JPH0232773B2 - - Google Patents

Info

Publication number
JPH0232773B2
JPH0232773B2 JP58205416A JP20541683A JPH0232773B2 JP H0232773 B2 JPH0232773 B2 JP H0232773B2 JP 58205416 A JP58205416 A JP 58205416A JP 20541683 A JP20541683 A JP 20541683A JP H0232773 B2 JPH0232773 B2 JP H0232773B2
Authority
JP
Japan
Prior art keywords
film
polyimide
capacitor
polyimide film
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58205416A
Other languages
Japanese (ja)
Other versions
JPS6097614A (en
Inventor
Kazuyoshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP20541683A priority Critical patent/JPS6097614A/en
Publication of JPS6097614A publication Critical patent/JPS6097614A/en
Publication of JPH0232773B2 publication Critical patent/JPH0232773B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は小形で耐熱性にすぐれた誘電体として
ポリイミドフイルムを用いたフイルムコンデンサ
の製造方法に関する。 近年電子機器の小形孔、高密度化指向の現状の
中でフイルムコンデンサも例外にもれず小形化の
要求が高くなつている。しかしてこのような要求
に対応するためプラスチツクフイルムの薄膜化が
強くおし進められ、現在ではフイルム単独として
取り扱うことのできる極限の値である2〜3μm
厚のフイルムが製作されるまでになつてフイルム
コンデンサの小形化に大きく貢献をしている現状
にある。しかしながらこれらはポリエステル・ポ
リプロピレンなどの熱可塑性フイルムであり薄膜
化は延伸することによつて得られるものでありフ
イルムの耐熱性は高いものではない。またコンデ
ンサの小形化の要求とともにチツプ化の要求も高
い現状にある。チツプ形のフイルムコンデンサも
一部発表されているが、それはリフロー半田付け
用途のみでデツプ半田付け用途のものはない。そ
れはチツプコンデンサを構成するフイルムがデツ
プ時の熱に耐えられない理由にもとづくものであ
る。しかして従来この用途に最適なフイルムとし
てポリイミドフイルムがあるが該フイルムは一般
にポリアミツク酸溶液を溶液流延法でフイルムに
加熱閉環してポリイミドフイルムにするもので加
工性が悪く、しかも延伸してフイルムを薄膜化す
ることはできないためせいぜい0.5mil(12.5μm)
の厚さまでのものしか得られず耐熱性の問題は解
決できても現状のままではコンデンサの小形化指
向には答え得なかつた。 本発明は上記の点に鑑みてなされたもので誘電
体として薄膜化されたポリイミドフイルムを用い
た小形で耐熱性にすぐれたフイルムコンデンサの
製造方法を提供することを目的とするものであ
る。 以下本発明の一実施例につき説明する。まず最
初に誘電体としてのポリイミドフイルムの製造方
法について説明する。すなわち基板として例えば
第1図に示すようにロール状のアルミニウム箔1
を走行する過程で該アルミニウム箔1面に感光性
ポリイミド前駆体〔東レ商品名:フオトニース
UR−3100〕2を供給し、ドクターナイフ3で均
一塗布し、しかる後80℃×60分加熱炉4を通しプ
リーベークし厚さ6μmのポリイミド薄膜5を形
成する。その後該薄膜5を100w/m2高圧水銀灯
6で25秒間露光しつぎにDV−140の現象液7に
浸漬して現像し、イソプロパノール8で10秒間リ
ンスしたのち、キユア炉9を用いて135℃×30分
+200℃×30分+300℃×30分+400℃×30分でキ
ユアし、しかる後前記薄膜5を前記アルミニウム
箔1からはがし厚さ3μmのポリイミドフイルム
10を形成する。下表に示す特性は前記ポリイミ
ドフイルム10を適当な大きさにカツトしたのち
アルミニウムを両面に蒸着させ三電極をとり測定
した特性値でありポリイミドのもつすぐれた電気
的特性と高い耐熱性特性を示しコンデンサの誘電
体材料として極めて有用である。
The present invention relates to a method for manufacturing a film capacitor using a polyimide film as a dielectric material that is small and has excellent heat resistance. In recent years, with the trend toward smaller holes and higher densities in electronic devices, demand for smaller size film capacitors is no exception. However, in order to meet these demands, there has been a strong push to make plastic films thinner, and today the thickness is 2 to 3 μm, the ultimate value that can be handled as a single film.
As thicker films have come to be manufactured, they have greatly contributed to the miniaturization of film capacitors. However, these are thermoplastic films made of polyester, polypropylene, etc., which can be made thinner by stretching, and the heat resistance of the film is not high. In addition to the demand for capacitor miniaturization, there is also a high demand for chipping. Some chip-type film capacitors have been announced, but they are only for reflow soldering, and there are no chip-type film capacitors for deep soldering. This is based on the reason that the film that makes up the chip capacitor cannot withstand the heat at the depth. However, polyimide film has conventionally been the most suitable film for this purpose, but this film is generally made by heating and ring-closing a polyamic acid solution into a film using a solution casting method, which has poor processability, and furthermore, it can be stretched to form a polyimide film. cannot be made into a thin film, so it is at most 0.5 mil (12.5 μm)
Even if the problem of heat resistance could be solved, the current situation could not meet the demand for smaller capacitors. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a small film capacitor with excellent heat resistance using a thin polyimide film as a dielectric material. An embodiment of the present invention will be described below. First, a method for manufacturing a polyimide film as a dielectric will be explained. That is, as a substrate, for example, a roll-shaped aluminum foil 1 as shown in FIG.
In the process of running the aluminum foil, a photosensitive polyimide precursor (Toray product name: Photonice) is coated on one side of the aluminum foil.
UR-3100] 2 is supplied, uniformly coated with a doctor knife 3, and then prebaked in a heating furnace 4 at 80° C. for 60 minutes to form a polyimide thin film 5 with a thickness of 6 μm. Thereafter, the thin film 5 was exposed for 25 seconds using a 100 W/m 2 high-pressure mercury lamp 6, then immersed in a DV-140 developing solution 7 to be developed, rinsed with isopropanol 8 for 10 seconds, and heated to 135°C using a cure furnace 9. After curing for 30 minutes + 30 minutes at 200°C + 30 minutes at 300°C + 30 minutes at 400°C, the thin film 5 was peeled off from the aluminum foil 1 to form a polyimide film 10 with a thickness of 3 μm. The properties shown in the table below are the property values measured by cutting the polyimide film 10 to an appropriate size, then vapor depositing aluminum on both sides, and using three electrodes, which demonstrate the excellent electrical properties and high heat resistance properties of polyimide. It is extremely useful as a dielectric material for capacitors.

【表】 しかして上記第1図に示すような手段によつて形
成したポリイミドフイルム10の幅方向の一端部
にマージン部を設け該マージン部を除いた全面に
アルミニウム・亜鉛などの金属粉末を蒸着し片面
または両面に蒸着電極を形成し金属化フイルムを
構成する。つぎに該金属化フイルム一対を例えば
大口径巻芯に巻取り両端面にメタリコン電極を形
成し母素子を形成した後、該母素子を前記巻芯か
ら取りはずし鋸刃で半径方向に切断しチツプフイ
ルムコンデンサを得るようにするものである。 以上のように構成してなるコンデンサの製造方
法によれば塗布によりポリマー薄膜層形成手段に
よつてポリイミドフイルムを得るものであるため
従来手段では得ることのできない2μm〜3μmの
極く薄くポリイミドフイルム形成が可能となり、
ポリイミドのもつ極めてすぐれた耐熱性を最大限
生かし、デイツプ半田付用途に適したチツプコン
デンサでしかも成形外装が不要で製造の簡略化は
もとより小形化に大きく貢献できるフイルムコン
デンサを容易に得ることができる独特な効果を有
する。 つぎに実験結果をもとに本発明のすぐれた効果
につき具体的に述べる。すなわち第1図に示すよ
うな手段によつて形成した幅4.5mm厚さ3μmのポ
リイミドフイルムの片面にマージン幅0.5mmを除
いてアルミニウム蒸着電極を設けた金属化ポリイ
ミドフイルムを大口径巻芯に巻回し両端面にメタ
リコン電極を形成してなる母素子を鋸刃で半径方
向に切断して0.033μFのチツプコンデンサとした
本発明品(A)と延伸することによつて形成した幅
4.5mm厚さ3μmのポリエステルフイルムの片面に
マージン幅0.5mmを除いてアルミニウム蒸着電極
を設けた金属化ポリエステルフイルムを同じく大
口径巻芯に巻回し両端面メタリコン電極を形成し
てなる母素子を鋸刃で半径方向に切断して
0.033μFのチツプコンデンサとした参考例品(B)と
の温度に対する1KHz下のtanδ、1KHz下の容量変
化率および100VDC印加下の絶縁抵抗の各特性を
比較した結果第2図〜第4図に示すようになり本
発明品(A)のすぐれた耐熱特性を実証した。 また、本発明品(A)と参考例品(B)とも上記実験例
で用いたものと同じ試料を用い260℃の半田デツ
プ槽に10秒間浸漬した後における目視観察を用い
たところ参考例(B)のものは熱劣化が激しくもちろ
ん特性的にもコンデンサとしての機能は喪失して
しまつたのに対し本発明(A)のものは熱劣化がほと
んどなく特性の劣化も極く小さく外装を施すこと
なくすぐれた耐熱性を発揮しデイツプ半田付用途
に適する効果を実証した。 なお、上記実施例では積層形コンデンサを例示
して説明したが巻回形コンデンサに適用できるこ
とは言うまでもない。また、上記実施例では基板
への感光性ポリイミド前駆体塗布手段としてドク
ターナイフを用いるドクターブレンドコーテング
法を例示して説明したが、例えばリバースロール
コーテング法またはグラビアロールコーテング法
を用いても同効である。 以上述べたように本発明によれば感光性ポリイ
ミド前駆体を基板に塗布し紫外線を照射後加熱し
てポリイミド薄膜を形成し、しかる後前記基板か
ら前記ポリイミド薄膜をはがし形成したポリイミ
ドフイルムに蒸着電極を形成してなる金属化ポリ
イミドフイルムを用いることによつて小形で極め
てすぐれた耐熱特性を有するフイルムコンデンサ
の製造方法を提供できる。
[Table] However, a margin part is provided at one end in the width direction of the polyimide film 10 formed by the method shown in FIG. Then, a vapor-deposited electrode is formed on one or both sides to form a metallized film. Next, the pair of metallized films are wound around, for example, a large-diameter winding core, metallicon electrodes are formed on both end faces to form a mother element, and then the mother element is removed from the winding core and cut in the radial direction with a saw blade to form a chip film. This is to obtain a capacitor. According to the manufacturing method of the capacitor constructed as described above, a polyimide film is obtained by a polymer thin film layer forming means by coating, so an extremely thin polyimide film of 2 μm to 3 μm, which cannot be obtained by conventional means, is formed. becomes possible,
Taking full advantage of the extremely excellent heat resistance of polyimide, it is possible to easily obtain a film capacitor that is suitable for dip soldering and does not require a molded exterior, making it possible to simplify manufacturing and greatly contribute to miniaturization. It has a unique effect. Next, the excellent effects of the present invention will be specifically described based on experimental results. That is, a polyimide film having a width of 4.5 mm and a thickness of 3 μm formed by the method shown in FIG. 1, with an aluminum vapor-deposited electrode provided on one side except for a margin width of 0.5 mm, is wound around a large diameter core. A chip capacitor of 0.033μF was obtained by cutting a mother element formed with metallicon electrodes on both end faces in the radial direction with a saw blade to form a chip capacitor of 0.033 μF .
A base element made by winding a metallized polyester film with an aluminum vapor-deposited electrode on one side of a 4.5mm thick 3μm polyester film except for a margin width of 0.5mm around a large-diameter winding core to form metallized electrodes on both ends was sawn. cut radially with a blade
Figures 2 to 4 are the results of comparing the characteristics of tan δ under 1 KHz, capacitance change rate under 1 KHz, and insulation resistance under 100 VDC with respect to temperature with a reference example product (B) using a 0.033μ F chip capacitor. The excellent heat resistance properties of the product (A) of the present invention were demonstrated as shown in FIG. In addition, both the invention product (A) and the reference example product (B) were the same samples used in the above experimental example, and visual observation was performed after immersing them in a solder bath at 260°C for 10 seconds. In the case of B), the thermal deterioration is severe and of course, the function as a capacitor has been lost in terms of characteristics, whereas in the case of the present invention (A), there is almost no thermal deterioration, the deterioration of the characteristics is minimal, and the exterior is applied. It has demonstrated excellent heat resistance and is suitable for deep soldering applications. Although the above embodiments have been explained using a multilayer capacitor as an example, it goes without saying that the present invention can also be applied to a wound capacitor. Furthermore, in the above embodiments, the doctor blend coating method using a doctor knife was used as a means for applying the photosensitive polyimide precursor to the substrate. be. As described above, according to the present invention, a photosensitive polyimide precursor is coated on a substrate, irradiated with ultraviolet rays, and heated to form a polyimide thin film, and then the polyimide thin film is peeled off from the substrate to deposit electrodes on the formed polyimide film. By using the metallized polyimide film formed by the present invention, it is possible to provide a method for producing a small film capacitor having extremely excellent heat resistance characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を構成するポリイミドフイルム
の形成手段を示す概略説明図、第2図は温度−
tanδ特性曲線図、第3図は温度−静電容量変化率
特性曲線図、第4図は温度−絶縁抵抗特性図であ
る。 1……アルミニウム箔、2……感光性ポリイミ
ド前駆体、3……ドクターナイフ、4……加熱
炉、5……ポリイミド薄膜、6……高圧水銀灯、
10……ポリイミドフイルム。
FIG. 1 is a schematic explanatory diagram showing the means for forming a polyimide film constituting the present invention, and FIG.
FIG. 3 is a temperature-capacitance change rate characteristic curve diagram, and FIG. 4 is a temperature-insulation resistance characteristic curve diagram. 1... Aluminum foil, 2... Photosensitive polyimide precursor, 3... Doctor knife, 4... Heating furnace, 5... Polyimide thin film, 6... High pressure mercury lamp,
10...Polyimide film.

Claims (1)

【特許請求の範囲】[Claims] 1 ロール状基板に感光性ポリイミド前駆体を塗
布し、該ポリイミド前駆体塗布面に紫外線を照射
したのち加熱し形成したポリイミド薄膜を前記基
板からはがし、厚さ2〜3μmのポリイミドフイ
ルムを形成したのち、該ポリイミドフイルムに蒸
着電極を形成し得られた金属化ポリイミドフイル
ムを積層または巻回することを特徴とするフイル
ムコンデンサの製造方法。
1. Apply a photosensitive polyimide precursor to a roll-shaped substrate, irradiate the surface coated with the polyimide precursor with ultraviolet rays, and then peel off the formed polyimide thin film from the substrate to form a polyimide film with a thickness of 2 to 3 μm. A method for producing a film capacitor, which comprises forming a vapor-deposited electrode on the polyimide film and laminating or winding the obtained metallized polyimide film.
JP20541683A 1983-10-31 1983-10-31 Method of producing film condenser Granted JPS6097614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20541683A JPS6097614A (en) 1983-10-31 1983-10-31 Method of producing film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20541683A JPS6097614A (en) 1983-10-31 1983-10-31 Method of producing film condenser

Publications (2)

Publication Number Publication Date
JPS6097614A JPS6097614A (en) 1985-05-31
JPH0232773B2 true JPH0232773B2 (en) 1990-07-23

Family

ID=16506483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20541683A Granted JPS6097614A (en) 1983-10-31 1983-10-31 Method of producing film condenser

Country Status (1)

Country Link
JP (1) JPS6097614A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754783B2 (en) * 1988-02-05 1995-06-07 日本ケミコン株式会社 Multilayer film capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191860A (en) * 1975-02-10 1976-08-12 Atsuenki no itaatsuseigyosochi
JPS5797814A (en) * 1980-12-11 1982-06-17 Nippon Kokan Kk <Nkk> Thickness controlling method for strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191860A (en) * 1975-02-10 1976-08-12 Atsuenki no itaatsuseigyosochi
JPS5797814A (en) * 1980-12-11 1982-06-17 Nippon Kokan Kk <Nkk> Thickness controlling method for strip

Also Published As

Publication number Publication date
JPS6097614A (en) 1985-05-31

Similar Documents

Publication Publication Date Title
JPH02134805A (en) Film capacitor and manufacture of the same
KR20040095211A (en) Polymer coated capacitor films
US3457478A (en) Wound film capacitors
US2709663A (en) Electrical capacitors
JPH06168845A (en) Chip type laminated film capacitor
JPH0232773B2 (en)
JP4270364B2 (en) Manufacturing method of substrate with built-in capacitor
US3454999A (en) Capacitor
JP4958370B2 (en) Metalized film for electronic parts
FI82565B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN TERMISKT STABILISERAD PLASTFILMKONDENSATOR.
US2802256A (en) Electric condensers
JPH0130286B2 (en)
JPH04170016A (en) Manufacture of laminated ceramic electronic parts
JPH0142615B2 (en)
JPH01173614A (en) Manufacture of chip-type film capacitor
JP2870179B2 (en) Chip type metallized film capacitor and manufacturing method thereof
JPH0142617B2 (en)
JPS59228711A (en) Method of producing porcelain condenser
JPH0461485B2 (en)
JPH04152614A (en) Manufacture of chip film capacitor
JPH023533B2 (en)
JPH0770414B2 (en) Method of manufacturing film capacitor
JPS637451B2 (en)
JPH02188987A (en) Material for wiring board and manufacture thereof
JPH0158851B2 (en)