JPH0232982B2 - SEKISOTAINOSUTANPINGUSEIKEIHOHO - Google Patents

SEKISOTAINOSUTANPINGUSEIKEIHOHO

Info

Publication number
JPH0232982B2
JPH0232982B2 JP4319482A JP4319482A JPH0232982B2 JP H0232982 B2 JPH0232982 B2 JP H0232982B2 JP 4319482 A JP4319482 A JP 4319482A JP 4319482 A JP4319482 A JP 4319482A JP H0232982 B2 JPH0232982 B2 JP H0232982B2
Authority
JP
Japan
Prior art keywords
temperature
heat distortion
materials
distortion temperature
ethylene propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4319482A
Other languages
Japanese (ja)
Other versions
JPS58160148A (en
Inventor
Teruo Hosokawa
Masashi Furuide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4319482A priority Critical patent/JPH0232982B2/en
Publication of JPS58160148A publication Critical patent/JPS58160148A/en
Publication of JPH0232982B2 publication Critical patent/JPH0232982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、積層体のスタンピング成形方法に関
するものである。 一般に真空成形、スタンピング成形による薄物
成形加工法は、射出成形に比べて加工時間が短か
く、ウエルドの発生が認められないため成形品の
強度が優れている。しかしながら更に制振、防音
などの機能を多く付与するため、熱変形温度の異
なる材料の層からなる積層シートを用いて真空成
形又はスタンピング成形を行なうと溶融粘度及び
線膨張係数の違いにより充分な接着強度が得られ
ず成形中に剥離し易くなる。特に真空成形におい
てシート材の熱変形温度が異なるときには成形す
る前、加熱中に偏肉が発生し或いは極端に両者の
熱変形温度が離れていると低融点の層が下側に位
置する場合その材料がたれ落ちることもある。こ
のため熱変形温度の異なる積層シートでは材料の
組合せにおいて材料選択の範囲が制限される。特
に厚物ではこのような材料によつて熱変形時に発
生する問題が多く加熱中のシートのたれ落ち、浮
上りあるいは絞り加工中の剥離が著しく積層シー
トの成形は制限され勝ちである。 本発明は上記の事情に鑑み、熱変形温度の異な
る材料を用いてスタンピング成形しても材料のた
れ落ち、偏肉、剥離などの生じない成形方法を提
供することを目的とするもので、その要旨は各々
熱変形温度の異なる複数のシートを別個に加熱し
た後に圧着させることを特徴とするスタンピング
成形方法である。 本発明においては、二層の成形品ばかりでな
く、更に三層以上の多層構造とすることも可能で
あり、機能上必要な部分に異種のシートを重ねれ
ばよいため、真空成形のように均一二層シートを
用いる成形では真似の出来ない成形品が期待出来
るばかりでなく機能上も優れ経済的である。 また二種あるいはそれ以上の種類の材料を交互
に積重ねても良く、部分的に肉盛りを行なうこと
も出来る。このようにサンドイツチ構造が簡単に
形成出来る上に、機械的にも優れた構造体が得ら
れ、従来の真空成形やスタンピング成形では出来
なかつたリブあるいは肉厚でその厚み変化の大き
い射出成形品に近い成形品も成形可能となつた。 またこの方法によれば予め別々にシートを加熱
しておき、成形と同時に圧着するためシート面積
の大小の組合せによつてはトリミング時にリサイ
クル材の中に他方のシート材が混入することが少
ないので材料の特性が損われることが極めて小さ
い。 このように真空成形用品多層シートに比べ上記
のように成形性が優れ、肉盛成形品の成形が容易
であり、機能上要求される部分にのみ異種材料を
二つ以上用いた多層が可能であり、かつ積層材あ
るいは複合材として材料の性質をを生かして成形
品の要求される機能に合せて多種にわたつて組合
せが出来る等の特徴がある。 用いられる材料としては、スタンピング成形材
として適するものであれば何んでもよいが、望ま
しくはポリオレフイン材料が良く異なる熱変形温
度を有する材料の混合系の材料が良い。 なおスタンピング成形材では融点以下のような
比較的低い温度により塑性加工を行なうため、二
種類のシート材の熱変形温度が大きく離れている
とハンドリング上及び耐熱性から一方を低く加熱
しなければならず重ね合せて圧着を行なう際に均
一で良好な接着を得るには熱変形温度は接近して
いる方が望ましい。 ところで接着に大きな役割を負うのは変形ポリ
プロピレンなかでも無水マレイン酸グラフト変性
ポリプロピレンであり、さらに接着力を高めるに
は極性基を有し、無水マレイン酸グラフト変性ポ
リプロピレンより低い熱変形温度の材料のものを
併用すると大きな効果が相乗効果として発現され
る。 熱変形温度の高い材料は、通常高い剛性を有し
曲げ弾性率10000Kg/cm2以上を有するスタンピン
グ材料で、好ましくは高密度ポリエチレン及びポ
リプロピレンからなるブレンド物でありブレンド
比により熱変形温度、剛性などを調節出来る。 一方熱変形温度の低い材料は通常低い剛性を有
し制振、防音などの機能を発揮するが、ポリプロ
ピレン、無水マレイン酸グラフト変性ポリエチレ
ン及びエチレンプロピレンジエン共重合体からな
るブレンド物であり、ブレンド比により熱変形温
度、剛性、接着力などを調節できる。 また、熱変形温度の低い材料においてエチレン
酢酸ビル共重合体を併用すると溶融ブレンド時の
温度を下げられ、未反応無水マレイン酸が存在す
る場合はその二重結合を残して圧着時の反応によ
る接着に寄与することが可能なばかりでなく、カ
ルボン酸の極性基を有するので表面エネルギーを
低下させて、固体面に特異な環境を作り出すた
め、無水マレイン酸グラフト変性ポリオレフイン
との併用では著しい接着力の向上が認められるも
のと思料される。 以下に実施例、比較例を挙げて本発明を更に説
明する。なお例中MFRはメルトフローレイト
(g/10min)、HLMFRはハイロードメルトフロ
ーレイト(g/10min)を意味し、熱変形温度は
ASTM D648(66psi)による。 実施例 1 (a) 熱変形温度の高い材料は、ポリプロピレン
(MFR230℃=1.5)と中密度ポリエチレンン
(MFR190℃=0.25)とをブレンド比50wt%/
50wt%でドライブレンド後連続ミキサにて230
℃でブレンドを行なつたもので熱変形温度は90
℃であり、この材料を用いて1.5mm厚のシート
