JPH0233022B2 - - Google Patents

Info

Publication number
JPH0233022B2
JPH0233022B2 JP56075552A JP7555281A JPH0233022B2 JP H0233022 B2 JPH0233022 B2 JP H0233022B2 JP 56075552 A JP56075552 A JP 56075552A JP 7555281 A JP7555281 A JP 7555281A JP H0233022 B2 JPH0233022 B2 JP H0233022B2
Authority
JP
Japan
Prior art keywords
cch
group
general formula
catalyst
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56075552A
Other languages
Japanese (ja)
Other versions
JPS57192326A (en
Inventor
Masakatsu Matsumoto
Satoru Ito
Keiko Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP56075552A priority Critical patent/JPS57192326A/en
Publication of JPS57192326A publication Critical patent/JPS57192326A/en
Publication of JPH0233022B2 publication Critical patent/JPH0233022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は一般式 (R1およびR2は水素、アルキル基、シクロア
ルキル基、アルケニル基、シクロアルケニル基ま
たはアリール基であり、R3およびR4は水素、ア
ルキル基、アルケニル基またはアリール基であ
り、R2およびR4は結合して環状構造を形成して
もよい。)で表わされる不飽和カルボニル化合物
の製造方法に関するものである。更に詳しくは、
本発明は酸素供給物質中、一般式 (式中、Mは周期律表第b、bまたは族
金属であり、Rは水素、アルキル基またはアリー
ル基であり、L1,L2,L3は水、アルコール、ア
ミン、ホスフインあるいはカルボン酸であり、X
はカルボキシレート、ハロゲン、過塩素酸イオン
または四弗化ホウ素である。)で表わされるμ3
オキソトリメタル錯体の存在下、一般式 (R1およびR2は水素、アルキル基、シクロア
ルキル基、アルケニル基、シクロアルケニル基ま
たはアリール基であり、R3およびR4は水素、ア
ルキル基、アルケニル基またはアリール基であ
り、R2およびR4は結合して環状構造を形成して
もよい)。で表わされる不飽和アルコールを脱水
素酸化することにより、前記一般式()で表わ
される不飽和カルボニル化合物を製造する方法に
関するものである。前記一般式()で表わされ
る不飽和カルボニル化合物は香料、医薬品等ある
いはそれらの製造原料として広範に利用されてい
る。 従来、前記一般式()で表わされる不飽和カ
ルボニル化合物を前記一般式()で表わされる
不飽和アルコールより製造するには(イ)二酸化マン
ガンに代表されるような試薬酸化剤により酸化す
る方法(新実験化学構座15丸善(1976)参照)及
び(ロ)白金触媒を用いた酸素酸化(新実験化学構座
15丸善(1976)参照)による方法等が知られてい
る。しかし(イ)の方法は酸化試薬を化学量論的に使
用しなければならない上、結果として生ずる還元
生成物の処理等の問題で工業的には採用し難い。
又(ロ)の方法はカルボン酸等を副生するなど選択性
において問題がある。 本発明者等は従来法の欠点を克服すべく検討し
た結果収率よく容易に不飽和アルコールを相当す
る不飽和カルボニル化合物に変換する工業的方法
を見出し本発明を完成するに至つた。 本発明の原料である前記一般式()で表わさ
れる不飽和アルコールとしては、アリルアルコー
ル、クロチルアルコール、プレノール(3―メチ
ル―2―ブテン―1―オール)、ゲラニオール、
ネロール、フアルネソール、レチノール、2―
(β―イヨニリデン)エタノール、シンナミルア
ルコール等の不飽和1級アルコール及び3―ヒド
ロキシ―1―ブテン、3―ヒドロキシ―1―フエ
ニル―1―ブテン、β―イオノール、カルベオー
ル等の不飽和2級アルコールを例示することがで
きる。 本発明の方法は前記一般式()で表わされる
不飽和アルコールを酸素供給物質中、前記一般式
()で表わされるμ3−オキソトリメタル錯体の
存在下に反応させることを必須条件とするもので
ある。ここでいう酸素供給物質とは酸素ガス、酸
素と不活性ガスとの混合ガス、空気等を意味する
ものである。 本発明に用いるμ3−オキソトリメタル錯体とし
ては〔Ru3O(O2CCH36(H2O)3〕O2CCH3
〔Ru3O(O2CC2H56(H2O)3〕O2CC2H5、〔Ru3O
(O2CC3H76(H2O)3〕O2CC3H7、〔Ru3O
(O2CC6H56(H2O)3〕O2CC6H5、〔Ru3O
(O2CCH2CH2C6H56(H2O)3
O2CCH2CH2C6H5、〔Ru3O(O2CC7H156(H2O)3
O2CC7H15、〔Ru3O(O2CCH36(C5H5N)3
O2CCH3、〔Ru3O(O2CCH36(PPh)3〕O2CCH3
〔Cr3O(O2CCH36(C5H5N)3〕ClO4、〔Cr3O
(O2CCH36(C5H5N)3〕Cl、〔Cr3O(O2CCH36
(C6H7N)3〕ClO4、〔Cr3O(O2CCH36
