JPH0232591A - Manufacture of copper-organic insulating film wiring board - Google Patents

Manufacture of copper-organic insulating film wiring board

Info

Publication number
JPH0232591A
JPH0232591A JP18305388A JP18305388A JPH0232591A JP H0232591 A JPH0232591 A JP H0232591A JP 18305388 A JP18305388 A JP 18305388A JP 18305388 A JP18305388 A JP 18305388A JP H0232591 A JPH0232591 A JP H0232591A
Authority
JP
Japan
Prior art keywords
film
copper
organic insulating
insulating film
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18305388A
Other languages
Japanese (ja)
Other versions
JPH07105584B2 (en
Inventor
Sadahiko Sanki
参木 貞彦
Yasuhiko Miyake
三宅 保彦
Tomio Iizuka
飯塚 富雄
Mamoru Onda
護 御田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63183053A priority Critical patent/JPH07105584B2/en
Publication of JPH0232591A publication Critical patent/JPH0232591A/en
Publication of JPH07105584B2 publication Critical patent/JPH07105584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Abstract

PURPOSE:To improve close contact between a copper film and an organic insulating film by forming the copper film with an ion plating process on the organic insulating film located on a ceramic substrate. CONSTITUTION:An organic insulating film 2 is formed on a ceramic substrate 3 and after forming a copper film with an ion plating process on the film 2, patterning is performed by photoetching. It is desirable to form the film 2 on the substrate 3. Further, after treating the surface of the film 2 with ion bombardment in an atmosphere of an inactive gas or a weak oxidizing gas, the copper film is formed with the ion plating process on the film 2. Subsequently, patterning is performed by photoetching, and yet, it is desirable that the purity of the copper film is 99.999% or more. The treatment of the film thus improves close contact between the copper film and the organic insulating film as well as the reliability of manufacturing products; besides, residual stress is so small that etching is performed uniformly.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、銅・有機絶縁膜配線板の製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for manufacturing a copper/organic insulating film wiring board.

〈従来の技術〉 LSIの高速化、高集積化に伴い、これを搭載する配線
板もそれへの対応が要求されており、LSIの高密度実
装基板として電気抵抗の小さい銅と誘電率が低く、かつ
厚い膜の形成が可能なポリイミドを用いた配線板が高速
信号処理が可能なことから注目されている。
<Conventional technology> As LSIs become faster and more highly integrated, the wiring boards on which they are mounted are required to be compatible with this.As a high-density mounting board for LSIs, copper with low electrical resistance and low dielectric constant are used. Wiring boards using polyimide, which can form thick films, are attracting attention because they are capable of high-speed signal processing.

ところで、この種の配線板の製造法としてはアルミナ、
ムライト、AuNなどのセラミック基板上にスピンコー
ド法などによりポリイミドフエスを所望の厚さに塗布し
、これをベーキング処理し、固化させた後、真空蒸着法
により、銅膜を所望の厚さに形成し、これをフォトエツ
チング法により回路を形成するのが一般的である。 ま
た、必要に応じて、このような方法によりポリイミド膜
と銅膜の形成を交互に繰返し、多層の配線板を製造する
ことができる。
By the way, the manufacturing method for this type of wiring board is alumina,
Polyimide foam is applied to a desired thickness on a ceramic substrate such as mullite or AuN using a spin-coding method, and after baking and solidifying it, a copper film is applied to the desired thickness using a vacuum evaporation method. It is common to form a circuit using a photoetching method. Further, if necessary, by repeating the formation of polyimide films and copper films alternately by such a method, a multilayer wiring board can be manufactured.

〈発明が解決しようとする課題〉 上記銅ポリイミド配線板の製造において、フォトエツチ
ング法により配線回路を形成する場合、銅膜とポリイミ
ド膜との密着性が悪く、時として銅膜が剥離する場合が
ある。 また、剥離しないまでも形成する配線回路幅が
微細な場合には、接着強度の局部的なバラツキによりリ
ード幅が局部的に変化したり、欠けたりすることがある
<Problems to be Solved by the Invention> In manufacturing the above-mentioned copper polyimide wiring board, when a wiring circuit is formed by photoetching, the adhesion between the copper film and the polyimide film is poor, and the copper film may sometimes peel off. be. Further, even if the lead width is not peeled off, if the width of the wiring circuit to be formed is minute, the lead width may locally change or be chipped due to local variations in adhesive strength.

なお、リード幅の局部的変化、欠けの発生は、詳細な材
料調査の結果、単に接着強度のバラツキのみならず、蒸
着した銅膜の耐食性と深い関係があることがわかった。
Further, as a result of detailed material investigation, it was found that local changes in lead width and occurrence of chipping are deeply related not only to variations in adhesive strength but also to the corrosion resistance of the deposited copper film.

 すなわち、銅膜の耐食性が悪い場合には、エツチング
の際に銅膜の一部の結晶粒が欠落しやすい。 このため
、リード幅が極度に微細になった場合には、結晶粒の欠
落がリードの断線にもつながりかねない危険がある。
That is, if the copper film has poor corrosion resistance, some crystal grains of the copper film are likely to be lost during etching. Therefore, when the lead width becomes extremely fine, there is a risk that missing crystal grains may lead to breakage of the leads.

本発明は、前記従来技術の欠点を解消し、有機絶縁膜、
例えばポリイミド膜への密着強度が高く耐食性が良好で
パターニング性(配線回路形成性)が優れた銅膜を有す
る銅・有機絶縁膜配線板を提供することを目的としてい
る。
The present invention eliminates the drawbacks of the prior art and provides an organic insulating film,
For example, an object of the present invention is to provide a copper/organic insulating film wiring board having a copper film having high adhesion strength to a polyimide film, good corrosion resistance, and excellent patterning property (wiring circuit forming property).

く課題を解決するための手段〉 上記目的を達成するために、本発明によれば、セラミッ
ク基板上に有機絶縁膜を形成し、つぎに該有機絶縁膜上
にイオンプレーティング法により銅膜を形成したのち、
フォトエツチング法によりバターニングを行うことを特
徴とする銅・有機絶縁膜配線板の製造方法が提供される
Means for Solving the Problems> In order to achieve the above object, according to the present invention, an organic insulating film is formed on a ceramic substrate, and then a copper film is formed on the organic insulating film by an ion plating method. After forming,
A method of manufacturing a copper/organic insulating film wiring board is provided, which is characterized in that patterning is performed by a photoetching method.

また、本発明によれば、セラミック基板上に有機絶縁膜
を形成し、つぎに該有機絶縁膜の表面を不活性ガスまた
は弱酸化性ガス雰囲気下でイオンボンバード処理したの
ち、この有機絶縁膜上にイオンプレーティング法により
銅膜を形成し、続いてフォトエツチング法によりパター
ニングを行うことを特徴とする銅・有機絶縁膜配線板の
製造方法が提供される。
Further, according to the present invention, an organic insulating film is formed on a ceramic substrate, and then the surface of the organic insulating film is subjected to ion bombardment treatment in an inert gas or weakly oxidizing gas atmosphere. A method for manufacturing a copper/organic insulating film wiring board is provided, which comprises forming a copper film by ion plating and then patterning by photoetching.

前記有機絶縁膜はポリイミド膜が好ましい。The organic insulating film is preferably a polyimide film.

以下に本発明を、さらに詳細に説明する。The present invention will be explained in more detail below.

本発明に用いられるセラミック基板としては、アルミナ
板、ムライト板、AJ2N板、SiC板などを挙げるこ
とができる。
Examples of the ceramic substrate used in the present invention include an alumina board, a mullite board, an AJ2N board, and a SiC board.

本発明に用いられる有機絶縁膜としては、ポリイミド膜
のほか、誘電率が小さく耐熱性に優れたマレイミド、テ
フロンなど各種高分子膜が挙げられるが、特にポリイミ
ド膜は、他の有機絶縁膜に比べて金属との密着性が良好
で、かつ経済的に安価であるために好ましい。
In addition to polyimide films, the organic insulating films used in the present invention include various polymer films such as maleimide and Teflon, which have a low dielectric constant and excellent heat resistance. It is preferable because it has good adhesion to metal and is economically inexpensive.

また、本発明で形成される銅膜の純度は、99.999
%以上が好ましい。 この純度が99.999%未満で
は、含有している微量不純物の偏析、あるいはそれに起
因する結晶粒度のバラツキにより、後工程であるエツチ
ング時に結晶の一部が欠落しやすくなる。 特に、純度
が99.9996%以上では、結晶の欠落が著しく減少
するので望ましい。
Furthermore, the purity of the copper film formed by the present invention is 99.999.
% or more is preferable. If the purity is less than 99.999%, some of the crystals are likely to be missing during etching, which is a subsequent process, due to segregation of small amounts of impurities contained therein or variations in crystal grain size caused by this. Particularly, a purity of 99.9996% or higher is desirable because the loss of crystals is significantly reduced.

まず、前記セラミック基板上に、常法によって前記有機
絶縁膜の原料の例えばフェスを塗布し、ベーキングして
固化、成膜させる。
First, a raw material for the organic insulating film, such as a ferrule, is applied on the ceramic substrate by a conventional method, and baked to solidify and form a film.

次に、前記有機絶縁膜の表面にイオンプレーティング法
により銅膜を形成させる。 イオンプレーティング法と
しては、高周波励起形、アーク放電形、直流電界形等い
ずれも用いることができ、雰囲気ガスとしてはAr、N
2、(Ar+N2)、(Ar+02)などを用いること
ができる。
Next, a copper film is formed on the surface of the organic insulating film by ion plating. As the ion plating method, any of the high frequency excitation type, arc discharge type, DC electric field type, etc. can be used, and the atmospheric gas is Ar, N, etc.
2, (Ar+N2), (Ar+02), etc. can be used.

イオンプレーティング法は、真空蒸着法に比較し蒸着原
子のエネルギが大きいため、基板との密着性が大きく、
また膜が緻密である。 膜が緻密であるため耐食性が良
好となりパターニング性を向上させることができる。
In the ion plating method, the energy of the evaporated atoms is higher than that in the vacuum evaporation method, so the adhesion to the substrate is greater.
In addition, the film is dense. Since the film is dense, it has good corrosion resistance and can improve patterning properties.

この銅膜を形成する前に、予め前記有機絶縁膜の表面を
不活性ガスまたは弱酸化性ガス、例えばAr、N2、(
Ar十N2)、o2(N2 +02 )、(Ar+02
)などの雰囲気下でイオンボンバード処理しておくと、
有機絶縁膜と銅膜との密着性が向上するので好ましい。
Before forming this copper film, the surface of the organic insulating film is heated in advance with an inert gas or a weakly oxidizing gas, such as Ar, N2, (
Ar + N2), o2 (N2 +02), (Ar+02
), etc., if ion bombardment is performed in an atmosphere such as
This is preferable because it improves the adhesion between the organic insulating film and the copper film.

 イオンボンバード処理としては、高周波励起形、直流
電界形などを用いることができる。
As the ion bombardment process, a high frequency excitation type, a direct current electric field type, etc. can be used.

前記銅膜の厚さは、必要に応じて適宜選択できるが、−
船釣には0.3〜10μm程度である。  0.3μm
未満では、電気抵抗が大きすぎ、また、10μmを超え
ると成膜に時間がかかり高コストとなる。
The thickness of the copper film can be appropriately selected as necessary, but -
For boat fishing, the thickness is about 0.3 to 10 μm. 0.3μm
If it is less than 10 μm, the electrical resistance will be too large, and if it exceeds 10 μm, it will take time to form a film, resulting in high cost.

前記銅膜形成に続いて、常法によりフォトエツチング法
によりパターニングを行い、銅ポリイミド系配線板が得
られる。
Following the formation of the copper film, patterning is performed by a conventional photoetching method to obtain a copper polyimide wiring board.

なお、上記有機絶縁膜と銅膜の形成は必要に応じて適宜
繰返えすことにより、多層の配線板を製造することがで
きる。
Note that a multilayer wiring board can be manufactured by repeating the formation of the organic insulating film and the copper film as necessary.

また、有機絶縁膜に銅を直接蒸着する場合について、説
明したが、予め有機絶縁膜に異種金属、例えば、Ti%
 Cr、Ni、Znなどの薄層を蒸着し、その上に銅を
蒸着してもよい。
In addition, although the case where copper is directly vapor-deposited on the organic insulating film has been described, a different metal such as Ti% is deposited on the organic insulating film in advance.
A thin layer of Cr, Ni, Zn, etc. may be deposited, and then copper may be deposited thereon.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 厚さ1mmのアルミナ板上にポリイミドフェスを20μ
m厚さ塗布し、これを350’Cでベーキングし、固化
させる操作を4回繰返すことにより約20μm厚さのポ
リイミド膜を得たのち、その表面に特別に何らの処理を
することなしに純度99.998%の銅を電子ビーム加
熱式で真空度4X10−’torr、基板温度200℃
、成膜速度30人/secの条件で5μm厚さ真空蒸着
した試料と、前記真空蒸着法のかわりに電子ビーム加熱
式の高周波励起形で真空度1.4xlO−’torr、
高周波電力200W、基板温度200℃、成膜速度30
人/secの条件でイオンプレーティング法により5μ
m厚さ真空蒸着した試料を作成した。
(Example 1) A 20 μm polyimide face was placed on a 1 mm thick alumina plate.
A polyimide film with a thickness of about 20 μm was obtained by repeating the process of coating the polyimide film to a thickness of 20 μm, baking it at 350°C, and solidifying it 4 times. 99.998% copper heated with electron beam at vacuum level of 4X10-'torr and substrate temperature of 200℃
, a sample vacuum-deposited to a thickness of 5 μm at a film-forming rate of 30 people/sec, and a vacuum level of 1.4xlO-'torr using an electron beam heating high-frequency excitation method instead of the vacuum evaporation method.
High frequency power 200W, substrate temperature 200℃, film formation rate 30
5μ by ion plating method under the condition of human/sec.
A sample was prepared by vacuum evaporation to a thickness of m.

このようにして作成した試料の蒸着膜の密着力を測定し
たところ、イオンプレーティング法による試料の密着強
度は、引剥し強さで1.36gf/amであり、真空蒸
着による試料のそれ(1、13g f / c m )
の約1.2倍であった。
When the adhesion strength of the vapor-deposited film of the sample prepared in this way was measured, the adhesion strength of the sample formed by the ion plating method was 1.36 gf/am in terms of peel strength, and that of the sample formed by vacuum vapor deposition (1.36 gf/am). , 13g f/cm)
It was about 1.2 times as large.

さらに、これらの試料をフォトエツチング法により塩化
銅溶液を用い線幅40μm、線間ピッチ40μmのパタ
ーニングを行ったところ、イオンプレーティング膜のも
のは、第1図に示すリード1のサイド面1aでの結晶粒
の欠落が、真空蒸着膜のものの場合(第2a図参照)に
くらべ第2b図に黒点で示す如く欠落が少く、またリー
ド欠け5等も少なかった。
Furthermore, when these samples were patterned with a line width of 40 μm and a line pitch of 40 μm using a copper chloride solution using a photoetching method, the ion plating film was patterned on the side surface 1a of the lead 1 shown in FIG. There were fewer missing crystal grains as shown by the black dots in FIG. 2b, compared to the case of the vacuum-deposited film (see FIG. 2a), and there were also fewer lead chips 5.

なお、第1図の2は有機絶縁膜(ポリイミド膜) 3は
セラミック基板、第2a図および第2b図の4は結晶粒
を示している。
Note that 2 in FIG. 1 is an organic insulating film (polyimide film), 3 is a ceramic substrate, and 4 in FIGS. 2a and 2b is a crystal grain.

(実施例2) 厚さ1mmのムライト板にポリイミドフェスを20μm
厚さ塗布し、これを350tでベーキングし、固化させ
る操作を4回繰返すことにより、約20μm厚さのポリ
イミド膜を得たのち、その表面に純度99.997%の
銅および99.9997%の銅をイオンプレーティング
法によりそれぞれ別個に蒸着した。
(Example 2) A 20 μm thick polyimide face was placed on a 1 mm thick mullite board.
A polyimide film with a thickness of about 20 μm was obtained by repeating the process of applying the film to a thickness of 99.997% and baking it at 350 tons to solidify it 4 times. Copper was deposited separately by ion plating.

イオンプレーティングは、電子ビーム加熱式の高周波励
起形により、1.5X10−’torrの圧力で、高周
波電力200W、基板温度200℃、成膜速度30人/
secで行った。
Ion plating is performed using high-frequency excitation using electron beam heating at a pressure of 1.5 x 10-'torr, high-frequency power of 200 W, substrate temperature of 200°C, and a deposition rate of 30 people per day.
I went in sec.

得られた蒸着膜をフォトエツチング法により塩化銅溶液
を用いて線幅40μm、線間ビッチ40μmのパターニ
ングを行ったところ、99.997%純度の銅膜の場合
は、リードのサイド面での結晶粒の欠落が比較的多いの
に対して、99.9997%純度のものの場合は、上記
結晶粒の欠落は殆ど詔められなかった。
The resulting deposited film was patterned using a copper chloride solution using a photoetching method with a line width of 40 μm and a pitch between lines of 40 μm. In the case of a 99.997% pure copper film, crystals on the side surfaces of the leads were patterned. While there were relatively many missing grains, in the case of the 99.9997% pure product, there was almost no problem with the missing crystal grains.

(実施例3) 厚さ1mmのムライト板にポリイミドフエスを20μm
厚さ塗布し、これを350℃でベーキングし、固化させ
る操作を4回繰返すことにより約20μmyJさのポリ
イミド膜を得たのち、固化したポリイミド膜の表面を後
述の条件でイオンボンバードした試料としない試料を用
意しそれぞれに後述の条件でイオンプレーテング法によ
り純度99.997%の銅を5μm厚さ蒸着し、その接
着強度を比較調査した。 その結果、イオンボンバード
処理しない試料の銅膜の接着強度は1.35gf/cm
であるのに対しイオンボンバード処理した試料のそれは
1.47gf/amであり、優れた密着性をボした。 
なお、イオンボンバード処理は、3X10−’torr
のArガス雰囲気下、高周波励起式で高周波電力300
Wで10分間行った。 また、イオンプレーティングは
1.6xlO−’torrの圧力で高周波電力200W
基板温度2oo℃、成膜速度30入/secで行った。
(Example 3) 20 μm of polyimide foam was applied to a 1 mm thick mullite plate.
After obtaining a polyimide film with a thickness of about 20 μmyJ by repeating the process of coating the polyimide film to a thick thickness, baking it at 350°C, and solidifying it four times, the surface of the solidified polyimide film was subjected to ion bombardment under the conditions described below. Samples were prepared, and copper with a purity of 99.997% was deposited on each sample to a thickness of 5 μm using the ion plating method under the conditions described below, and the adhesive strength thereof was compared and investigated. As a result, the adhesive strength of the copper film of the sample without ion bombardment was 1.35 gf/cm.
In contrast, that of the sample subjected to ion bombardment treatment was 1.47 gf/am, indicating excellent adhesion.
Note that the ion bombardment process is performed at 3X10-'torr.
High frequency power of 300 yen using high frequency excitation method under Ar gas atmosphere.
W for 10 minutes. In addition, ion plating uses high frequency power of 200W at a pressure of 1.6xlO-'torr.
The deposition was carried out at a substrate temperature of 20° C. and a film formation rate of 30 in/sec.

〈発明の効果〉 本発明は、以上説明したように構成されているので、イ
オンプレーティング法により高純度銅膜を形成すること
により、銅膜と有機絶縁膜の密着性に優れ、製品の信頼
性が向上するとともに、残留応力が小さいからエツチン
グが均一に進行する。 また、エツチング時の結晶粒の
欠落が少なく、パターニング性のよい銅膜が得られる。
<Effects of the Invention> Since the present invention is configured as described above, by forming a high-purity copper film using the ion plating method, the adhesion between the copper film and the organic insulating film is excellent, and the reliability of the product is improved. In addition to improved properties, etching progresses uniformly because residual stress is small. Furthermore, a copper film with good patterning properties can be obtained with less loss of crystal grains during etching.

 その上、従来法にくらべ微細配線が可能となるという
効果を奏する。
Moreover, compared to the conventional method, it has the effect of enabling finer wiring.

銅膜形成の前に有機絶縁膜の表面をイオンボンバード処
理すれば、銅膜の密着性が格段に向上するという効果を
奏する。
If the surface of the organic insulating film is subjected to ion bombardment treatment before forming the copper film, the adhesion of the copper film can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパターニング時のリードのサイド面の説明図で
ある。 第2a図および第2b図はそれぞれ真空蒸着法およびイ
オンレーティング法による銅膜におけるリードのサイド
面の部分拡大図である。 FIo、1 符号の説明 1・・・・リード、 1a・・・・サイド面、 2・・・・有機絶縁膜(ポリイミド膜)、3・・・・セ
ラミック板、 4・・・・結晶粒、 5・・・・リード欠け
FIG. 1 is an explanatory view of the side surface of the lead during patterning. FIG. 2a and FIG. 2b are partially enlarged views of the side surfaces of the leads in the copper film formed by the vacuum evaporation method and the ion rating method, respectively. FIo, 1 Description of symbols 1...Lead, 1a...Side surface, 2...Organic insulating film (polyimide film), 3...Ceramic plate, 4...Crystal grain, 5... lead missing

Claims (4)

【特許請求の範囲】[Claims] (1)セラミック基板上に有機絶縁膜を形成し、つぎに
該有機絶縁膜上にイオンプレーティング法により銅膜を
形成したのち、フォトエッチング法によりパターニング
を行うことを特徴とする銅・有機絶縁膜配線板の製造方
法。
(1) Copper/organic insulation characterized by forming an organic insulating film on a ceramic substrate, then forming a copper film on the organic insulating film by ion plating, and then patterning by photoetching. A method for manufacturing a membrane wiring board.
(2)セラミック基板上に有機絶縁膜を形成し、つぎに
該有機絶縁膜の表面を不活性ガスまたは弱酸化性ガス雰
囲気下でイオンボンバード処理したのち、この有機絶縁
膜上にイオンプレーティング法により銅膜を形成し、続
いてフォトエッチング法によりパターニングを行うこと
を特徴とする銅・有機絶縁膜配線板の製造方法。
(2) Form an organic insulating film on a ceramic substrate, then perform ion bombardment on the surface of the organic insulating film in an inert gas or weakly oxidizing gas atmosphere, and then apply ion plating on the organic insulating film. 1. A method for producing a copper/organic insulating film wiring board, comprising forming a copper film using a method, and then patterning it using a photoetching method.
(3)前記有機絶縁膜がポリイミド膜である請求項1ま
たは2記載の銅・有機絶縁膜配線板の製造方法。
(3) The method for manufacturing a copper/organic insulating film wiring board according to claim 1 or 2, wherein the organic insulating film is a polyimide film.
(4)前記イオンプレーティング法により形成する銅膜
の純度が99.999%以上である請求項1ないし3の
いずれかに記載の銅・有機絶縁膜配線板の製造方法。
(4) The method for manufacturing a copper/organic insulating film wiring board according to any one of claims 1 to 3, wherein the copper film formed by the ion plating method has a purity of 99.999% or more.
JP63183053A 1988-07-22 1988-07-22 Copper / organic insulation film wiring board manufacturing method Expired - Lifetime JPH07105584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183053A JPH07105584B2 (en) 1988-07-22 1988-07-22 Copper / organic insulation film wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183053A JPH07105584B2 (en) 1988-07-22 1988-07-22 Copper / organic insulation film wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JPH0232591A true JPH0232591A (en) 1990-02-02
JPH07105584B2 JPH07105584B2 (en) 1995-11-13

Family

ID=16128914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183053A Expired - Lifetime JPH07105584B2 (en) 1988-07-22 1988-07-22 Copper / organic insulation film wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JPH07105584B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135840A (en) * 1977-04-30 1978-11-27 Sumitomo Electric Ind Ltd Metal coating method for non-electroconductive material
JPS5541275A (en) * 1978-09-20 1980-03-24 Casio Comput Co Ltd Printing head feed mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135840A (en) * 1977-04-30 1978-11-27 Sumitomo Electric Ind Ltd Metal coating method for non-electroconductive material
JPS5541275A (en) * 1978-09-20 1980-03-24 Casio Comput Co Ltd Printing head feed mechanism

Also Published As

Publication number Publication date
JPH07105584B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
EP0478010B1 (en) Process for producing a continuous web of an electrically insulated metallic substrate
JPH05194065A (en) Method for forming rigid joint between copper layer and aluminum oxide ceramic
JP2001277424A (en) Metallized polyimide film and method for manufacturing the same
JPH01212754A (en) Method for metallizing substrate of silica, quartz, glass or sapphire
US6331811B2 (en) Thin-film resistor, wiring substrate, and method for manufacturing the same
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
JP3473485B2 (en) Thin film resistor and manufacturing method thereof
JPH11268183A (en) Polyimide-metal laminate and its manufacture
JP3766453B2 (en) Transparent conductive film and method for producing the same
JPS6341049A (en) Multilayer circuit with via contacts
JPH0955575A (en) Laminate
JPS6161556B2 (en)
JP3447075B2 (en) Flexible circuit board
JPH09201900A (en) Laminate
JPH0232591A (en) Manufacture of copper-organic insulating film wiring board
JPH0232590A (en) Manufacture of copper-organic insulating film wiring board
JPH0661600A (en) Flexible circuit board
JP3288301B2 (en) Thin film resistor, method of manufacturing the same, and wiring board incorporating the thin film resistor
JP2562588B2 (en) Tantalum metal thin film circuit
JP2002057437A (en) Method of forming metal film, base for wiring circuit board, wiring circuit board and suspension board with circuit
JPH08139422A (en) Flexible circuit board having metallic oxide layer
JPS63303730A (en) Polyether imide film metallized with metallic thin film
JPH05151827A (en) Substrate with conductor
JPH04323887A (en) Method of forming conductor film of ceramic circuit board
JPS6247908A (en) Conducting film