材とした。 (b) 熱変形温度の低い材料としてはエチレンプロ
ピレンブロツク共重合体(MFR230℃=4.0),
非晶性エチレンプロピレンジエン共重合体
(HLMFR230℃=0.4、ゴム中のプロピレン含量
=35wt%、ゴム濃度=61wt%)及び無水マレ
イン酸グラフト変性ポリプロピレンホモポリマ
を44wt%/36wt%/20wt%のブレンド比で予
めタンブラーにてドライブレンドを行なつた。
この際抗酸化剤(商品名BHT)をブレンド樹
脂に対して0.05重量部添加した。ブレンドは二
割の連続ミキサを用いスチームにてミキサーの
ジヤケツト温度を220〜230℃になるように調節
しながらミキシングを行なつた。得られた材料
の熱変形温度は68℃であり、この材料を用いて
1.5mm厚のシート材とした。 このようにして出来た二種のシート材を高い熱
変形温度の樹脂の表面温度150℃、低い熱変形温
度の樹脂の表面温度130℃になるように熱板接触
で加熱しておき加熱面(裏面)同志を合せ、押切
りにならないように二枚のシートの厚みより0.2
mm程度小さいスペーサをはさんで5〜10Kg/cm2
低い圧力でプレス圧着を行ない剥離強度を測定し
た。一方図―1に示す形状を成形出来る金型で上
記と同じ条件でシートを予熱、重ね合せたものを
スタンピング成形した。成形品の一部を打ち抜き
により採取して、剥離強度を測定したがいずれも
接着面からは剥離せず試験片が降伏して破断し
た。評価方法はASTM,D952―51に基づく試験
方法にて剥離強度を測定した。 なお図―1中a:500mm、b:300mm、c:3mm
φ、d:50mm、e:80mm、f:100mmφ、g:130
mmφ、h:100mm、i:50mm、j:70mm、k:1.3
mmの寸法を示す。 比較例 1 実施例1に記載してある熱変形温度の高い材料
に同例の熱変形温度の低い材料で用いた非晶性エ
チレンブロピレンジエン共重合体(熱変形温度40
℃)単独を用い予熱しなかつた他は同様にして
130℃で圧着を行なつたが極めて低い剥離荷重で
剥離して接着とは言いがたく、また剥離試験に供
する材料試験片を作るには170℃以上のシート加
熱温度が必要であつた。 比較例 2 実施例1に記載してある熱変形温度の高い材料
に同例の熱変形温度の低い材料で用いたエチレン
プロピレンブロツク共重合体と比較例1で用いた
エチレンプロピレンジエン共重合体のブレンド比
70wt%/30wt%によるブレンド物(熱変形温度
60℃)を用い比較例1と同じ評価方法で剥離テス
トを行なつたが、極めて低い値で剥離してしま
い、このサンプルを調製するには圧接温度が170
℃以上必要であつた。 実施例 2 熱変形温度の低いブレンド材料として実施例1
で用いたエチレンプロピレンブロツク共重合体、
エチレンプロピレンジエン共重合体及び無水マレ
イン酸グラフト変性ポリプロピレンに更にエチレ
ン酢酸ビニル共重合体(MFR190℃=2.0、密度=
0.932g/cm3、酢酸ビニル含量15wt%)をブレン
ド比で、44wt%/36wt%/1.5wt%/5wt%と
し、抗酸化剤(商品名BHT)を樹脂量に対して
0.05重量部加えタンブラーにてドライブレンド後
二軸連続ミキサーにて210〜220℃でブレンドを行
なつた。得られた材料の熱変形温度は66℃であ
り、この材料を用いて1.5mm厚のシートとした。 実施例1で用いた熱変形温度の高い材料のシー
トを被接着母材として実施例1と同様にして剥離
試験を行なつたところ、実施例1に記載する高い
熱変形温度の樹脂の表面温度を150℃より15℃低
い135℃、低い変形温度の樹脂の表面温度を130℃
として十分な接着強度が得られ無水マレイン酸グ
ラフト変性ポリプロピレンとエチレン酢酸ビニル
共重合体の併用により接着保持に必要な最低温度
を大幅に下げることが出来ると共にその接着力を
高める相乗効果が認められた。 比較例 3 熱変形温度の低い材料として実施例2において
同材料で構成している中から無水マレイン酸グラ
フト変性ポリプロピレンを除去したブレンド系で
エチレンプロピレンブロツク共重合体、エチレン
プロピレンジエン共重合体及びエチレン酢酸ビニ
ル共重合体のブレンド比44wt%/36wt%/20wt
%によるブレンド物(熱変形温度80℃)を用いた
他は比較例1と同様にして剥離試験を行なつたが
温度は170℃まで上げた状態でも充分な接着は認
められず175℃以上が必要であつた。 実施例 3〜4 実施例2において、熱変形温度の低い材料の内
(エチレンプロピレンブロツク共重合体)/(エ
チレンプロピレンジエン共重合体)のブレンド比
は9:11と一定にして無水マレイン酸グラフト変
性ポリプロピレン+エチレン酢酸ビニル共重合体
の絶対量を20wt%以内で変えた結果を実施例3、
4に示す。 比較例 4〜6 実施例1において記載してある熱変形温度の高
い材料よりなるシートに熱変形温度の低い材料と
して実施例2で用いたエチレン酢酸ビニル共重合
体、高圧法低密度ポリエチレン、(密度:0.920
g/cm3、MFR190℃=2)低圧法低密度ポリエチ
レン(密度:0.920g/cm3、MFR190℃=0.2)を
単独で圧着を行ないいずれも熱変形温度の低い材
料の融点付近まで温度を上げたが、十分な接着強
度は得られず、更い高い170℃にあげてもその接
着強度が改善されることはなく175℃以上が必要
であつた。 実施例 5 実施例1記載の中で熱変形温度の低い材料のエ
チレンプロピレンブロツク共重合体と非晶性エチ
レンプロピレンジエン共重合体のブレンド比は
9:11と一定にしておき無水マレイン酸グラフト
変性ポリプロピレンを5wt%に減じたが接着温
度、強度とも殆ど変らなかつた。 表―1に以上の結果をまとめて記載する。なお
表中Aはエチレンプロピレンブロツク共重合体、
Bは非晶性エチレンプロピレンジエン共重合体、
Cは無水マレイン酸グラフト変性ポリプロピレ
ン、Dはエチレン酢酸ビニル共重合体を示す。
The present invention relates to a method for stamping a laminate. In general, thin material forming methods such as vacuum forming and stamping molding require shorter processing time than injection molding, and the strength of the molded product is superior because no welds are observed. However, in order to provide more functions such as vibration damping and soundproofing, vacuum forming or stamping is performed using a laminated sheet consisting of layers of materials with different heat deformation temperatures. It does not have enough strength and is likely to peel off during molding. Particularly in vacuum forming, when the heat deformation temperatures of the sheet materials are different, uneven thickness may occur before forming or during heating, or if the heat deformation temperatures of the two are extremely different, the lower melting point layer may be located below. Sometimes the material drips. For this reason, the range of material selection is limited in the combination of materials in laminated sheets having different heat distortion temperatures. Particularly in thick materials, such materials often cause problems during thermal deformation, such as sagging or floating of the sheet during heating or peeling during drawing, which tends to limit the forming of laminated sheets. In view of the above circumstances, it is an object of the present invention to provide a molding method that does not cause dripping, uneven thickness, or peeling of materials even when materials with different heat distortion temperatures are stamped. The gist is a stamping molding method characterized by heating a plurality of sheets, each having a different heat deformation temperature, separately and then pressing them together. In the present invention, not only a two-layer molded product but also a multi-layer structure of three or more layers can be made, and since it is only necessary to overlap different types of sheets in functionally necessary parts, it is possible to create molded products with different layers, such as vacuum forming. Molding using a uniform two-layer sheet not only allows for the production of molded products that cannot be imitated, but is also functionally superior and economical. Furthermore, two or more types of materials may be stacked alternately, and it is also possible to partially build up the material. In this way, the sandwich structure can be easily formed, and a mechanically superior structure can be obtained, making it possible to create ribs or injection molded products with large thickness changes, which could not be achieved with conventional vacuum forming or stamping molding. It has become possible to mold similar molded products. In addition, according to this method, the sheets are heated separately in advance and crimped at the same time as forming, so depending on the combination of sheet area size, it is less likely that the other sheet material will mix into the recycled material during trimming. There is very little loss of material properties. As described above, it has superior formability compared to multilayer sheets for vacuum forming products, and it is easy to form overlay molded products, making it possible to form multilayers using two or more different materials only in functionally required areas. It is characterized by the fact that it can be used as a laminated material or a composite material and can be combined in a wide variety of ways to suit the required functions of the molded product by taking advantage of the material's properties. Any material may be used as long as it is suitable as a stamping molding material, but preferably a polyolefin material and a mixture of materials having different heat distortion temperatures are preferred. Note that stamping molded materials undergo plastic working at a relatively low temperature, below their melting point, so if the heat deformation temperatures of two types of sheet materials are significantly different, one must be heated to a lower temperature for handling and heat resistance reasons. In order to obtain uniform and good adhesion when the materials are overlapped and pressed together, it is desirable that the heat deformation temperatures be close to each other. By the way, maleic anhydride-grafted polypropylene among modified polypropylenes plays a major role in adhesion, and to further increase adhesive strength, it is necessary to use a material that has polar groups and has a lower heat distortion temperature than maleic anhydride-grafted polypropylene. When used together, great synergistic effects can be achieved. The material with a high heat distortion temperature is usually a stamping material with high rigidity and a flexural modulus of 10,000 Kg/cm 2 or more, and is preferably a blend of high-density polyethylene and polypropylene, and the heat distortion temperature, stiffness, etc. are determined by the blend ratio. can be adjusted. On the other hand, materials with a low heat distortion temperature usually have low rigidity and exhibit functions such as vibration damping and sound insulation, but they are blends made of polypropylene, maleic anhydride graft-modified polyethylene, and ethylene propylene diene copolymer, and the blend ratio is The heat deformation temperature, rigidity, adhesion strength, etc. can be adjusted. In addition, when using ethylene-vinyl acetate copolymer in combination with materials with low heat distortion temperatures, the temperature during melt blending can be lowered, and if unreacted maleic anhydride is present, the double bonds are left behind and bonding occurs during pressure bonding. In addition, since it has a polar group of carboxylic acid, it lowers the surface energy and creates a unique environment on solid surfaces, so when used in combination with maleic anhydride graft-modified polyolefin, there is a significant increase in adhesive strength. It is thought that the improvement is recognized. The present invention will be further explained below by giving Examples and Comparative Examples. In the example, MFR means melt flow rate (g/10min), HLMFR means high load melt flow rate (g/10min), and the heat distortion temperature is
Per ASTM D648 (66psi). Example 1 (a) A material with a high heat distortion temperature is a blend of polypropylene (MFR 230 ℃ = 1.5) and medium density polyethylene (MFR 190 ℃ = 0.25) at a blend ratio of 50 wt%/
230 in a continuous mixer after dry blending at 50wt%
Blended at ℃, heat distortion temperature is 90
℃, and this material was used to make a 1.5 mm thick sheet material. (b) Ethylene propylene block copolymer (MFR 230 ℃ = 4.0) is a material with a low heat distortion temperature.
Amorphous ethylene propylene diene copolymer (HLMFR 230 ℃ = 0.4, propylene content in rubber = 35 wt%, rubber concentration = 61 wt%) and maleic anhydride graft modified polypropylene homopolymer at 44 wt% / 36 wt% / 20 wt% Dry blending was performed in advance in a tumbler at the blending ratio.
At this time, 0.05 parts by weight of an antioxidant (trade name: BHT) was added to the blend resin. Blending was carried out using a 20% continuous mixer using steam while adjusting the jacket temperature of the mixer to 220-230°C. The heat distortion temperature of the obtained material is 68℃, and using this material
A sheet material with a thickness of 1.5 mm was used. The two types of sheet materials made in this way are heated in contact with a hot plate so that the surface temperature of the resin with a high heat distortion temperature is 150℃, and the surface temperature of the resin with a low heat distortion temperature is 130℃. Back side) Align the comrades and cut 0.2 from the thickness of the two sheets to avoid cutting.
The peel strength was measured by pressing a spacer as small as 1 mm in between at a low pressure of 5 to 10 kg/cm 2 . On the other hand, the sheets were preheated under the same conditions as above using a mold capable of forming the shape shown in Figure 1, and the stacked sheets were stamped and formed. A part of the molded product was sampled by punching and the peel strength was measured, but none of the samples were peeled from the adhesive surface and the test piece yielded and broke. The evaluation method was to measure peel strength using a test method based on ASTM D952-51. In Figure 1, a: 500mm, b: 300mm, c: 3mm
φ, d: 50mm, e: 80mm, f: 100mmφ, g: 130
mmφ, h: 100mm, i: 50mm, j: 70mm, k: 1.3
Dimensions in mm are shown. Comparative Example 1 Amorphous ethylene-propylene diene copolymer (heat distortion temperature 40
°C) in the same manner except that it was used alone and was not preheated.
Pressure bonding was carried out at 130°C, but the material peeled off with an extremely low peeling load, so it could not be considered adhesion, and sheet heating temperatures of 170°C or higher were required to prepare material test pieces for peel tests. Comparative Example 2 The ethylene propylene block copolymer used in the material with a high heat distortion temperature described in Example 1 and the material with a low heat distortion temperature in the same example and the ethylene propylene diene copolymer used in Comparative Example 1 were combined. blend ratio
Blend of 70wt%/30wt% (heat distortion temperature
A peeling test was carried out using the same evaluation method as in Comparative Example 1, but peeling occurred at an extremely low value.To prepare this sample, the pressure contact temperature was 170℃.
℃ or higher was necessary. Example 2 Example 1 as a blend material with low heat distortion temperature
Ethylene propylene block copolymer used in
In addition to ethylene propylene diene copolymer and maleic anhydride graft modified polypropylene, ethylene vinyl acetate copolymer (MFR 190 ℃ = 2.0, density =
0.932g/cm 3 , vinyl acetate content 15wt%) at a blend ratio of 44wt%/36wt%/1.5wt%/5wt%, and an antioxidant (trade name BHT) relative to the resin amount.
After adding 0.05 parts by weight and dry blending using a tumbler, blending was performed at 210 to 220°C using a twin-screw continuous mixer. The heat distortion temperature of the obtained material was 66°C, and a sheet with a thickness of 1.5 mm was made using this material. When a peel test was conducted in the same manner as in Example 1 using the sheet of the material with a high heat distortion temperature used in Example 1 as a base material to be adhered, it was found that the surface temperature of the resin with a high heat distortion temperature described in Example 1 was 135℃, 15℃ lower than 150℃, lower deformation temperature resin surface temperature 130℃
By using maleic anhydride graft-modified polypropylene and ethylene-vinyl acetate copolymer in combination, the minimum temperature required to maintain adhesion can be significantly lowered, and a synergistic effect was observed to increase the adhesion strength. . Comparative Example 3 As a material with a low heat distortion temperature, a blend system consisting of the same material as in Example 2 but with the maleic anhydride graft modified polypropylene removed, was made of ethylene propylene block copolymer, ethylene propylene diene copolymer, and ethylene. Vinyl acetate copolymer blend ratio 44wt%/36wt%/20wt
A peel test was carried out in the same manner as in Comparative Example 1, except that a blend of 50% and 100% (heat deformation temperature: 80°C) was used, but sufficient adhesion was not observed even when the temperature was raised to 170°C. It was necessary. Examples 3 to 4 In Example 2, the blend ratio of (ethylene propylene block copolymer)/(ethylene propylene diene copolymer) among the materials with low heat distortion temperature was kept constant at 9:11, and maleic anhydride grafting was performed. Example 3 shows the results of changing the absolute amount of modified polypropylene + ethylene vinyl acetate copolymer within 20 wt%.
4. Comparative Examples 4 to 6 The ethylene vinyl acetate copolymer used in Example 2 as a material with a low heat distortion temperature, the high-pressure low density polyethylene, ( Density: 0.920
g/cm 3 , MFR 190 ℃ = 2) Low-pressure method Low-density polyethylene (density: 0.920 g/cm 3 , MFR 190 ℃ = 0.2) was crimped alone, and the temperature was raised to near the melting point of the material with a low heat distortion temperature. However, sufficient adhesive strength could not be obtained, and even if the temperature was raised even higher to 170°C, the adhesive strength did not improve, requiring a temperature of 175°C or higher. Example 5 Among the materials described in Example 1, the blend ratio of ethylene propylene block copolymer and amorphous ethylene propylene diene copolymer, which are materials with a low heat distortion temperature, was kept constant at 9:11, and maleic anhydride graft modification was carried out. Although the amount of polypropylene was reduced to 5wt%, there was almost no change in bonding temperature or strength. Table 1 summarizes the above results. In addition, A in the table is an ethylene propylene block copolymer,
B is an amorphous ethylene propylene diene copolymer,
C represents maleic anhydride graft-modified polypropylene, and D represents ethylene-vinyl acetate copolymer.

【表】 但し、比較例の剥離強度は接着可能な最低温度での値
[Table] However, the peel strength of the comparative example is the value at the lowest temperature at which bonding is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図―1,a,bはスタンピング成形した試験片
の形状を示すもので、aは平面図、bはaの―
線視図である。
Figures 1, a and b show the shape of the stamped test piece, where a is a plan view and b is a -
It is a line view.

Claims (1)

【特許請求の範囲】[Claims] 1 各々熱変形温度の異る材料からなる複数のシ
ートを別個に加熱した後に圧着させることを特徴
とする積層体のスタンピング成形方法。
1. A method for stamping and forming a laminate, which comprises separately heating a plurality of sheets made of materials having different heat distortion temperatures and then pressing them together.
JP4319482A 1982-03-18 1982-03-18 SEKISOTAINOSUTANPINGUSEIKEIHOHO Expired - Lifetime JPH0232982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4319482A JPH0232982B2 (en) 1982-03-18 1982-03-18 SEKISOTAINOSUTANPINGUSEIKEIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4319482A JPH0232982B2 (en) 1982-03-18 1982-03-18 SEKISOTAINOSUTANPINGUSEIKEIHOHO

Publications (2)

Publication Number Publication Date
JPS58160148A JPS58160148A (en) 1983-09-22
JPH0232982B2 true JPH0232982B2 (en) 1990-07-24

Family

ID=12657106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4319482A Expired - Lifetime JPH0232982B2 (en) 1982-03-18 1982-03-18 SEKISOTAINOSUTANPINGUSEIKEIHOHO

Country Status (1)

Country Link
JP (1) JPH0232982B2 (en)

Also Published As

Publication number Publication date
JPS58160148A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
CN101765613B (en) Improved rheology-modified grafts and adhesive blends
US5084352A (en) Multilayered barrier structures for packaging
EP2110408B1 (en) Adhesive and multilayer body using the same
EP1136252B1 (en) Modified polypropylene composition and laminate using the composition
EP0138557B1 (en) Vibration-damping material
JPH01188536A (en) Adhesive foam
EP0873863A3 (en) Multilayered article, vessel and resin composition based on polyethylene
EP0322045B1 (en) Laminated structure
WO2001018141A1 (en) Low activation temperature adhesive composition with high peel strength and cohesive failure
DE60207232T2 (en) Thermoplastic gas barrier film and substrate-film composite material
JPS5840491B2 (en) Method of manufacturing laminates
DE602004001223T2 (en) BINDER AND THIS COMPREHENSIVE PACKING LAMINATE
JPH0232982B2 (en) SEKISOTAINOSUTANPINGUSEIKEIHOHO
JPS6134984B2 (en)
US5372881A (en) Thermoformable polyolefin sheet
JPH0246613B2 (en)
JPH0157673B2 (en)
JP2002105259A (en) Resin composition and laminate using it
JP6069846B2 (en) FOAM LAMINATE, PROCESS FOR PRODUCING THE SAME, FOAMED PAPER AND INSULATION CONTAINER USING THE SAME
JPH0521955B2 (en)
JPS6291578A (en) Adhesive resin composition
JPS5929160A (en) Aromatic group resin laminated shape
JPH04246446A (en) Adhesive resin composition
JP2001232733A (en) Film for food packaging
JP2004284214A (en) Laminated vapor deposition film and its use