(CH3OH)3〕Cl、〔Cr3O(O2CCH36(H2O)2
(CH3CO2H)〕O2CCH3、〔Mn3O(O2CCH36
(C5H5N)3〕ClO4、〔Mn3O(O2CCH36
(C6H7N)3〕ClO4、〔Fe3O(O2CCH36(C5H5N)3
ClO4、〔Fe3O(O2CCH36(C6H7N)3〕ClO4
〔Co3O(O2CCH36(C6H7N)3〕ClO4、〔Rh3O
(O2CCH36、(C5H5N)3〕ClO4、〔Rh3O
(O2CCH36(H2O)3〕ClO4・2H2O、〔Rh3O
(O2CCH36(PPh33〕ClO4、〔Ir3O(O2CCH36
(H2O)2(CH3CO2H)〕(O2CCH32、〔Ir3O
(O2CCH36(C5H5N)3〕ClO4、〔Ir3O(O2CCH36
(C6H7N)3〕ClO4、〔Ir3O(O2CCH36(C5H5N)3
(ClO42、〔Ir3O(O2CCH36(PPh33
(O2CCH32等を例示することができる。これら
の錯体の使用量はいわゆる接触量で十分である。
また、これらの錯体は、公知の方法〔A.Spencer
and G.Wilkinson,J.C.S.Dalton.1972,1570;S.
Uemura,A.Spencer、and G.Wilkinson,ibid.
1973,2565〕で容易に調製できる。 なお、本発明で用いる触媒は均一及び不均一系
のいずれにおいても使用することができるが、不
均一系触媒として用いる場合には、前記したμ3
オキソトリメタル錯体を有機溶液しくは無機溶液
として含浸、沈殿あるいは共沈させ、触媒製造に
通常使用される任意の技術により担体上に担持す
ることが出来る。担体としてはシリカゲル、アル
ミナ、活性炭等を使用することが出来る。 本発明の実施に当つて、溶媒は必ずしも必要で
はないが、反応に直接関与しない溶媒例えば、ク
ロロホルム、四塩化炭素、ジクロロエタン、トリ
クロロエタン、1,1,2,2―テトラクロロエ
タン等のハロゲン化炭化水素、ベンゼン、トルエ
ン等の芳香族炭化水素、アセトン、メチルエチル
ケトン等のカルボニル化合物、テトラヒドロフラ
ン、ジオキサン、1,2―ジメトキシエタン等の
エーテル類、メタノール、エタノール等の飽和ア
ルコール等を用いることができる。反応は常圧の
酸素供給物質中で行つても進行するが、効果の点
から加圧下で行うのが好ましい。また、反応は0
〜150℃で行うことができるが、選択性の点から
室温〜100℃で実施するのが好ましい。 本発明の特徴は前記一般式()の不飽和アル
コールを、前記一般式()のμ3―オキソトリメ
タル錯体触媒の使用により、酸素供給物質の存在
下で容易に前記一般式()の不飽和カルボニル
化合物に変換できる他、反応の過程において原料
と生成物の間の立体化学は保持されることであ
る。 以下、実施例により、本発明を更に詳細に説明
する。 実施例 1 プレノール10.0gに〔Ru3O(OAc)6・3H2O〕
OAC(以下触媒Aと略す)10mgをとかし、7atm
の酸素雰囲気下、60〜65℃で24時間撹拌した。反
応混合物をNMRで分析したところ、14.3%の3,
3―ジメチルアクロレインの他は事実上他の生成
物は認められなかつた。 実施例 2 プレノール15.0gに触媒A100mgを加え、90℃
に加熱、撹拌し、酸素を吹込みながら、24時間反
応させた。反応混合物をGLC(XE−6020%
100゜)およびNMRで分析したところ、24%の3,
3―ジメチルアクロレンの生成している他、副生
成物は殆んど認められなかつた。 実施例 3 ゲラニオール10.0gに触媒A100mgを加え、
7atmの酸素雰囲気下、65゜〜66℃に加熱し、3時
間撹拌した。反応混合物をGLC(XE−60 20%
160゜)およびNMRで分析したところ、トランス
―シトラールが12.2%生成している以外は、他の
生成物は認められなかつた。この反応を6時間行
つた時には同様に18.2%のトランス―シトラール
の生成が認められた。 実施例 4 ネロール2.0gは触媒A50mgを加え、60〜70℃、
酸素(1atm)雰囲気下で、20時間反応させ、反
応混合物を、NMRおよびGLCで分析したとこ
ろ、31%がシトラールに転化していることがわか
つた。なおこの場合には生成したシトラールは、
約2:1の割合でシス体とトランス体の混合物に
なつた。 実施例 5 β―シクロシトリリデンエタノール0.4gに触
媒A10mgを加え、55゜〜65℃、酸素雰囲気下
(1atm)で44時間反応させ、反応混合物をNMR
およびGLCで分析したところ、57%がβ―シク
ロシトリリデンアセトアルデヒドに転化している
ことがわかつた。 実施例 6 β―イオノール0.4gに触媒A10mgを加え、55゜
〜65℃、酸素雰囲気下(1atm)で94時間反応さ
せ、反応混合物をNMRおよびGLCで分析したと
ころろ、19%がβ―イオノンに転化していること
がわかつた。 実施例 7 トランス―シンナミルアルコール0.4gに触媒
A10gを加え55゜−65℃、酸素雰囲気下(1atm)、
46時間反応させ、反応混合物をNMRおよびGLC
で分析したところ、45%がトランス―シンナムア
ルデヒドに転化していることがわかつた。 実施例 8 ゲラニオール2.0gと〔Ru3O
(O2CCH2CH2C6H56・3H2O〕O2CCH2CH2C6H5
(以下触媒Bと略す)10mgをトルエン10mlにとか
し、55〜60℃、7atmの酸素圧下に6時間加熱撹
拌した。反応混合物を分析したところ、17.5%の
トランス―シトラールの生成していることがわか
つた。 実施例 9 ゲラニオール30gに触媒B10mgをとかし、60±
5℃、7atm酸素という条件下で9時間反応させ
たところ、約10%のトランス―シトラールが生成
した。 実施例 10 ゲラニオール2g(13mmol)と[Cr3O
(O2CCH36(C5H5N)3]Cl50mg(0.06mmol)を
混合し、酸素雰囲気下60℃で50時間撹拌した。反
応混合物をガスクロマトグラフで解析した所未反
応原料とシトラールの比が6:1であつた。 実施例 11 ゲラニオール2g(13mmol)、〔Cr3O
(O2CCH2CH2φ)6・3H2O〕O2CCH2CH2φ 50mg
(0.04mmol)を混合し、酸素雰囲気下60℃で6.5
時間撹拌した。反応混合物をガスクロマトグラフ
で解析すると未反応原料とシトラールの比が9:
2であつた。又シトラールはトランスシトラー
ル:シスシトラール=6:1の混合物であつた。
[Detailed Description of the Invention] The present invention relates to the general formula (R 1 and R 2 are hydrogen, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group or aryl group, R 3 and R 4 are hydrogen, alkyl group, alkenyl group or aryl group, R 2 and R 4 may be bonded to form a cyclic structure. For more details,
In the present invention, in the oxygen supplying substance, the general formula (In the formula, M is a group b or group metal of the periodic table, R is hydrogen, an alkyl group, or an aryl group, and L 1 , L 2 , and L 3 are water, alcohol, amine, phosphine, or carboxylic acid. and X
is a carboxylate, halogen, perchlorate ion or boron tetrafluoride. ) expressed as μ 3
In the presence of an oxotrimetal complex, the general formula (R 1 and R 2 are hydrogen, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group or aryl group, R 3 and R 4 are hydrogen, alkyl group, alkenyl group or aryl group, R 2 and R 4 may be combined to form a cyclic structure). The present invention relates to a method for producing an unsaturated carbonyl compound represented by the general formula () by dehydrogenating and oxidizing an unsaturated alcohol represented by the formula (). The unsaturated carbonyl compound represented by the general formula () is widely used as fragrances, pharmaceuticals, etc., or raw materials for their production. Conventionally, in order to produce the unsaturated carbonyl compound represented by the above general formula () from the unsaturated alcohol represented by the above general formula (2), (a) a method of oxidizing with a reagent oxidizing agent such as manganese dioxide ( New Experimental Chemistry Structure 15 Maruzen (1976)) and (b) Oxygen oxidation using a platinum catalyst (New Experimental Chemistry Structure)
15 Maruzen (1976)) is known. However, method (a) requires the use of oxidizing reagents in a stoichiometric manner and is difficult to adopt industrially due to problems such as treatment of the resulting reduction products.
