather resistance, while the inner panel, which does not require much protection against UV rays, forms a thin film with corrosion resistance. Although forming a good coating film is ideal from a performance and economical point of view, it has been difficult to form such a coating film due to the drawbacks mentioned above. An object of the present invention is to provide an electrodeposition coating composition and an electrodeposition coating method that are capable of forming an ideal coating film in the electrodeposition coating of automobile bodies and the like as described above. In order to achieve the above object, the present inventors first conducted research on the drawback that a thick film cannot be obtained in electrodeposition coating, and found that the coating film deposited on the object to be coated by electrodeposition is generally an organic insulator. Since the electrical resistance is high, the paint film is deposited on all parts of the object to be coated, but conversely, the electrical resistance increases in the parts where the paint film is deposited, and the paint film is deposited one after another. This is because it prevents the film from becoming thicker. In addition, the reason why the deposited coating film has electrical resistance is that the charged resin particles dispersed in the electrodeposition bath liquid migrate to the object to be coated, and as they are deposited on the object, each resin particle is If the resin particles are simply accumulated or laminated in the form of particles, it is difficult to achieve the high electrical resistance described above, but the resin particles deposited on the object to be coated are softened by the Joule heat generated by energization, and the particles are separated. It turns out that this is to fill in the gaps. Therefore, if resin particles with a high softening point that do not soften and fill the voids are precipitated by the Joule heat generated by energization, it is difficult for the deposited coating film to create electrical resistance, and therefore a large amount of current cannot be obtained. It was found that a thick coating film could be obtained as a result. Based on these results, we examined the practical range and found that the normal electrodeposition bath temperature (15°C to 35°C)
℃), if a resin with a softening point of 80℃ or higher is used,
It has been found that a high film thickness can be obtained. Next, the present inventors conducted research on forming a coating film that has both corrosion resistance and weather resistance, and found that a specific cationic acrylic resin and a specific cationic phenolic epoxy resin were used as coating film-forming resins. It has been found that when used together under certain conditions, a coating film with both corrosion resistance and weather resistance can be obtained. That is, when limiting the compatibility, weight ratio, softening point, etc. of both resins, specifically, a cationic acrylic resin whose composition contains a monomer having a benzene nucleus at 50% by weight or less and a cationic resin whose softening point is lower than that of the acrylic resin. phenolic type epoxy resin at a weight ratio of 1
Surprisingly, when combined at a ratio of ~30:1,
The formed cured coating film consists of a lower layer (on the object side) consisting of a phenolic epoxy resin layer with good corrosion resistance and an upper layer (on the air side) consisting of an acrylic resin layer with good weather resistance.
It was found that a two-layer structure was formed. In addition, in the electrodeposition coating method using resin as described above, a complex-shaped object having an outer panel and an inner panel, such as an automobile body, is immersed as a conductive object to be coated, and a voltage is applied between it and a counter electrode. When applying electrodeposition coating, first apply a normal voltage, then change the voltage,
When applying a voltage 1.5 to 15 times the initial voltage,
By applying the initial voltage, an electrodeposited coating consisting of two layers with a thickness of about 50μ or more is formed mainly on the outer panel, and by applying a voltage of 1.5 to 15 times the thickness after that, an electrodeposited coating film of about 5 to 50μ thick is formed on the inner panel as well. It was found that an electrodeposition coating film of about 30μ was formed. Based on the above results, the present inventors continued their research and found that a cationic acrylic resin with a softening point of 80°C or higher and a cationic phenolic epoxy resin with a softening point of 75°C or lower were used under the above conditions. It has been found that the object of the present invention can be achieved by using the present invention. That is, the present invention contains 50% by weight or less of a monomer having a benzene nucleus in the composition, and has a softening point.
Contains a cationic acrylic resin (A) with a temperature of 80°C or higher and a cationic phenolic epoxy resin (B) with a softening point of 75°C or lower, and the weight ratio of (A) to (B) is 1 to 30.
A two-layer coating-forming thick-film electrodeposition coating composition characterized in that the composition is 1 to 1; When electrocoating an article with a complex shape by dipping it and applying a voltage between it and a counter electrode, a normal voltage is first applied to form a thick electrocoated film consisting of two layers mainly on the outer panel. and then the initial voltage of
The present invention provides an electrodeposition coating method characterized in that a thin electrodeposition coating film is formed on an inner plate portion by applying a voltage of 1.5 to 15 times. The cationic acrylic resin used in the present invention is a monomer having αβ-unsaturated double bonds, specifically styrene, vinyltoluene and their derivatives, acrylic acid derivatives such as acrylic acid and n-butyl acrylate, methacrylic acid, and copolymers of methacrylic acid derivatives such as methyl methacrylate, dimethylaminoethyl methacrylate, glycidyl methacrylate, and 2-hydroxyethyl methacrylate, and when an amino group-containing monomer such as dimethylaminoethyl methacrylate is included in the copolymer composition. , made cationic by neutralizing it with acids such as formic acid, acetic acid, lactic acid, phosphoric acid, etc., and when containing an epoxy group-containing monomer such as glycidyl methacrylate in the copolymer composition, amine, A cationic compound can be used by adding sulfonium or the like and neutralizing it with the acid mentioned above. However, the content of the monomer having a benzene nucleus in the cationic acrylic resin used in the present invention is 50% by weight or less, preferably 20% by weight in the total acrylic composition.
The following must be selected, with a softening point of 80°C or higher. If the content of monomers with benzene nuclei exceeds 50% by weight, the compatibility with the phenolic epoxy resin improves, so the electrodeposited coating will not form a good two layer and will also exhibit better weather resistance. It becomes impossible. Further, if the softening point is less than 80°C, a thick electrodeposition coating film, which is one of the objects of the present invention as described above, will not be formed. The cationic phenolic epoxy resin used in the present invention includes phenolic epoxy resins such as bisphenol A-epichlorohydrin and bisphenol F-epichlorohydrin; phenols; and novolac phenols such as glycidyl ether of nuclear-substituted phenol formaldehyde novolak. Epoxy resins made cationic by adding amines, sulfonium, etc. and neutralizing them with acids such as formic acid, acetic acid, lactic acid, phosphoric acid, etc. can be used, but choose ones with a softening point of 75°C or lower. Must. If the softening point exceeds 75°C, a large amount of cationic phenolic epoxy resin will precipitate during electrodeposition as described above, and the viscosity difference with the cationic acrylic resin will become smaller when the coating film is baked, causing the epoxy resin to form in the lower layer. , a two-layer coating of acrylic resin will no longer be formed on the upper layer. In addition, the softening point of the resin in the present invention is determined by the solid content.
100% of the resin is measured based on JIS-K-5665. The electrodeposition coating composition of the present invention must contain the cationic acrylic resin (A) and the cationic phenolic epoxy resin (B) in a weight ratio of 1 to 30:1. If the content ratio of (A) is less than 1, the epoxy resin (lower layer) and the acrylic resin (upper layer) will not be well separated,
Good corrosion resistance and weather resistance cannot be exhibited. On the other hand, if it exceeds 30, it becomes difficult to uniformly and continuously cover the object to be coated with the epoxy resin in the lower layer, and good corrosion resistance cannot be exhibited. In addition, in order to further enhance the effects of the present invention, the equivalent ratio of the polar groups in the cationic acrylic resin (A) and the polar groups in the cationic phenolic epoxy resin (B) should be such that (A) < (B). Therefore, it is desirable to select (A) and (B). That is, by making the polar group of (B) larger than the polar group of (A), it becomes possible to increase the ease of precipitation of (A) per the same amount of electricity during electrodeposition, and the lower layer epoxy resin, This is because it makes it easier to form two layers of upper acrylic resin. As a method for curing the electrodeposition coating composition of the present invention, known methods such as isocyanate crosslinking, ester crosslinking, melamine crosslinking, amide crosslinking, etc. can be applied. Further, the electrodeposition coating composition of the present invention may contain, in addition to the above-mentioned components, a crosslinking agent, a pigment resin, a solvent, an additive auxiliary agent, water, etc. that are used in ordinary electrodeposition coatings. In the electrodeposition coating method of the present invention, the electrodeposition coating composition of the present invention having the composition as described above is diluted with water to give a conductive coating in an electrodeposition bath at a temperature of 15 to 35°C with a nonvolatile content of 5 to 20%. By immersing an object as a cathode and applying a voltage of about 10V to 600V between it and the counter electrode (anode) for about 5 seconds to 5 minutes, two layers of an epoxy lower layer and an acrylic upper layer are applied to the object. A thick electrodeposited coating film is formed. In addition, when electrocoating complex-shaped objects such as automobile bodies that have outer and inner panels as conductive objects, the initial voltage is approximately 50 to 150 V.
×A voltage is applied for 5 to 30 seconds to form a two-layer thick (50 to 200μ) electrodeposited coating mainly on the outer panel.
After that, 1.5 to 15 times the initial voltage, approximately 75V~
By applying a voltage of 750V, an electrodeposited coating film with a thickness of approximately 5 to 30 μm is formed on the inner plate portion. The present invention will be explained below with reference to Examples. Preparation of cationic acrylic resin (A-1) (1) Ethylene glycol monoethyl ether
35 parts by weight (2) Isopropyl alcohol 7 (3) N-n-butoxyacrylamide 4 (4) 2-hydroxyethyl methacrylate
20 (5) n-butyl methacrylate 28 (6) Styrene 15 (7) Methyl methacrylate 25 (8) Dimethylaminoethyl methacrylate
6 〃 (9) Azobisisobutyronitrile 2 〃 (10) Prosocyanate (product name B-1065 manufactured by Hueva) 17 〃 (11) Glacial acetic acid 3.5 〃 (12) Deionized water 1007.5 〃 First, (1) ) to (2) are put into a Kolben and heated,
(3) to (9) were added dropwise over 90 minutes at 100-120°C, and then maintained at 110-120°C for 3 hours. Then (10) at 110℃
and stirred until uniform. Add (11) to (12) to the resin thus obtained, stir and mix uniformly, and cationic acrylic resin (A-
1) was prepared. The resulting resin (A-1) had a softening point of 95°C, a nonvolatile content of 10%, and an MEQ of 50. MEQ: Acid required for neutralization per 100g of resin solids
mg equivalent number. Preparation of cationic acrylic resin (A-2) (1) Ethylene glycol monoethyl ether
35 parts by weight (2) Isopropyl alcohol 7 (3) N-n-butoxyacrylamide 4 (4) 2-hydroxyethyl methacrylate
20 〃 (5) n-butyl acrylate 40 〃 (6) Methyl methacrylate 28 〃 (7) Dimethylaminoethyl methacrylate
6 〃 (8) Azobisisobutyronitrile 2 〃 (9) Blocked isocyanate (product name B-1065 manufactured by Hueva) 17 〃 (10) Glacial acetic acid 3.5 〃 (11) Deionized water 1007.5 〃 (1)~( 11) was reacted and mixed in the same manner as the resin (A-1) to obtain a cationic acrylic resin (A-2).
was prepared. The resulting resin (A-2) had a softening point of 70°C, a nonvolatile content of 10%, and an MEQ of 50. Note that resin (A-1) corresponds to the cationic acrylic resin of the present invention, but resin (A-1) corresponds to the cationic acrylic resin of the present invention.
2) has a low softening point and does not correspond to the cationic acrylic resin of the present invention. Cationic phenolic epoxy resin (B-1)
Preparation (1) Phenol-type epoxy resin (trade name Epicote #1001 manufactured by Ciel Corporation) 450 parts by weight (2) Diethanolamine 105 〃 (3) Isopropyl alcohol 270 〃 (4) Blocked isocyanate (trade name B-1065 manufactured by Hueva Corporation) 55 〃 (5) Glacial acetic acid 18.3 〃 (6) Deionized water 5199 〃 After reacting (1) to (3) at 80℃ to 85℃ for 3 hours, add (4) at 85℃ and mix evenly. Stir and mix until the mixture is mixed. (5) to (6) were added to the resin thus obtained and mixed by stirring uniformly to prepare a cationic phenolic epoxy resin (B-1). The resulting resin (B-1) had a softening point of 72°C, a nonvolatile content of 10%, and an MEQ of 50. Cationic phenolic epoxy resin (B-2)
Preparation (1) 1000 parts by weight of phenolic epoxy resin (trade name Epicote #1004, manufactured by Shell Co., Ltd.) (2) Diethanolamine 105 〃 (3) Isopropyl alcohol 535 〃 (4) Blocked isocyanate (trade name B, manufactured by Hueva Corporation)
-1065) 200 (5) Glacial acetic acid 39.2 (6) Deionized water 11173 (1) to (6) are reacted and mixed in the same manner as the resin (B-1) to obtain a cationic phenolic epoxy resin. (B-2) was prepared. The resulting resin (B-2) had a softening point of 125°C, a nonvolatile content of 10%, and an MEQ of 50. Note that resin (B-1) corresponds to the cationic phenolic epoxy resin of the present invention, but resin (B-2) has a high softening point and is not equivalent to the cationic phenolic epoxy resin of the present invention. It's something you don't do. The electrodeposition coating composition of each example is a mixture of resin (A-1) or (A-2) and (B-1) or (B-2) at the mixing ratio (solid content) shown in Table 1. A zinc phosphate-treated steel sheet product having the shape of an automobile body as a conductive object to be coated is immersed in an electrodeposition bath with a bath temperature of 25°C, and a voltage of 200 V is applied between the anode and the opposite electrode. Electricity was applied for 20 seconds, and then the voltage was increased to 600V for 2 minutes. The properties and performance of the resulting coating film were as shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 組成中にベンゼン核を有するモノマーを50重
量%以下含有し、かつ軟化点が80℃以上であるカ
チオン性アクリル樹脂(A)と軟化点が75℃以下であ
るカチオン性フエノール型エポキシ樹脂(B)とを含
有し、(A)対(B)の重量比が1〜30対1であることを
特徴とする二層塗膜形成型厚膜電着塗料組成物。 2 組成中にベンゼン核を有するモノマーを50重
量%以下含有し、かつ軟化点が80℃以上であるカ
チオン性アクリル樹脂(A)と軟化点が75℃以下であ
るカチオン性フエノール型エポキシ樹脂(B)とを含
有し、(A)対(B)の重量比が1〜30対1である電着塗
料組成物からなる電着浴液中に外板部及び内板部
を有する導電性被塗物を陰極として浸漬し、対極
(陽極)との間に電圧を印加して電着塗装するに
際し、始め通常の電圧を印加して主に外板部に二
層からなる厚膜電着塗膜を形成し、しかる後始め
の電圧の1.5〜15倍の電圧を印加することにより
内板部に薄膜電着塗膜を形成することを特徴とす
る電着塗装方法。
[Scope of Claims] 1. A cationic acrylic resin (A) containing 50% by weight or less of a monomer having a benzene nucleus in its composition and having a softening point of 80°C or higher, and a cationic acrylic resin (A) having a softening point of 75°C or lower. 1. A thick film electrodeposition coating composition for forming a two-layer coating film, comprising a phenolic epoxy resin (B) and a weight ratio of (A) to (B) of 1 to 30:1. 2 A cationic acrylic resin (A) containing 50% by weight or less of a monomer having a benzene nucleus in its composition and a softening point of 80°C or higher, and a cationic phenolic epoxy resin (B) having a softening point of 75°C or lower. ), and the weight ratio of (A) to (B) is 1 to 30:1. When electrodepositing an object by immersing it as a cathode and applying a voltage between it and the counter electrode (anode), a normal voltage is first applied to form a thick electrocoated film consisting of two layers mainly on the outer panel. , and then applying a voltage 1.5 to 15 times the initial voltage to form a thin electrodeposition coating on the inner plate.
JP7970984A 1984-04-19 1984-04-19 NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO Expired - Lifetime JPH0233069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7970984A JPH0233069B2 (en) 1984-04-19 1984-04-19 NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7970984A JPH0233069B2 (en) 1984-04-19 1984-04-19 NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO

Publications (2)

Publication Number Publication Date
JPS60223875A JPS60223875A (en) 1985-11-08
JPH0233069B2 true JPH0233069B2 (en) 1990-07-25

Family

ID=13697730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7970984A Expired - Lifetime JPH0233069B2 (en) 1984-04-19 1984-04-19 NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO

Country Status (1)

Country Link
JP (1) JPH0233069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021261A (en) * 2009-07-17 2011-02-03 Nippon Paint Co Ltd Method of forming electrodeposition coating film and method of forming multilayer coating film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699652B2 (en) * 1986-01-28 1994-12-07 関西ペイント株式会社 Cationic electrodeposition coating composition for forming multilayer film
DE3628121A1 (en) * 1986-08-19 1988-03-03 Herberts Gmbh FOREIGN CROSSLINKING COMBINATION OF BINDERS FOR WATER-DISCOVERABLE VARNISHES, CATHODICALLY DEPOSITABLE ELECTRO-SUBSTRATE COATINGS AND THE USE THEREOF
JP2002129099A (en) * 2000-10-26 2002-05-09 Nippon Paint Co Ltd Cationic electrodeposition paint composition, and method of forming multilayer film using the same.
JP4564160B2 (en) * 2000-10-26 2010-10-20 日本ペイント株式会社 Electrodeposition coating method and electrodeposition coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021261A (en) * 2009-07-17 2011-02-03 Nippon Paint Co Ltd Method of forming electrodeposition coating film and method of forming multilayer coating film

Also Published As

Publication number Publication date
JPS60223875A (en) 1985-11-08

Similar Documents

Publication Publication Date Title
US4916019A (en) Cationic electrodeposition coating composition for multilayer film formation
US3617458A (en) Cationic electrodeposition system
AU596262B2 (en) Multiple electrocoating process
DE60107843T2 (en) METHOD FOR APPLYING A MULTILAYER COATING TO AUTOMOBILE BODIES OR BODY PARTS
JPS62228500A (en) Electrodeposition painting method
JPH03143966A (en) Electrodeposition type film-forming composition and method for coating
US4869796A (en) Electrodeposition coating composition
JPH0233069B2 (en) NISOTOMAKUGATASEIKEIATSUMAKUDENCHAKUTORYOSOSEIBUTSUOYOBIDENCHAKUTOSOHOHO
US5104507A (en) Anodic-cathodic coating for fasteners
US4376848A (en) Water dilutable cathodic depositable resinous binder production and use
US6231738B1 (en) Multilayer electrodeposited coating
US7364645B2 (en) Process for forming cured gradient coating film and multi-layered coating film containing the same
EP1778796A2 (en) Electro-coat adhesion layer with a siloxane top coat
JP2577749B2 (en) Method for improving smoothness of electrodeposition coating film
JPH07331181A (en) Coating composition
US3437574A (en) Anticorrosive treatment of zinc and metallic materials coated with zinc
WO2004100184A1 (en) Method of coating a square wire and an insulated wire of a square wire
DE3530179A1 (en) CATHODICALLY DEPOSITABLE AQUEOUS ELECTRODESCENT COATING AGENT
JPH04293973A (en) Cationic electrodeposition coating composition
DE2155057A1 (en) Electroplating substance and electroplating process
JP2866415B2 (en) Painting method
JPS60162796A (en) Formation of thick film by coating by electrodeposition
US3498897A (en) Method for manufacturing multilayered product
JPS63134696A (en) Electrodepositing method
JEYAKRISIINAN STUDIES (ON THE CHARACTERISTICS () IR WATER SOLUBLE ACRYLIC RES INS USED FOR EI ECTRO DEPOSITI () N

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees