JPH0232577A - Current detection device - Google Patents

Current detection device

Info

Publication number
JPH0232577A
JPH0232577A JP63182505A JP18250588A JPH0232577A JP H0232577 A JPH0232577 A JP H0232577A JP 63182505 A JP63182505 A JP 63182505A JP 18250588 A JP18250588 A JP 18250588A JP H0232577 A JPH0232577 A JP H0232577A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
current
round bar
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63182505A
Other languages
Japanese (ja)
Inventor
Osamu Saito
修 斎藤
Mitsuo Yamashita
満男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63182505A priority Critical patent/JPH0232577A/en
Publication of JPH0232577A publication Critical patent/JPH0232577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a stable output with a simplified and miniaturized structure by forming a spiral-shaped magnetic thin film on a non-magnetic round bar, and applying torsion stress to the round bar to drive a non-detection current, and thereby providing an AC magnetic field to generate pulse voltage. CONSTITUTION:In a detector element 1, a Fe-base amorphous magnetic film 3 is formed on the circumferential surface of a non-magnetic round bar into a spiral shape slanted about 45 with respect to a bar axis. Conductor thin films 4 are formed on opposite ends of the thin film 3 and connected to the thin film 3. Torsion stress is exerted on the round bar 2 circumferentially of the same. Once a current I to be detected is driven through a magnetizing coil 7 and an AC magnetic field is applied to the round bar 2 longitudinally of the thin film 3 by the shift of a magnetic wall, and pulse voltage is generated from the opposite ends of the thin film 3 owing to electric resistance of the thin film 3. The pulse voltage which depends on the magnitude and frequency of the current to be detected allows the magnitude of the current to be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導体中を流れる交流電流を検出する電流検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current detection device for detecting alternating current flowing in a conductor.

〔従来の技術〕[Conventional technology]

導体中を流れる交流電流を検出する装置として、従来電
流によって作られる磁界を磁気センサまたは検出コイル
で検出する装置が一般的である。この構成の概略は鉄心
にコイルを巻いて、この鉄心中に磁束を通し、鉄心に設
けた空隙に磁気センサを設置するとか、鉄心lこ検出コ
イルを巷<すどして、磁気センサや検出コイルに発生す
る電圧から電流を検出する。しかし最近は導体を取巻く
非磁性円筒lこFe基アモルファス磁性薄帯のような軟
磁性薄帯を絶縁層を介して螺旋状に巻いたものが検討。
2. Description of the Related Art Conventionally, a device for detecting an alternating current flowing through a conductor uses a magnetic sensor or a detection coil to detect a magnetic field created by the current. The outline of this configuration is to wind a coil around an iron core, pass a magnetic flux through this iron core, and install a magnetic sensor in the air gap provided in the iron core. Detects current from the voltage generated in the coil. Recently, however, a non-magnetic cylinder surrounding a conductor is being considered, in which soft magnetic ribbons such as Fe-based amorphous magnetic ribbons are spirally wound with an insulating layer interposed between them.

=nでいる。この軟磁性薄帯に引張応力が加わるように
すると、導体に流れる交流電流1こより磁性薄帯の磁化
方向が反転したときマチウシ効果を生じ、パルス電圧を
発生する。この電圧は導体の電流に依存するから、この
電圧から電流を検出することができる。
= I am n. When a tensile stress is applied to this soft magnetic ribbon, when the direction of magnetization of the magnetic ribbon is reversed by a single alternating current flowing through the conductor, a gusset effect occurs and a pulse voltage is generated. Since this voltage depends on the current in the conductor, the current can be detected from this voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電流によって作られる磁界を磁気センサまたは検出コイ
ルで検出する構成では、鉄心、磁気センサ、検出コイル
などが必要になり、装置の小形化が困難であった。また
非磁性円筒に磁性薄帯を巻き付ける構成では円筒と磁性
薄帯との間の固定が困難であること、母性薄帯の両端に
発生する電圧を外部に導出する際、リード線をはんだ付
けなどすると磁性薄帯特によく用いられるFe基アモル
ファス磁性薄帯のときには磁性の劣化を生じ、または熱
ひずみを生ずるなどのため出力が不安定になり、複数の
磁性薄帯を直列に接続して出力を増大することが困難で
あるなどの問題があった。
In a configuration in which a magnetic sensor or a detection coil detects a magnetic field created by an electric current, an iron core, a magnetic sensor, a detection coil, and the like are required, making it difficult to miniaturize the device. In addition, in a configuration in which a magnetic ribbon is wound around a non-magnetic cylinder, it is difficult to fix the cylinder and the magnetic ribbon, and when the voltage generated at both ends of the mother ribbon is led to the outside, lead wires must be soldered. As a result, magnetic ribbons, especially Fe-based amorphous magnetic ribbons that are commonly used, suffer from deterioration in magnetism or thermal distortion, resulting in unstable output. There have been problems such as difficulty in increasing the amount.

本発明の目的は製造が簡単で小形化でき、出力が安定し
、かつ出力の増大をはかり得る電流検出fc置を提供す
ることにある。
An object of the present invention is to provide a current detection fc device that is easy to manufacture, can be miniaturized, has stable output, and can increase output.

〔課題を解決するための手段〕[Means to solve the problem]

上述の課題を解決するため本発明の電流検出装置は、F
iB性材料が周囲に薄膜として螺旋状に形成されこの母
性薄膜の両端に導体薄膜が形成、接続された非磁性丸棒
からなりこの非磁性丸棒の円周方向Jこねじり応力が与
えられた検出素子と、この検出素子の周囲に巻回され被
検出電流を流す磁化コイルと、前記導体薄膜間に接続さ
れ電圧を検出する検出器とを備え、前記検出器の指示か
ら電流を検出するものとする。なお複数の検出素子が同
時に同じ磁界効果を受けるように構成されてジグザグ状
に連結され相隣る検出素子の磁性薄膜が導体薄膜で直列
に接続されると感度が上昇する。また非磁性丸棒を被検
出電流を流す非磁性導体とすれば磁化コイルを省略する
ことができる。
In order to solve the above-mentioned problems, the current detection device of the present invention
An iB material was formed in a spiral shape as a thin film around the periphery, and a conductive thin film was formed on both ends of this mother thin film, which was made up of a connected non-magnetic round bar, and a torsional stress was applied in the circumferential direction of this non-magnetic round bar. A device comprising a detection element, a magnetized coil wound around the detection element to flow a current to be detected, and a detector connected between the conductor thin films to detect voltage, and detects the current based on an instruction from the detector. shall be. Note that sensitivity increases when a plurality of detection elements are connected in a zigzag pattern so as to receive the same magnetic field effect at the same time, and the magnetic thin films of adjacent detection elements are connected in series with a conductive thin film. Further, if the non-magnetic round bar is used as a non-magnetic conductor through which the current to be detected flows, the magnetizing coil can be omitted.

〔作用〕[Effect]

非磁性丸棒の周囲に急速な磁壁移動が生じ易い軟磁性材
料を蒸気の状態から薄膜として形成する。
A soft magnetic material that tends to cause rapid domain wall movement is formed from a vapor state into a thin film around a non-magnetic round bar.

すなわち蒸着、スバ、タリングまたはイオングレーティ
ングなどにより形成され、丸棒の円周方向にねじり応力
が与えられると、この方向に引張応力が発生する。した
がって磁性薄膜が正の磁歪を有する磁性材料であれば、
この引張応力の方向が磁化容易軸となり、交流磁界によ
る磁化反転時コイルによる磁界方向すなわち丸棒の長さ
方向の磁束が支配的となるため磁性薄膜の長手方向に電
流が流れ、この長手方向の両端に電圧が生じる検出素子
を得る。この電圧は、検l:l:l素子の周囲に巻かれ
被検出電流を流す磁化コイルで磁性薄膜を磁化すればこ
の磁化コイルの磁界の強さ(コイル電流の大きさ)、交
流周波数に依存して変化するから、この磁性薄膜の両端
に導体薄膜の端子を構成してこの電圧を導出して検出器
で検出する。
That is, it is formed by vapor deposition, sputtering, talling, ion grating, etc., and when torsional stress is applied in the circumferential direction of the round bar, tensile stress is generated in this direction. Therefore, if the magnetic thin film is a magnetic material with positive magnetostriction,
The direction of this tensile stress becomes the axis of easy magnetization, and when the magnetization is reversed by the alternating magnetic field, the magnetic flux in the direction of the magnetic field by the coil, that is, the length direction of the round bar, becomes dominant, so a current flows in the longitudinal direction of the magnetic thin film, and this longitudinal direction A sensing element is obtained in which a voltage is generated at both ends. This voltage depends on the strength of the magnetic field of this magnetization coil (magnitude of coil current) and the AC frequency, if the magnetic thin film is magnetized with a magnetization coil that is wound around the detection element and flows the current to be detected. Therefore, conductor thin film terminals are constructed on both ends of this magnetic thin film to derive this voltage and detect it with a detector.

すなわちマチウシ効果を得る最高材料としてFe基アモ
ルファス磁性材料を用いる場合は、この材料が熱に弱い
点に留意し、磁性薄帯でなく磁性薄膜とし、この磁性M
膜の両端に導体薄膜を形成。
In other words, when using an Fe-based amorphous magnetic material as the best material to obtain the Machiushi effect, it should be noted that this material is sensitive to heat, and it should be made into a magnetic thin film instead of a magnetic ribbon.
A conductive thin film is formed on both ends of the membrane.

接続して端子とした。また丸棒の周面に形成した磁性薄
膜は磁性薄帯と異なり、蒸Nなどをしたのみでは磁気異
方性がないからこれを付与するため丸棒にねじり応力を
与えてこの表面に生ずる引張応力を利用した。
Connect it and use it as a terminal. In addition, unlike a magnetic ribbon, the magnetic thin film formed on the circumferential surface of the round bar does not have magnetic anisotropy if it is only treated with evaporated N, so in order to provide this, torsional stress is applied to the round bar to create a tensile stress on the surface. Using stress.

このような構成のものは、複数の検出素子を用意し、磁
性薄膜の巻き方向の異なる検出素子が交1にジグザグ状
に連結されると同一磁化コイル内の各検出素子の受ける
磁界効果が同じになるから各検出素子の発生する電圧が
相加わり、!流感度は向上する。
In this type of configuration, multiple detection elements are prepared, and when the detection elements with different winding directions of the magnetic thin film are connected in a zigzag pattern in a crosswise direction, each detection element within the same magnetized coil receives the same magnetic field effect. Since the voltages generated by each detection element are added together, ! Flow sensitivity improves.

なお非磁性丸棒が被検出電流を流す非磁性導体であり、
この非母性導体で磁性薄膜を磁化する場合は磁化コ°イ
ルを省略することができる。しかしこの場合は複数の検
出素子は磁性薄膜が総て同一方向に螺旋状に巻かれてい
ることが必要である。
Note that the non-magnetic round bar is a non-magnetic conductor through which the current to be detected flows.
When magnetizing a magnetic thin film with this non-maternal conductor, the magnetizing coil can be omitted. However, in this case, it is necessary that the magnetic thin films of the plurality of detection elements are all spirally wound in the same direction.

〔実施例〕 第1図ないし第6図に本発明による電流検出装置の実施
例を示す。第1図において、検出素子1は第2図に示す
ように非磁性丸$2の局面に棒軸に対し約45°の螺旋
状にFe基アモルファス磁性薄膜3が蒸気の状態から形
成されている。また磁性薄膜3の両端には導体薄膜4が
形成され、磁性薄膜3と接続されている。そして非磁性
丸棒2の円周方向にねじり応力δが与えられている。両
導体薄膜4はリード線5で外部に導出されて電圧を検出
する検出器6に接続されている。この検出素子1の周囲
には被検出電流を流す磁化コイル7が巻回されている。
[Embodiment] FIGS. 1 to 6 show embodiments of the current detection device according to the present invention. In FIG. 1, the detection element 1 has an Fe-based amorphous magnetic thin film 3 formed in a vapor state in a spiral shape at an angle of about 45° to the rod axis on the surface of a non-magnetic circle $2, as shown in FIG. . Further, a conductor thin film 4 is formed on both ends of the magnetic thin film 3 and is connected to the magnetic thin film 3. A torsional stress δ is applied to the non-magnetic round bar 2 in the circumferential direction. Both conductive thin films 4 are led out through lead wires 5 and connected to a detector 6 for detecting voltage. A magnetized coil 7 is wound around the detection element 1 to allow a current to be detected to flow therethrough.

なおねじり応力δは丸棒2の長さ方向に引張応力を加え
ながらねじると効果が大きい0 このような検出素子では、磁性薄膜3はほぼその長手方
向lこ対しほぼ45°方向に引張応力δtが与えられて
いるからこの方向が磁化容易軸になる。
Note that the torsional stress δ is more effective when the round bar 2 is twisted while applying a tensile stress in the longitudinal direction. In such a detection element, the magnetic thin film 3 has a tensile stress δt approximately 45° to the longitudinal direction. Since this is given, this direction becomes the axis of easy magnetization.

ここで磁化コイル7に被検出電流■を流し、丸棒2の長
手方向に交流磁界を印加すると磁性薄膜3に生じた磁化
ベクトルが磁性薄膜3の長さ方向に対して直角な方向(
幅方向)の成分φlを生ずるため、磁壁移動により磁性
薄膜3の長手方向に電流が発生し、磁性薄膜3の電気抵
抗により磁性薄膜3の両端から第3図に示すようにパル
ス電圧Eが発生する。このパルス電圧Eのレベル615
束φlと磁壁の移動速度とに依存する。すなわち、パル
ス電圧Eは被検出電流の大きさと周波数に依存して変化
するから、このパルス電圧から被検出電流の大きさを検
出することができる。
Here, when a current to be detected ■ is applied to the magnetizing coil 7 and an alternating current magnetic field is applied in the longitudinal direction of the round bar 2, the magnetization vector generated in the magnetic thin film 3 is directed in a direction perpendicular to the longitudinal direction of the magnetic thin film 3 (
In order to generate a component φl in the width direction), a current is generated in the longitudinal direction of the magnetic thin film 3 due to domain wall movement, and a pulse voltage E is generated from both ends of the magnetic thin film 3 due to the electrical resistance of the magnetic thin film 3 as shown in FIG. do. The level 615 of this pulse voltage E
It depends on the flux φl and the moving speed of the domain wall. That is, since the pulse voltage E changes depending on the magnitude and frequency of the current to be detected, the magnitude of the current to be detected can be detected from this pulse voltage.

次に第4図は第2図に示す検出素子1をジグザグに連結
して各素子13〜1eの磁性薄膜3a〜3eが導体薄膜
4b〜4eで直列に接続され、この検出素子1a〜1e
の集合体が磁化コイル71の内部に挿入され両端の導体
薄膜4ae4fがリード線5で導出されて検出器6に接
続されている。ここで各素子1a〜1eのうちの相隣る
素子の磁性薄膜の螺旋状の巻方向が反対にされて各磁性
薄膜33〜3eが同じように磁界の影響を受は発生する
パルス電圧Eがすべて加わるようにされている。伝来φ
lにより電圧Eが発生する機能は第1図について述べた
ものと同様であるからこの説明は省略するか。
Next, in FIG. 4, the detection elements 1 shown in FIG. 2 are connected in a zigzag pattern, and the magnetic thin films 3a to 3e of the respective elements 13 to 1e are connected in series by the conductor thin films 4b to 4e, and the detection elements 1a to 1e are connected in series.
is inserted into the inside of the magnetizing coil 71, and the conductive thin films 4ae4f at both ends are led out with lead wires 5 and connected to the detector 6. Here, the spiral winding directions of the magnetic thin films of adjacent elements among the elements 1a to 1e are reversed, so that each of the magnetic thin films 33 to 3e is affected by the magnetic field in the same way, and the generated pulse voltage E is All are made to participate. Traditional φ
Since the function of generating the voltage E by l is the same as that described with reference to FIG. 1, this explanation will be omitted.

この場合はパルス電圧Eは理論的には素子1a〜1eの
数だけ高くなるから電流感度はそれだけ向上する。
In this case, since the pulse voltage E theoretically increases by the number of elements 1a to 1e, the current sensitivity improves accordingly.

第5図は第1図や第4図と異なる実施例を示すもので、
非磁性丸412を銅線のような非磁性導体8として検出
素子11を構成している。その他のFe基アモルファス
磁性薄膜や導体薄膜の構成は@4図と同様であるからこ
の説明は省略する。この非磁性導体8に被検出電流工が
通電される0このとき電流工による磁界は非母性導体8
の円周方向に発生して磁性薄膜3に作用する。したがっ
て磁性薄膜3に対する磁界の方向は第1図や第4図に示
す実施例とはちょうど900異なるが、磁性薄膜3は導
体8の軸心に対してほぼ45°の螺旋状に巻かれている
から磁性薄膜3に対する効果はほぼ同じであり、被検出
電流Iは、磁性薄膜3の両端に設けられた導体重1g1
4に接続されたリード線5を介して、検出器6で検出さ
れる。
Figure 5 shows an embodiment different from Figures 1 and 4.
The detection element 11 is constructed by using the nonmagnetic circle 412 as a nonmagnetic conductor 8 such as a copper wire. The other configurations of the Fe-based amorphous magnetic thin film and the conductive thin film are the same as those shown in Figure @4, so their explanation will be omitted. A current is applied to the non-magnetic conductor 8. At this time, the magnetic field due to the current is applied to the non-magnetic conductor 8.
is generated in the circumferential direction and acts on the magnetic thin film 3. Therefore, the direction of the magnetic field on the magnetic thin film 3 differs by exactly 900 degrees from the embodiments shown in FIGS. The effect on the magnetic thin film 3 is almost the same, and the detected current I is equal to the conductor weight 1g1 provided at both ends of the magnetic thin film 3.
4 is detected by a detector 6 via a lead wire 5 connected to the lead wire 5 .

第6図は上記3実施例とは異なる実施例を示し、各非磁
性導体8a〜8eにFe基アモルファス磁性薄膜33〜
3eが螺旋状に形成された検出素子11a〜lieがジ
グザグ状に連結され、各素子8a〜8eの磁性薄膜33
〜3eが導体薄膜4b〜4eで直列に接続されlこの直
列磁性薄膜3a〜3eの両端の淋薄膜4a、4fがリー
ド線5で検出器6に接続されている。ここで各磁性薄膜
3a〜3eのうちの相隣る素子は第4図の場合とは異な
り、すべて同じように構成されて、被検出電流工により
発生する円周磁界で生ずる電圧が相加わるよう1こされ
ている。
FIG. 6 shows an embodiment different from the above three embodiments, in which each nonmagnetic conductor 8a to 8e is coated with Fe-based amorphous magnetic thin films 33 to 8e.
Detecting elements 11a to 11ie in which 3e is formed in a spiral shape are connected in a zigzag shape, and the magnetic thin film 33 of each element 8a to 8e is connected in a zigzag manner.
3e are connected in series through conductive thin films 4b to 4e, and thin films 4a and 4f at both ends of the series magnetic thin films 3a to 3e are connected to a detector 6 through a lead wire 5. Here, the adjacent elements of each magnetic thin film 3a to 3e are different from the case of FIG. 1 is broken.

この場合、例えば素子11aの受ける磁界は素子LLa
に流れる電流によるもののみでなく、他の各素子1b〜
1eに流れる電流にも影響されるがこの影響は小さい。
In this case, for example, the magnetic field that element 11a receives is element LLa
Not only due to the current flowing in the
It is also affected by the current flowing through 1e, but this effect is small.

こうして電流感度は第5図に示すものよりほぼ検出素子
1a〜1eの個数だけ向上する。
In this way, the current sensitivity is improved over that shown in FIG. 5 by approximately the number of detection elements 1a to 1e.

〔発明の効果〕〔Effect of the invention〕

本発明による電流検出装置は、電流を検出する主要部と
して非磁性丸部または非磁性導体に磁性薄膜を螺旋状に
形成し、この丸棒または尋坏にねじり応力を与えて、こ
の磁性薄膜の長さ方向に対し斜め方向に引張応力を与え
、この磁性薄膜に交流磁界を与えると磁性薄膜の両端に
磁界の強さと磁壁の移動速度に依存するパルス電圧を生
ずるから、この交流磁界を磁化コイルまたは導体に通電
した被検出電流で発生させれば、この電流を検出するこ
とができる。またこの磁性薄膜の両端に端子として導体
薄膜を形成したから磁性材料としてFe基アモルファス
磁性薄膜のような急速な磁壁移動を生じ易いが熱劣化し
易い材料を用いることができ、検出感度を高めることが
できる。しかも各母性薄lσの間も導電性薄膜で直列に
接続することが容易になり、電流感度を高めることや小
形化のため効果は大きい。
The current detecting device according to the present invention has a magnetic thin film spirally formed on a non-magnetic round part or a non-magnetic conductor as the main part for detecting current, and twisting stress is applied to this round bar or crosspiece to form a magnetic thin film. When a tensile stress is applied diagonally to the length direction and an alternating magnetic field is applied to this magnetic thin film, a pulse voltage that depends on the strength of the magnetic field and the moving speed of the domain wall is generated at both ends of the magnetic thin film, so this alternating magnetic field is applied to the magnetizing coil. Alternatively, this current can be detected if it is generated by a current to be detected passed through a conductor. In addition, since conductor thin films are formed as terminals at both ends of this magnetic thin film, a material such as an Fe-based amorphous magnetic thin film, which tends to cause rapid domain wall movement but is susceptible to thermal deterioration, can be used as the magnetic material, increasing detection sensitivity. I can do it. In addition, it becomes easy to connect the respective mother thin films lσ in series with conductive thin films, which is highly effective in increasing current sensitivity and downsizing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1よいし第6図は本発明による電流検出装置の実
施例を示し、第1図は一実施例を示す結線図、第2図は
第1図に示す実施例に用いた検出素子を示す斜視図、第
3図は磁性薄膜に発生する分力の磁束とパルス電圧との
関係を示す波形図、第4図は第1図と異なる実施例を示
す結線図、第5図と第6図はそれぞれ第1図または第4
図と異なる実施例を示す結線図である。 1、la、1e、11.11a〜11e:検出素子、2
:非磁性丸棒、3.3a〜3e:アモルファス磁性薄膜
、4.4a〜4f:24体薄膜、6:検出器、7 、7
1 : a化コイル、8:非磁性導体。
1 to 6 show an embodiment of a current detection device according to the present invention, FIG. 1 is a wiring diagram showing one embodiment, and FIG. 2 shows a detection element used in the embodiment shown in FIG. 1. Fig. 3 is a waveform diagram showing the relationship between the magnetic flux of the component force generated in the magnetic thin film and the pulse voltage, Fig. 4 is a wiring diagram showing an embodiment different from Fig. 1, and Figs. Figure 6 is Figure 1 or Figure 4, respectively.
It is a wiring diagram showing an example different from the figure. 1, la, 1e, 11.11a to 11e: detection element, 2
: Non-magnetic round bar, 3.3a-3e: Amorphous magnetic thin film, 4.4a-4f: 24-body thin film, 6: Detector, 7, 7
1: a-coil, 8: non-magnetic conductor.

Claims (1)

【特許請求の範囲】 1)磁性材料が周囲に薄膜として螺旋状に形成されこの
磁性薄膜の両端に導体薄膜が形成、接続された非磁性丸
棒からなりこの非磁性丸棒の円周方向にねじり応力が与
えられた検出素子と、この検出素子の周囲に巻回され被
検出電流を流す磁化コイルと、前記両導体薄膜間に接続
され電圧を検出する検出器とを備え、前記検出器の指示
から電流を検出することを特徴とする電流検出装置。 2)請求項1に記載の電流検出装置において、複数の検
出素子が同時に同じ磁界効果を受けるように構成されて
ジグザグ状に連結され相隣る検出素子の磁性薄膜が導体
薄膜で直列に接続されていることを特徴とする電流検出
装置。 3)請求項1または2記載の電流検出装置において、非
磁性丸棒が被検出電流を流す非磁性導体であり、磁化コ
イルが省略されていることを特徴とする電流検出装置。
[Claims] 1) A non-magnetic round bar with a magnetic material spirally formed around it as a thin film, and a conductive thin film formed on both ends of the magnetic thin film and connected to each other in the circumferential direction of the non-magnetic round bar. The detector comprises a detection element to which torsional stress is applied, a magnetized coil wound around the detection element to flow a current to be detected, and a detector connected between the two conductor thin films to detect a voltage. A current detection device characterized by detecting current from an instruction. 2) In the current detection device according to claim 1, the plurality of detection elements are configured to receive the same magnetic field effect at the same time and are connected in a zigzag shape, and the magnetic thin films of adjacent detection elements are connected in series with a conductive thin film. A current detection device characterized by: 3) The current detection device according to claim 1 or 2, wherein the non-magnetic round bar is a non-magnetic conductor through which a current to be detected flows, and a magnetized coil is omitted.
JP63182505A 1988-07-21 1988-07-21 Current detection device Pending JPH0232577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182505A JPH0232577A (en) 1988-07-21 1988-07-21 Current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182505A JPH0232577A (en) 1988-07-21 1988-07-21 Current detection device

Publications (1)

Publication Number Publication Date
JPH0232577A true JPH0232577A (en) 1990-02-02

Family

ID=16119472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182505A Pending JPH0232577A (en) 1988-07-21 1988-07-21 Current detection device

Country Status (1)

Country Link
JP (1) JPH0232577A (en)

Similar Documents

Publication Publication Date Title
US4506214A (en) Measuring transformer
US4309655A (en) Measuring transformer
US4385273A (en) Transducer for measuring a current-generated magnetic field
US7389702B2 (en) Magnetostrictive torque sensor
US4639670A (en) Magnetic field sensor comprising Wiegand wires or similar bistable magnetic elements
US20070029305A1 (en) Magnetic field reduction resistive heating elements
JPS59212777A (en) Current measuring sensor functionally controlling electric consumption apparatus
JPH05297083A (en) Magnetic field-sensitive apparatus
JPS599528A (en) Torque sensor
JPH0232577A (en) Current detection device
JPH02167478A (en) Current sensor
US3488587A (en) Magnetostrictive electromechanical galvanometer apparatus
JPH0232578A (en) Current detector device
JP2697375B2 (en) Current detection unit
EP0069459A1 (en) Measuring device of electromagnetic flowmeter
JPH03297215A (en) Magneto-sensitive pulse generator using coaxial cylindrical composite magnetic body
JPS6041474B2 (en) signal transmission element
JPS6239393B2 (en)
RU1795310C (en) Process of manufacture of sensitive element of magneto-elastic force cell
JPH0763627A (en) Dynamic amount sensor
JPS6179168A (en) Current sensor
JP2000055940A (en) Dc current sensor
JPH06221936A (en) Dynamic value sensor
JPH0510980A (en) Current detection method
JP2022151950A (en) Device and method for detecting flux gate-type magnetism