Furthermore, the method (b) has problems in selectivity, such as the production of carboxylic acids and the like as by-products. The present inventors conducted studies to overcome the drawbacks of conventional methods, and as a result found an industrial method for easily converting unsaturated alcohols into corresponding unsaturated carbonyl compounds with high yield, and completed the present invention. Examples of the unsaturated alcohol represented by the general formula () that is a raw material of the present invention include allyl alcohol, crotyl alcohol, prenol (3-methyl-2-buten-1-ol), geraniol,
Nerol, falnesol, retinol, 2-
(β-ionylidene) Unsaturated primary alcohols such as ethanol and cinnamyl alcohol, and unsaturated secondary alcohols such as 3-hydroxy-1-butene, 3-hydroxy-1-phenyl-1-butene, β-ionol, and carveol. can be exemplified. The method of the present invention requires that the unsaturated alcohol represented by the general formula () be reacted in the presence of the μ 3 -oxotrimetal complex represented by the general formula () in an oxygen supplying substance. It is. The oxygen supply substance herein means oxygen gas, a mixed gas of oxygen and an inert gas, air, and the like. The μ 3 -oxotrimetal complex used in the present invention includes [Ru 3 O(O 2 CCH 3 ) 6 (H 2 O) 3 ]O 2 CCH 3 ,
[Ru 3 O (O 2 CC 2 H 5 ) 6 (H 2 O) 3 ] O 2 CC 2 H 5 , [Ru 3 O
(O 2 CC 3 H 7 ) 6 (H 2 O) 3 ] O 2 CC 3 H 7 , [Ru 3 O
(O 2 CC 6 H 5 ) 6 (H 2 O) 3 ] O 2 CC 6 H 5 , [Ru 3 O
(O 2 CCH 2 CH 2 C 6 H 5 ) 6 (H 2 O) 3 ]
O 2 CCH 2 CH 2 C 6 H 5 , [Ru 3 O (O 2 CC 7 H 15 ) 6 (H 2 O) 3 ]
O 2 CC 7 H 15 , [Ru 3 O (O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]
O 2 CCH 3 , [Ru 3 O (O 2 CCH 3 ) 6 (PPh) 3 ] O 2 CCH 3 ,
[Cr 3 O (O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ] ClO 4 , [Cr 3 O
(O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]Cl, [Cr 3 O(O 2 CCH 3 ) 6
(C 6 H 7 N) 3 ] ClO 4 , [Cr 3 O (O 2 CCH 3 ) 6
(CH 3 OH) 3 ]Cl, [Cr 3 O(O 2 CCH 3 ) 6 (H 2 O) 2
(CH 3 CO 2 H)] O 2 CCH 3 , [Mn 3 O (O 2 CCH 3 ) 6
(C 5 H 5 N) 3 ]ClO 4 , [Mn 3 O(O 2 CCH 3 ) 6
(C 6 H 7 N) 3 ] ClO 4 , [Fe 3 O (O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]
ClO4 , [ Fe3O ( O2CCH3 ) 6 ( C6H7N ) 3 ] ClO4 ,
[Co 3 O (O 2 CCH 3 ) 6 (C 6 H 7 N) 3 ] ClO 4 , [Rh 3 O
(O 2 CCH 3 ) 6 , (C 5 H 5 N) 3 ]ClO 4 , [Rh 3 O
(O 2 CCH 3 ) 6 (H 2 O) 3 ]ClO 4・2H 2 O, [Rh 3 O
(O 2 CCH 3 ) 6 (PPh 3 ) 3 ]ClO 4 , [Ir 3 O(O 2 CCH 3 ) 6
(H 2 O) 2 (CH 3 CO 2 H)] (O 2 CCH 3 ) 2 , [Ir 3 O
(O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]ClO 4 , [Ir 3 O(O 2 CCH 3 ) 6
(C 6 H 7 N) 3 ] ClO 4 , [Ir 3 O (O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]
(ClO 4 ) 2 , [Ir 3 O(O 2 CCH 3 ) 6 (PPh 3 ) 3 ]
(O 2 CCH 3 ) 2, etc. can be exemplified. The amount of these complexes used is sufficient to be the so-called contact amount.
In addition, these complexes can be prepared by known methods [A.Spencer
and G. Wilkinson, JCS Dalton. 1972 , 1570; S.
Uemura, A. Spencer, and G. Wilkinson, ibid.
1973, 2565]. The catalyst used in the present invention can be used in both homogeneous and heterogeneous systems, but when used as a heterogeneous catalyst, the above-mentioned μ 3
The oxotrimetal complex can be impregnated, precipitated or co-precipitated as an organic or inorganic solution and supported on a support by any technique commonly used in catalyst production. Silica gel, alumina, activated carbon, etc. can be used as the carrier. In carrying out the present invention, a solvent is not necessarily required, but a solvent that does not directly participate in the reaction, such as a halogenated hydrocarbon such as chloroform, carbon tetrachloride, dichloroethane, trichloroethane, 1,1,2,2-tetrachloroethane, etc. , aromatic hydrocarbons such as benzene and toluene, carbonyl compounds such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, dioxane and 1,2-dimethoxyethane, and saturated alcohols such as methanol and ethanol. Although the reaction proceeds even if carried out in an oxygen supplying substance at normal pressure, it is preferable to carry out it under pressure from the viewpoint of effectiveness. Also, the reaction is 0
Although it can be carried out at a temperature of -150°C, it is preferably carried out at a temperature of room temperature - 100°C from the viewpoint of selectivity. The feature of the present invention is that the unsaturated alcohol of the general formula () can be easily converted into the unsaturated alcohol of the general formula () in the presence of an oxygen supplying substance by using a μ 3 -oxotrimetal complex catalyst of the general formula (). In addition to being able to convert into a saturated carbonyl compound, the stereochemistry between the raw material and the product is maintained during the reaction process. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Prenol 10.0g [Ru 3 O (OAc) 6・3H 2 O]
Dissolve 10mg of OAC (hereinafter abbreviated as catalyst A) and 7atm
The mixture was stirred at 60 to 65°C for 24 hours under an oxygen atmosphere. When the reaction mixture was analyzed by NMR, 14.3% of 3,
Virtually no other products were observed apart from 3-dimethylacrolein. Example 2 Add 100 mg of catalyst A to 15.0 g of prenol and heat to 90°C.
The mixture was heated, stirred, and reacted for 24 hours while blowing oxygen. The reaction mixture was purified by GLC (XE-6020%
100°) and NMR analysis revealed that 24% of 3,
Besides the production of 3-dimethylacrolene, almost no by-products were observed. Example 3 Add 100 mg of catalyst A to 10.0 g of geraniol,
The mixture was heated to 65° to 66°C under an oxygen atmosphere of 7 atm and stirred for 3 hours. The reaction mixture was purified by GLC (XE−60 20%
When analyzed by NMR (160°) and NMR, no other products were observed except for 12.2% trans-citral. When this reaction was carried out for 6 hours, production of 18.2% trans-citral was similarly observed. Example 4 2.0g of nerol was added with 50mg of catalyst A and heated at 60-70℃.
The reaction mixture was reacted for 20 hours under an oxygen (1 atm) atmosphere, and the reaction mixture was analyzed by NMR and GLC, and it was found that 31% was converted to citral. In this case, the generated citral is
The result was a mixture of cis and trans forms at a ratio of approximately 2:1. Example 5 10 mg of catalyst A was added to 0.4 g of β-cyclocytolylidene ethanol and reacted for 44 hours at 55° to 65°C in an oxygen atmosphere (1 atm), and the reaction mixture was analyzed by NMR.
Analysis by GLC revealed that 57% was converted to β-cyclocytolylideneacetaldehyde. Example 6 10 mg of catalyst A was added to 0.4 g of β-ionol and reacted for 94 hours at 55° to 65°C in an oxygen atmosphere (1 atm). When the reaction mixture was analyzed by NMR and GLC, 19% was β-ionone. It was found that it was transformed into Example 7 Catalyst in 0.4 g of trans-cinnamyl alcohol
Add 10g of A and heat to 55°-65°C under oxygen atmosphere (1 atm).
React for 46 hours and analyze the reaction mixture by NMR and GLC.
Analysis revealed that 45% was converted to trans-cinnamaldehyde. Example 8 2.0 g of geraniol and [Ru 3 O
(O 2 CCH 2 CH 2 C 6 H 5 ) 6・3H 2 O〕O 2 CCH 2 CH 2 C 6 H 5
10 mg of catalyst B (hereinafter abbreviated as catalyst B) was dissolved in 10 ml of toluene and heated and stirred at 55 to 60° C. under an oxygen pressure of 7 atm for 6 hours. Analysis of the reaction mixture revealed that 17.5% trans-citral was produced. Example 9 Dissolve 10 mg of catalyst B in 30 g of geraniol and add 60±
When the reaction was carried out for 9 hours at 5°C and 7 atm oxygen, about 10% trans-citral was produced. Example 10 2 g (13 mmol) of geraniol and [Cr 3 O
(O 2 CCH 3 ) 6 (C 5 H 5 N) 3 ]Cl 50 mg (0.06 mmol) was mixed and stirred at 60° C. for 50 hours under an oxygen atmosphere. Analysis of the reaction mixture by gas chromatography revealed that the ratio of unreacted raw material to citral was 6:1. Example 11 2 g (13 mmol) of geraniol, [Cr 3 O
(O 2 CCH 2 CH 2 φ) 6・3H 2 O〕O 2 CCH 2 CH 2 φ 50mg
(0.04mmol) and 6.5 at 60℃ under oxygen atmosphere.
Stir for hours. Analysis of the reaction mixture by gas chromatography revealed that the ratio of unreacted raw material to citral was 9:
It was 2. The citral was a mixture of trans-citral and cis-citral at a ratio of 6:1.

Claims (1)

【特許請求の範囲】 1 酸素供給物質中、一般式 で表わされるμ3―オキソトリメタル錯体の存在
下、一般式 で表わされる不飽和アルコールを脱水素酸化する
ことを特徴とする、一般式 で表わされる不飽和カルボニル化合物を製造する
方法(式中、Mは周期律表第b、bまたは
族金属であり、Rは水素、アルキル基またはアリ
ール基であり、L1,L2,L3は水、アルコール、
アミン、ホスフインあるいはカルボン酸であり、
Xはカルボキシレート、ハロゲン、過塩素酸イオ
ンまたは四弗化ホウ素であり、R1およびR2は水
素、アルキル基、シクロアルキル基、アルケニル
基、シクロアルケニル基またはアリール基であ
り、R3およびR4は水素、アルキル基、アルケニ
ル基またはアリール基であり、R2およびR4は結
合して環状構造を形成してもよい。) 2 Mがクロム、マンガン、鉄、コバルト、ルテ
ニウム、ロジウム、イリジウムであることからな
る、特許請求の範囲第1項に記載の方法。
[Claims] 1. In the oxygen supplying substance, the general formula In the presence of a μ 3 -oxotrimetal complex represented by the general formula A general formula characterized by dehydrogenation and oxidation of an unsaturated alcohol represented by A method for producing an unsaturated carbonyl compound represented by is water, alcohol,
amine, phosphine or carboxylic acid;
X is carboxylate, halogen, perchlorate ion or boron tetrafluoride, R 1 and R 2 are hydrogen, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group or aryl group, R 3 and R 4 is hydrogen, an alkyl group, an alkenyl group, or an aryl group, and R 2 and R 4 may be combined to form a cyclic structure. 2. The method of claim 1, wherein 2M is chromium, manganese, iron, cobalt, ruthenium, rhodium, iridium.
JP56075552A 1981-05-19 1981-05-19 Preparation of unsaturated carbonyl compound Granted JPS57192326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56075552A JPS57192326A (en) 1981-05-19 1981-05-19 Preparation of unsaturated carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56075552A JPS57192326A (en) 1981-05-19 1981-05-19 Preparation of unsaturated carbonyl compound

Publications (2)

Publication Number Publication Date
JPS57192326A JPS57192326A (en) 1982-11-26
JPH0233022B2 true JPH0233022B2 (en) 1990-07-25

Family

ID=13579457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56075552A Granted JPS57192326A (en) 1981-05-19 1981-05-19 Preparation of unsaturated carbonyl compound

Country Status (1)

Country Link
JP (1) JPS57192326A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278220B2 (en) * 1999-03-09 2009-06-10 ダイセル化学工業株式会社 Method for producing aldehyde
EP2597081A1 (en) * 2011-11-25 2013-05-29 Basf Se Process for preparing 3-substituted 2-alkenals, in particular prenal

Also Published As

Publication number Publication date
JPS57192326A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
Hayashi et al. Environmentally benign oxidation using a palladium catalyst system
Foglia et al. Oxidation of alkenes with use of phase transfer catalysis
JPS5935378B2 (en) Method for producing lactic acid
Herndon et al. Cyclopentenones from the reaction of alkynes with cyclopropylcarbenechromium complexes
Li et al. Weinreb amide directed cross-coupling reaction between electron-deficient alkenes catalyzed by a rhodium catalyst
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
US4290961A (en) Process for catalytically reducing carbonyl compounds
JPH0233022B2 (en)
JPS595570B2 (en) Method for producing cinnamic acid esters
KR930010403B1 (en) (3-vinylphenyl)phenyl methane
JPS6236020B2 (en)
US4239702A (en) Process for preparing aromatic aldehydes and alcohols
JP2860676B2 (en) Method for producing 1-isoquinolines
JPH0427971B2 (en)
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
CN117362190A (en) Preparation method of polysubstituted olefin
JPS5838226A (en) Preparation of unsaturated carbonyl compound
JP2869529B2 (en) Synthesis method of tertiary carboxylic acid using platinum carbonyl catalyst
JPS5921855B2 (en) Production method of malonic acid diesters
JPS5976037A (en) Preparation of benzoquinone compound
JPS6137741A (en) Selective reduction of triple bond
JPH0118889B2 (en)
JP3792439B2 (en) Method for producing 3-oxo-α-ionylalkyl ester
JP2001079415A (en) Catalyst for synthesis of methyl acetate and acetic acid and method for the synthesis
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene