JPH0232545A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0232545A
JPH0232545A JP18293288A JP18293288A JPH0232545A JP H0232545 A JPH0232545 A JP H0232545A JP 18293288 A JP18293288 A JP 18293288A JP 18293288 A JP18293288 A JP 18293288A JP H0232545 A JPH0232545 A JP H0232545A
Authority
JP
Japan
Prior art keywords
film
semiconductor
titanium
region
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18293288A
Other languages
Japanese (ja)
Other versions
JP2575314B2 (en
Inventor
Yasuhisa Omura
泰久 大村
Katsutoshi Izumi
泉 勝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18293288A priority Critical patent/JP2575314B2/en
Publication of JPH0232545A publication Critical patent/JPH0232545A/en
Application granted granted Critical
Publication of JP2575314B2 publication Critical patent/JP2575314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To produce a compact and high-performance semiconductor device by performing ion implantation of Ti directly into a semiconductor, preventing unneeded impurities from entering the semiconductors, and forming an alloy at a low temperature. CONSTITUTION:After forming an Si oxide film 3' and a gate electrode 4'' of a gate insulation film on an Si substrate 1', the electrodes 4'', a source area 5, and a drain area 6 are formed, an Si film 17 is formed on the surface, impurities forming a conductive area are introduced, and an Si nitriding film 18 is formed. Then, a specified amount of Ti is ion-implanted to the main surface side of the substrate 1' by a specified amount of energy, and Ti and semiconductor Si and Ti and Si nitriding film 18 are allowed to react. As a result, with formation of alloy at a low temperature, Ti silicide films 4b, 5b and 6b, Ti silicide films 22a-22c are formed on a source area 5 and a drain area 6 and then Ti silicide films 21a-21d are formed on Si layers 19a-19d. Then, the Ti silicide film is eliminated by hydrofluoric acid, an Si oxide film 8 is accumulated on the substrate to form a contact hole, and then a source electrode 9 and a drain electrode 10 are made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速度動作を行なう半導体装置を安定性良く製
作する半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device that stably manufactures a semiconductor device that operates at high speed.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体装置の構成を示す要部断面図であ
る。同図において、1は第一の4電形の単結晶半導体基
板、2は半導体装置間を横方向に電気的に絶縁するため
の絶縁膜、3はゲート絶縁膜、4mは半導体を使用した
ゲート電極、4bは半導体合金薄膜を使用したゲート電
極、5mは第二の導電形のソース領域、5bは半導体合
金層によυ形成されたソース領域、6aは第二の導電形
のドレイン領域、6bは半導体合金層によυ形成された
ドレイン領域、Iはゲート絶縁膜4m、4bの側壁に形
成された絶縁膜、8は配線間を電気的に絶縁するための
絶縁膜、9はソース′1極、10はドレイン電極、11
a〜11Cは窒化チタン膜、12はゲート電極4m、4
bの側壁に形成された絶縁膜である。
FIG. 4 is a sectional view of a main part showing the structure of a conventional semiconductor device. In the figure, 1 is a first quadrielectric single crystal semiconductor substrate, 2 is an insulating film for horizontally electrically insulating between semiconductor devices, 3 is a gate insulating film, and 4m is a gate using a semiconductor. Electrodes, 4b is a gate electrode using a semiconductor alloy thin film, 5m is a source region of the second conductivity type, 5b is a source region formed by the semiconductor alloy layer, 6a is a drain region of the second conductivity type, 6b is a drain region formed by a semiconductor alloy layer, I is an insulating film formed on the side walls of gate insulating films 4m and 4b, 8 is an insulating film for electrically insulating between wirings, and 9 is a source '1 pole, 10 is the drain electrode, 11
a to 11C are titanium nitride films, 12 is a gate electrode 4m, 4
This is an insulating film formed on the side wall of b.

このように構成される半導体装置において、ゲ−上電極
4m、4bおよびソース領域5m、5b並びにドレイン
領域5a、fibは、半導体のみにより形成されていた
。また、半導体装置の動作速度は、主に実効チャネル長
(ソース・ドレイン間距離)で規定されるが、実際には
ゲート電極薄膜のシート抵抗及びソース・ドレイン領域
のシート抵抗は有限値を有するので、微細化した半導体
装置ではゲート中を信号が伝播する時間を無視できなく
なると共にソース・ドレインのシート抵抗によるドレイ
ン電流の減少及び利得の減少が起る。即ち、LSIの動
作速度或は集積度を向上するために半導体装置の全体の
寸法を縮小すると、前記寄生効果のため、半導体装置の
動作速度は単純な縮小側で予測されるような特性に比し
て著しく悪化する。
In the semiconductor device constructed in this way, the upper electrodes 4m, 4b, the source regions 5m, 5b, and the drain regions 5a, fib are formed only of semiconductor. In addition, the operating speed of a semiconductor device is mainly determined by the effective channel length (distance between the source and drain), but in reality, the sheet resistance of the gate electrode thin film and the sheet resistance of the source and drain regions have finite values. In miniaturized semiconductor devices, the time for signals to propagate through the gate cannot be ignored, and the drain current and gain decrease due to the sheet resistance of the source and drain. That is, when the overall dimensions of a semiconductor device are reduced in order to improve the operating speed or degree of integration of an LSI, the operating speed of the semiconductor device becomes smaller than the characteristics predicted by simple reduction due to the parasitic effect. and becomes significantly worse.

従来、半導体薄膜のみでシート抵抗を下げる努力が行わ
れたが、これまでのところ、500nm以下の膜厚で1
0オーム以下にすることはできていない。この問題を解
決する丸め、近年、半導体合金膜を使用する方法が提案
され九。例えばシリコンとチタンとの合金(チタン拳シ
リサイド)膜の場合、シート抵抗を数オーム程度まで下
げうろことが知られている。しかしながら、例えばシリ
コンを半導体基板として使用する半導体装置の製造工程
においては、弗化水素酸がシリコン表面の清浄化に常用
されるが、弗化水素酸がシリサイドを著しく侵すため、
シリサイド表面を清浄化するために弗化水素酸を使えな
いという欠点があった。捷た配線用の金属として、常用
されているアルミニウム(At)をチタン・シリサイド
上に堆積した場合、堆積後の熱処理により、Atがシリ
サイドと反応して下地のシリサイド層のみならず、その
下のシリコンlに到達して半導体装置のゲート絶縁膜或
はソース・ドレイン接合の電気的特性を劣化させるとい
う問題があった。
Conventionally, efforts have been made to lower the sheet resistance using only semiconductor thin films, but so far it has been possible to reduce the sheet resistance by 1 with a film thickness of 500 nm or less.
It has not been possible to make it below 0 ohm. To solve this problem, a method using semiconductor alloy films has recently been proposed. For example, in the case of an alloy film of silicon and titanium (titanium silicide), it is known that the sheet resistance can be lowered to about several ohms. However, in the manufacturing process of semiconductor devices that use silicon as a semiconductor substrate, for example, hydrofluoric acid is commonly used to clean the silicon surface, but since hydrofluoric acid significantly attacks silicide,
The drawback was that hydrofluoric acid could not be used to clean the silicide surface. When aluminum (At), which is commonly used as a metal for twisted wiring, is deposited on titanium silicide, the heat treatment after deposition causes the At to react with the silicide, damaging not only the underlying silicide layer but also the underlying silicide layer. There is a problem in that it reaches silicon l and deteriorates the electrical characteristics of the gate insulating film or source/drain junction of the semiconductor device.

このようなチタン・シリサイド膜の性質とは逆に、窒化
チタン膜は弗化水素酸にほとんど侵されず、アルミニウ
ムとも反応しにりく、マた比較的低い比抵抗値を有する
導体であることから、前述の問題を解決するために使用
された。窒化チタン膜の特徴を活用して考案され九のが
@4図に示した半導体装置である。同図において、ゲー
ト電極4m、4bの下層に半導体層を残しであるのは、
半導体装置のしきい値電圧の制御性の確保及び半導体合
金膜とゲート絶縁膜3との反応の回避のためである。
Contrary to the properties of titanium silicide films, titanium nitride films are hardly attacked by hydrofluoric acid, are less likely to react with aluminum, and are conductors with relatively low resistivity. , was used to solve the aforementioned problem. The ninth semiconductor device devised by utilizing the characteristics of titanium nitride film is shown in Figure @4. In the same figure, the semiconductor layer remaining below the gate electrodes 4m and 4b is as follows.
This is to ensure controllability of the threshold voltage of the semiconductor device and to avoid reaction between the semiconductor alloy film and the gate insulating film 3.

この構造を実現するために考案された従来の製造方法の
一例を第5図に示す。同図において、1は第一の導電形
の単結晶半導体基板、2は半導体装置間を横方向に電気
的に絶縁するための絶縁膜、3はゲート絶縁膜、4凰は
半導体を使用したゲート電極、4bは半導体とチタンと
の合金薄膜を使用したゲート電極、13はチタン薄膜で
ある。
An example of a conventional manufacturing method devised to realize this structure is shown in FIG. In the figure, 1 is a single crystal semiconductor substrate of the first conductivity type, 2 is an insulating film for laterally electrically insulating semiconductor devices, 3 is a gate insulating film, and 4 is a gate using a semiconductor. The electrode 4b is a gate electrode using an alloy thin film of semiconductor and titanium, and 13 is a titanium thin film.

従来の方法では、同図(−)に示しているように半導体
基板1上に半導体装置を横方向に分離する絶縁膜2とゲ
ート絶縁膜3を形成し、更にゲート絶縁膜3上にゲート
電極用半導体薄膜4を形成する。
In the conventional method, as shown in FIG. A semiconductor thin film 4 is formed.

次に同図(b)に示すようにゲート電極用半導体薄膜4
を所定の寸法に加工してゲート電極4#を形成した後、
このゲート電極4′を第一の絶縁膜12で覆う。引続き
半導体基板1の主面側に第二の絶縁膜7を堆積し次後、
反応性イオンエツチング法などの手法でこの絶Marの
形成されている半導体基板1の主面側をエツチングして
ゲート電極の側面のみに第二の絶縁膜Tを残す。その後
、ソースとなるべき領域とドレインとなるべき領域とゲ
ート電極となる領域とに例えばイオン注入法によりそれ
らの領域を第二導電形とすべくそれぞれ所望の量の不純
物を導入し、それらの不純物を例えば900℃で15分
程度熱処理することにより活性化した後、それらの領域
の表面を露出させ、半導体基板1の主面側に合金化する
チタン薄膜を堆積する。次に同図(C)に示すように半
導体基板1を例えばアルゴン・ガス雰囲気中で所定の温
度、例えば550℃〜600℃で約30分間熱処理して
チタンと半導体との合金膜からなるゲート電極4b、ソ
ース領域5b、  ドレイン領域6bを形成した後に未
反応チタンを除去する。その後、窒素ガス雰囲気中で所
定の温度、例えば850℃〜900℃で約30分間熱処
理してゲート電極4b、ソース領域5b 。
Next, as shown in the same figure (b), the semiconductor thin film 4 for gate electrode is
After processing into predetermined dimensions to form gate electrode 4#,
This gate electrode 4' is covered with a first insulating film 12. Subsequently, a second insulating film 7 is deposited on the main surface side of the semiconductor substrate 1, and then,
The main surface side of the semiconductor substrate 1 on which the amorphous mark is formed is etched using a method such as reactive ion etching to leave the second insulating film T only on the side surfaces of the gate electrode. After that, desired amounts of impurities are introduced into the region to become the source, the region to become the drain, and the region to become the gate electrode, for example, by ion implantation to make these regions of the second conductivity type. After activation by heat treatment at, for example, 900° C. for about 15 minutes, the surfaces of these regions are exposed and a titanium thin film to be alloyed is deposited on the main surface side of the semiconductor substrate 1. Next, as shown in FIG. 1C, the semiconductor substrate 1 is heat-treated in an argon gas atmosphere at a predetermined temperature, for example, 550°C to 600°C, for about 30 minutes to form a gate electrode made of an alloy film of titanium and a semiconductor. 4b, source region 5b, and drain region 6b, unreacted titanium is removed. Thereafter, the gate electrode 4b and the source region 5b are heat-treated at a predetermined temperature, for example, 850° C. to 900° C. for about 30 minutes in a nitrogen gas atmosphere.

ドレイン領域6b上に窒化チタン膜口a、11b 。Titanium nitride film openings a and 11b are formed on the drain region 6b.

11oを形成する。次に同図(d)に示すように電極間
を電気的に絶縁する絶縁膜8を形成した後にコンタクト
eホールを開け、窒化チタン膜11a、llbの一部を
露出させた後にノース1!極9とドレイン電極10とを
形成する。
11o is formed. Next, as shown in FIG. 4(d), after forming an insulating film 8 for electrically insulating between the electrodes, a contact e hole is opened to expose a part of the titanium nitride films 11a and llb, and then the north 1! A pole 9 and a drain electrode 10 are formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の製造方法では、三つの大きな問題が発生する。こ
れを第6図を用いて説明する。同図において、14は窒
化チタン膜110中に含有されている金属不純物である
。問題点の第1は次に述べる通υである。即ち第5図(
b)でチタン薄膜を半導体膜上に堆積する方法として通
常スパッタ法が採用されているが、この方法の場合、堆
積される薄膜の純度はターゲットの純度以上にはならな
い。ターゲット純度の最高値は現在のところ99.99
99係である。そのため、第5図(b)から第5図(c
)に至る過程でチタンと半導体膜とを反応させるために
試料を熱処理するとき、或はシリサイド表面を窒化する
とき、ターゲットからチタン薄膜に混入した鉄(Fe)
等の遷移金属元素或はナトリウム(N&)。
Three major problems occur in the above manufacturing method. This will be explained using FIG. In the figure, 14 is a metal impurity contained in the titanium nitride film 110. The first problem is the following general rule. That is, Fig. 5 (
In b), a sputtering method is usually adopted as a method for depositing a titanium thin film on a semiconductor film, but in the case of this method, the purity of the deposited thin film does not exceed the purity of the target. The highest target purity is currently 99.99.
I am in charge of 99. Therefore, from Fig. 5(b) to Fig. 5(c)
) When a sample is heat-treated to cause a reaction between titanium and a semiconductor film, or when the silicide surface is nitrided, iron (Fe) mixed into the titanium thin film from the target
Transition metal elements such as sodium (N&).

カリウム(6)等のアルカリ金属不純物14が同時にゲ
ート絶縁膜の方向に向かって拡散する。これらの金属不
純物14のため、半導体装置の動作特性が熱的不安定性
とゲート絶縁膜3の耐圧低下を弓き起こす。゛また、前
述した不純物金属の拡散係数は合金化反応するチタン原
子の拡散係数よシも大きく、ソース領域5m、ドレイン
領域6aの底面近傍或はより深い位置まで金属が拡散す
る。これにより、半導体装置のドレイン・基板間やソー
ス・ドレイン間の漏れ電流が著しく増加するという点で
ある。第2にこれまでチタン膜を半導体膜の表面に堆積
するとき、この半導体膜を露出させてからチタン膜の堆
積装置に装着するため、その過程で半導体膜表面に空気
中の酸素が吸着するのを避けられなかった。これにより
、チタン膜を堆積した際にチタン膜と半導体膜との界面
Vζ酸素を多量に含む層が残留する。この状態で熱処理
すると、チタン膜と半導体膜との界面の酸素を多tK含
む層が反応を抑制し、実質的に反応温度が高くなるだけ
でなく、均一な反応の障害となり、ゲート電極4aと4
b との界面、ソース領域5&と5bとの界面及びドレ
イン領域6aと6bとの界面が平坦ではなくなる。その
ため、半導体装置の動作特性のバラツキの原因となるだ
けでなく、合金膜がゲート絶縁膜3に到達すると、多く
の場合、合金がゲート絶縁膜3を侵食して半導体基板1
に混入するとい、う問題が有った。第3に堆積し九チタ
ン膜中の放射性元素がソフト・エラーを誘発するという
問題があった。
At the same time, an alkali metal impurity 14 such as potassium (6) is diffused toward the gate insulating film. These metal impurities 14 cause thermal instability in the operating characteristics of the semiconductor device and a decrease in the withstand voltage of the gate insulating film 3. Furthermore, the diffusion coefficient of the impurity metal mentioned above is larger than that of titanium atoms undergoing an alloying reaction, and the metal diffuses to a deeper position or near the bottom of the source region 5m and drain region 6a. This significantly increases leakage current between the drain and the substrate and between the source and drain of the semiconductor device. Second, until now, when a titanium film was deposited on the surface of a semiconductor film, the semiconductor film was exposed and then attached to the titanium film deposition equipment, so oxygen in the air was adsorbed onto the semiconductor film surface during the process. I couldn't avoid it. As a result, when the titanium film is deposited, a layer containing a large amount of oxygen remains at the interface Vζ between the titanium film and the semiconductor film. If heat treatment is performed in this state, the layer containing oxygen at the interface between the titanium film and the semiconductor film will suppress the reaction, and not only will the reaction temperature substantially increase, but it will also become an obstacle to a uniform reaction, and the gate electrode 4a and 4
b, the interface between source regions 5& and 5b, and the interface between drain regions 6a and 6b are no longer flat. Therefore, not only does this cause variations in the operating characteristics of semiconductor devices, but when the alloy film reaches the gate insulating film 3, the alloy often corrodes the gate insulating film 3 and causes damage to the semiconductor substrate 1.
There was a problem that it could get mixed in. Third, there is a problem in that radioactive elements in the deposited titanium film induce soft errors.

このような問題点のため、これまでこの種の半導体装置
とその製造方法は、その利点にも拘らず殆ど完成されて
いない。
Due to these problems, this type of semiconductor device and its manufacturing method have not been completed to date, despite their advantages.

したがって本発明は、前述した従来の問題に鑑みてなさ
れたものであり、その目的とするところは、チタンと半
導体膜との合金膜と半導体膜を併用したゲート電極或は
同合金膜と半導体膜を併用したソース・ドレイン領域の
低抵抗化を図る上で上記膜構成を有する半導体装置の動
作特性全体の向上、その安定性及び歩留まりを向上する
ことができる半導体装置の製造方法を提供することにあ
る。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a gate electrode that uses both an alloy film of titanium and a semiconductor film and a semiconductor film, or a gate electrode that uses the same alloy film and a semiconductor film. An object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the overall operating characteristics, stability, and yield of a semiconductor device having the above-mentioned film structure while lowering the resistance of the source/drain region by using be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、第1にゲート電極母
材料として半導体膜を使用し、かつこの半導体膜上に半
導体窒化膜を堆積すると共に半導体ソース領域と半導体
ドレイン領域上に半導体窒化膜を堆積した後、前記半導
体領域中及び前記半導体窒化膜中にイオン注入法により
チタン(Tl)を導入し、その後、熱処理により半導体
・チタン合金層と窒化チタン層とを同時に形成すること
、第2にゲート電極側壁に遮蔽物を設けることにより、
ソース領域とドレイン領域及びゲート電極領域にTiを
イオン注入することによυ形成したチタン化合物層間を
それぞれ電気的に絶縁分離する。
The method for manufacturing a semiconductor device of the present invention first uses a semiconductor film as a gate electrode base material, deposits a semiconductor nitride film on the semiconductor film, and deposits a semiconductor nitride film on a semiconductor source region and a semiconductor drain region. After the deposition, titanium (Tl) is introduced into the semiconductor region and the semiconductor nitride film by an ion implantation method, and then a semiconductor/titanium alloy layer and a titanium nitride layer are simultaneously formed by heat treatment. By providing a shield on the side wall of the gate electrode,
Ti ions are implanted into the source region, the drain region, and the gate electrode region to electrically insulate and isolate the titanium compound layers formed.

〔作用〕[Effect]

本発明においては、製造した合金膜と下部半導体層或は
下部半導体領域の界面が滑らかであり、また不要な不純
物が混入しないので、半導体装置の動作特性の安定化と
歩留まりの向上が図れる。
In the present invention, the interface between the manufactured alloy film and the lower semiconductor layer or lower semiconductor region is smooth, and unnecessary impurities are not mixed in, so that the operating characteristics of the semiconductor device can be stabilized and the yield can be improved.

〔実施例〕〔Example〕

以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(−)〜(f)は本発明による半導体装置の製造
方法の一実施例を説明する工程の断面図でsb、前述の
図と同一部分には同一符号を付しである。
FIGS. 1(-) to 1(f) are cross-sectional views of steps sb for explaining an embodiment of the method for manufacturing a semiconductor device according to the present invention, and the same parts as in the previous figures are given the same reference numerals.

同図において、まず、同図(−)に示すように第一導電
形の半導体例えばシリコン基板1′上に半導体装置を横
方向に分離する絶縁膜、例えばシリコン酸化膜2′とゲ
ート絶縁膜、例えばシリコン酸化膜3′とを形成し、更
にこのシリコン酸化膜3′上にゲート電極用薄膜、例え
ば多結晶シリコン膜4′を形成する。次に同図(b)に
示すように多結晶シリコン膜4′を所定の寸法に加工し
てゲート電極4#となしたる後、このゲート電極4′と
ソース領域5とドレイン領域6となる領域を露出させ死
後、このゲート電極4″とソース領域5とドレイン領域
6との全表面を絶縁物層例えばシリコン酸化膜15で覆
い、さらにシリコン基板1′の主面側を例えばシリコン
酸化膜15とは異なる絶縁膜、例えばシリコン窒化膜1
6で覆う。次に同1m(C)に示すようにゲート電極4
″側壁部のみに絶縁膜16′を残すべくシリコン基板1
′の主面側を反応性イオンエツチング法などによりシリ
コン窒化膜16をレジスト等のマスクを用いずにエツチ
ングする。その後、シリコン基板1′の主面側のうちゲ
ート電極4′、ソース領域5となる半導体領域、ドレイ
ン領域6となる半導体領域を露出させた後、再びこれら
の領域上に絶縁膜、例えばシリコン酸化膜17f、形成
する。しかる後、ソースあるいはドレイン領域を形成す
るべくこれら領域に第二導電影領域を形成できる不純物
を導入し、かつそれらを活性化させる。
In the figure, first, as shown in the figure (-), on a semiconductor of a first conductivity type, for example, a silicon substrate 1', an insulating film, for example, a silicon oxide film 2' and a gate insulating film, for laterally separating the semiconductor device, are formed. For example, a silicon oxide film 3' is formed, and a thin film for a gate electrode, for example a polycrystalline silicon film 4', is further formed on this silicon oxide film 3'. Next, as shown in FIG. 4B, the polycrystalline silicon film 4' is processed to a predetermined size to form a gate electrode 4#, and then this gate electrode 4', a source region 5, and a drain region 6 are formed. After exposing the region and postmortem, the entire surface of the gate electrode 4'', source region 5, and drain region 6 is covered with an insulating layer, for example, a silicon oxide film 15, and the main surface side of the silicon substrate 1' is further covered with, for example, a silicon oxide film 15. An insulating film different from that, for example, silicon nitride film 1
Cover with 6. Next, as shown in 1m (C), the gate electrode 4
``In order to leave the insulating film 16' only on the side wall portion, the silicon substrate 1
The silicon nitride film 16 is etched on the main surface side by reactive ion etching or the like without using a mask such as a resist. Thereafter, after exposing the gate electrode 4', the semiconductor region that will become the source region 5, and the semiconductor region that will become the drain region 6 on the main surface side of the silicon substrate 1', an insulating film, such as silicon oxide, is again deposited on these regions. A film 17f is formed. Thereafter, impurities capable of forming second conductive shadow regions are introduced into these regions to form source or drain regions and are activated.

次に同図(d)に示すように絶縁膜16′のみを選択的
に除去し、引続きシリコン基板1′の主面側のうちゲー
ト電極4′、ソース領域5となる半導体領域。
Next, as shown in FIG. 2D, only the insulating film 16' is selectively removed, and the semiconductor region that will become the gate electrode 4' and source region 5 on the main surface side of the silicon substrate 1' is then removed.

ドレイン領域6となる半導体領域を露出させた後、再び
これらの領域上に絶縁膜、例えばシリコン窒化膜18を
形成する。その後、シリコン基板1′の主面側を半導体
、例えばシリコン膜19で覆う。
After exposing the semiconductor region that will become the drain region 6, an insulating film, for example a silicon nitride film 18, is again formed on these regions. Thereafter, the main surface side of the silicon substrate 1' is covered with a semiconductor, for example, a silicon film 19.

その後、レジスト等を用いてシリコン基板1′の主面側
に配置されている個々の半導体装置の領域のみ前記シリ
コン膜19が露出するようにマスクを形成する。その後
、前記シリコン基板1の主面を例えば反心性イオンエツ
チング法等によりエツチングして半導体装置のゲート電
極4″側面と半導体装置を形成しない領域とにシリコン
膜191〜19dを残す。この後、シリコン基板1′の
主面側にチタン(T1)を所定のエネルギー、例えば3
0に@vで所定の量、例えばtxio17crR−”だ
けイオン注入する。次に同図(・)に示すようにシリコ
ン基板1′を所定の温度、例えば700℃で熱処理する
ことKよj7、Tiと半導体シリコン及びTlとシリコ
ン窒化膜18を反応させる。その結果、ソース領域5及
びドレイン領域6にチタン書シリサイド膜4b。
Thereafter, a mask is formed using a resist or the like so that the silicon film 19 is exposed only in the region of each semiconductor device arranged on the main surface side of the silicon substrate 1'. Thereafter, the main surface of the silicon substrate 1 is etched by, for example, an anticentric ion etching method to leave silicon films 191 to 19d on the side surfaces of the gate electrode 4'' of the semiconductor device and in areas where the semiconductor device is not formed. Titanium (T1) is applied to the main surface side of the substrate 1' with a predetermined energy, for example, 3
A predetermined amount, e.g. The semiconductor silicon and Tl are reacted with the silicon nitride film 18. As a result, a titanium-written silicide film 4b is formed in the source region 5 and drain region 6.

5b、6b及び窒化チタン膜22jL〜22e  が形
成される。またこのとき、シリコン膜19m〜19dの
上表面にもチタン・シリサイド膜21&〜21dが形成
される。この物質は弗化水素酸に侵され易い性質がある
ので、シリコン基板1′を弗化水素酸に浸漬してチタン
拳シリサイド膜22&〜228のみを除去する。さらに
残っていると予想されるシリコン膜19a′〜19d′
をプラズマ・エツチング法等で除去する。最後に同図(
f)に示すように絶縁膜、例えばシリコン酸化膜8をシ
リコン基板1′の主面側に堆積し、所定の場所にコンタ
クト・ホールを形成し、その後、ソース電極9及びドレ
イン電極10を形成する。
5b, 6b and titanium nitride films 22jL to 22e are formed. At this time, titanium silicide films 21&-21d are also formed on the upper surfaces of silicon films 19m-19d. Since this material is easily attacked by hydrofluoric acid, the silicon substrate 1' is immersed in hydrofluoric acid to remove only the titanium silicide films 22&-228. Silicon films 19a' to 19d' that are expected to remain
is removed by plasma etching, etc. Finally, the same figure (
As shown in f), an insulating film, for example, a silicon oxide film 8, is deposited on the main surface side of the silicon substrate 1', contact holes are formed at predetermined locations, and then a source electrode 9 and a drain electrode 10 are formed. .

なお、同図(b)〜同図(d)で説明した工程について
は、前述した実施例の工程の順序に限定されをものでは
なく、以下に示すような方法でも良い。すなわち、 前記の工程において、ソース領域5.ドレイン領域5.
ドレイン領域6.ゲート電極4Nの低抵抗化を図るため
の不純物イオン注入はチタンのイオン注入後に実施して
もよい。
It should be noted that the steps explained in FIGS. 3(b) to 4(d) are not limited to the order of the steps in the embodiment described above, and may be performed in the following manner. That is, in the above step, the source region 5. Drain region5.
Drain region6. Impurity ion implantation for reducing the resistance of the gate electrode 4N may be performed after titanium ion implantation.

前記の工程において、同図(C)の絶縁膜16′を除去
した後、シリコン酸化膜17を残したままシリコンM1
9を堆積し、シリコン膜19を同図(d)に示している
様に加工した後に露出したシリコン酸化膜17を除去し
、シリコン半導体が露出したソ−ス領域5.ドレイン領
域6.ゲート電極4′上のみにシリコン窒化膜18を形
成し、その後、チタンをイオン注入するという工程を実
施してもよい。
In the above step, after removing the insulating film 16' shown in FIG.
9 is deposited, and after processing the silicon film 19 as shown in FIG. 5(d), the exposed silicon oxide film 17 is removed to form a source region 5.9 in which the silicon semiconductor is exposed. Drain region6. A step of forming the silicon nitride film 18 only on the gate electrode 4' and then implanting titanium ions may be performed.

また、前述の同図(d)に示した工程において、シリコ
ン窒化膜18を堆積した後にその上に引続きシリコン酸
化膜1Tを形成し、更にその上にシリコン膜19を形成
し、同図(d)の様にシリコン膜19を加工し、露出し
たシリコン酸化膜ITを除去し、その後、チタンをイオ
ン注入するという工程を実施してもよい。
In addition, in the step shown in FIG. 5(d) described above, after depositing the silicon nitride film 18, a silicon oxide film 1T is successively formed thereon, and a silicon film 19 is further formed on it. ), the silicon film 19 may be processed, the exposed silicon oxide film IT may be removed, and then titanium ions may be implanted.

第2図は、実際にシリコン半導体表面にp  −n接合
を形成し、その後、本発明の方法に基づいて窒化シリコ
ン膜とシリコン半導体領域中にイオン注入法によりチタ
ンを導入し、熱処理を行なったp+−n接合の逆方向電
流対逆方向電圧特性の測定例である。p  −n接合の
主な製作条件を下記袋1に示す。p  −n接合の逆方
向f!流を印加電圧−5Vで比較すると、従来の方法で
チタンシリサイドを形成すると逆方向電流値が約1桁増
加するのに対し、本発明の方法で製作すると、電流の増
加、即ち特性の劣化が少ないことが分かる。
Figure 2 shows that a p-n junction was actually formed on the surface of a silicon semiconductor, and then titanium was introduced into the silicon nitride film and silicon semiconductor region by ion implantation based on the method of the present invention, and heat treatment was performed. This is an example of measurement of reverse current versus reverse voltage characteristics of a p+-n junction. The main manufacturing conditions for the p-n junction are shown in Bag 1 below. Reverse direction f of p-n junction! Comparing the current at an applied voltage of -5 V, when titanium silicide is formed using the conventional method, the reverse current value increases by about one order of magnitude, whereas when fabricated using the method of the present invention, the current increases, that is, the characteristics deteriorate. It turns out that there are few.

表 第3図は、実際にシリコン半導体表面にn  −p接合
を形成し、その後、本発明の方法に基づいて窒化シリコ
ン膜とシリコン半導体領域中にイオン注入法によυチタ
ンを導入し、熱処理を行なったn+−p接合の逆方向電
流対逆方向電圧特性の測定例である。n  −p接合の
主な製作条件を表2に示す。n  −p接合の逆方向電
流を印加電圧5vで比較すると、従来の方法でチタンシ
リサイドを形成すると逆方向電流値が約6桁増加するだ
けでなく、降伏電圧が劣化するのく対し、本発明の方法
で製作すると、電流の増加を約2桁に抑えることができ
、また降伏電圧の劣化もないことが分かる。
Table 3 shows that an n-p junction is actually formed on the surface of a silicon semiconductor, and then υ titanium is introduced into the silicon nitride film and silicon semiconductor region by ion implantation based on the method of the present invention, and heat treatment is performed. This is an example of measurement of reverse current versus reverse voltage characteristics of an n+-p junction. Table 2 shows the main manufacturing conditions for the n-p junction. Comparing the reverse current of the n-p junction at an applied voltage of 5V, it is found that when titanium silicide is formed using the conventional method, the reverse current value not only increases by about 6 orders of magnitude, but also the breakdown voltage deteriorates. It can be seen that when manufactured using the method described above, the increase in current can be suppressed to about two digits, and there is no deterioration in breakdown voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、以下に示すような
効果が得られる。
As explained above, according to the present invention, the following effects can be obtained.

(1)半導体膜へのチタンの導入をイオン注入法により
行うので、半導体装置内に不要な不純物の混入をもたら
さない。このため、チタンを導入した層の低抵抗化を図
れると同時に半導体装置の動作特性の劣化を防止でき、
歩留まりが向上する。
(1) Since titanium is introduced into the semiconductor film by ion implantation, unnecessary impurities are not mixed into the semiconductor device. Therefore, it is possible to lower the resistance of the layer containing titanium, and at the same time prevent deterioration of the operating characteristics of the semiconductor device.
Yield is improved.

(11)またイオン注入法を用いてチタンを直接半導体
に導入するので、従来の方法の様にチタン膜と半導体膜
との界面に存在する多量の酸素により反応が阻害される
問題が生じない。このため、例えばチタンとシリコンと
の合金膜を形成する場合、従来より100〜150度低
い700℃程度で合金化できる。
(11) Furthermore, since titanium is directly introduced into the semiconductor using the ion implantation method, there is no problem that the reaction is inhibited by a large amount of oxygen present at the interface between the titanium film and the semiconductor film, which is the case with conventional methods. Therefore, for example, when forming an alloy film of titanium and silicon, the alloy can be formed at a temperature of about 700° C., which is 100 to 150° C. lower than the conventional temperature.

(Ill ’)  従来より低温で合金化できるため、
合金過程で半導体装置のソース・ドレイン領域等の不純
物濃度分布に殆ど影響を与えることがない。これは例え
ば半導体装置を小型化するにあたって必要な浅いソース
・ドレイン接合を形成する上で極めて有利である。
(Ill') Because alloying can be done at lower temperatures than before,
The alloying process hardly affects the impurity concentration distribution in the source/drain regions of the semiconductor device. This is extremely advantageous, for example, in forming shallow source/drain junctions necessary for downsizing semiconductor devices.

(1v)イオン注入によりチタンを半導体膜に直接導入
するので、本来反応の進み方は均一であり、両者の界面
は滑らかになる。これにより、半導体装置の歩留まりを
改善できる。
(1v) Since titanium is directly introduced into the semiconductor film by ion implantation, the reaction progresses essentially uniformly, and the interface between the two becomes smooth. Thereby, the yield of semiconductor devices can be improved.

(■)窒化チタン膜をチタンのイオン注入後の熱処理に
より同時に形成できるので、工程の簡素化を図れる。
(■) Since the titanium nitride film can be formed simultaneously by heat treatment after titanium ion implantation, the process can be simplified.

(vl)窒化チタン層/半導体合金層の領域を自己整合
的に製造できるので、半導体装置の小型化。
(vl) Since the titanium nitride layer/semiconductor alloy layer region can be manufactured in a self-aligned manner, the semiconductor device can be made smaller.

高性能化を促進できる。It can promote higher performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(f)は本発明による半導体装置の製造
方法の一実施例を説明する工程の断面図、第2図は実際
にシリコン半導体表面にp  −n接合を形成しその後
本発明の方法に基づいて窒化シリコン膜とシリコン半導
体領域中にイオン注入法によりチタンを導入し熱処理を
行なったp  −n接合の逆方向電流対逆方向電圧特性
の測定緒果を示す図、第3図は、実際にシリコン半導体
表面にn+、接合を形成し、その後本発明の方法に基づ
いて窒化シリコン膜とシリコン半導体領域中にイオン注
入法によシテタンを導入し熱処理を行なったn  −p
接合の逆方向電流対逆方向電圧特性の測定結果を示す図
、第4図は従来の半導体装置の断面図、第5図(、)〜
(d)は従来の半導体装置の製造方法を説明する工程の
断面図、第6図は従来の半導体装置の製造方法の問題点
を説明する半導体装置の要部断面図である。 1′・φ・争第−導電形のシリコン基板(半導体基板)
、2′・・・・シリコン酸化膜(絶縁膜)、3′・・・
・シリコン酸化膜(ゲート絶縁膜)、4′・−・・多結
晶シリコン膜、4′−・・・ゲート電極、4b・・拳・
チタン・シリサイド膜、5−拳・・ソース領域(第二導
電形の半導体領域)、5&・・・・第二導電形のソース
領域、5b −・・・チタンeシリサイド膜、60・−
・ドレイン領域、6&・・・・第二導電形のドレイン領
域、6b・自−チタン会7リサイド膜、8会・・・シリ
コン酸化膜、9・・・・ソース電極、10・・・・ドレ
イン電極、11a〜11c  ・−・・窒化チタン膜、
12・・・・絶縁膜、15−・・・シリコン酸化膜、1
6・−・・シリコン窒化膜、16′・・・・絶縁膜、1
T・・拳・シリコン酸化膜、18・・・・シリコン窒化
膜、19.19a〜19d。 19&’P+−19d’ 111111 番7リコン膜
、20 @ e * aT1イオン、21a〜21d 
e a * a Tiをイオン注入したシリコン膜、2
21〜22C−−・会窒化チタン膜。 特許出願人 日本電信電話株式会社 第1図 代 理 人 山 川 政 樹(ほか1名)第 図 第 図 ←Pτ口11F巳 (V)
FIGS. 1(a) to (f) are cross-sectional views of steps for explaining an embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIG. Figure 3 shows the measurement results of reverse current versus reverse voltage characteristics of a p-n junction in which titanium is introduced by ion implantation into a silicon nitride film and a silicon semiconductor region and heat treated based on the method of the invention. The figure shows an n-p structure in which an n+ junction was actually formed on the surface of a silicon semiconductor, and then, based on the method of the present invention, nitride was introduced into the silicon nitride film and silicon semiconductor region by ion implantation, and heat treatment was performed.
A diagram showing the measurement results of the reverse current vs. reverse voltage characteristics of a junction, Figure 4 is a cross-sectional view of a conventional semiconductor device, and Figure 5 (,)~
(d) is a cross-sectional view of a process for explaining a conventional method for manufacturing a semiconductor device, and FIG. 6 is a cross-sectional view of a main part of a semiconductor device for explaining problems in the conventional method for manufacturing a semiconductor device. 1'・φ・Conductivity type silicon substrate (semiconductor substrate)
, 2'... Silicon oxide film (insulating film), 3'...
・Silicon oxide film (gate insulating film), 4'--Polycrystalline silicon film, 4'--Gate electrode, 4b...Fist-
Titanium silicide film, 5 - source region (semiconductor region of second conductivity type), 5 &... source region of second conductivity type, 5b - - titanium e-silicide film, 60 -
・Drain region, 6 & . . . Drain region of second conductivity type, 6 b ・ Self-titanium layer 7 Reside film, 8 ・ Silicon oxide film, 9 ・ Source electrode, 10 ・ Drain Electrodes, 11a to 11c --- Titanium nitride film,
12...Insulating film, 15-...Silicon oxide film, 1
6...Silicon nitride film, 16'...Insulating film, 1
T...Fist/Silicon oxide film, 18...Silicon nitride film, 19.19a to 19d. 19&'P+-19d' 111111 No. 7 recon membrane, 20 @ e * aT1 ion, 21a to 21d
e a * a Silicon film implanted with Ti ions, 2
21-22C--titanium nitride film. Patent Applicant Nippon Telegraph and Telephone Corporation Figure 1 Representative Masaki Yamakawa (and 1 other person) Figure ← Pτ Exit 11F Snake (V)

Claims (1)

【特許請求の範囲】[Claims] 電界効果型半導体装置の製造方法において、半導体基板
上の第一の絶縁膜上に形成されたゲート電極の側面のう
ち直下の第一の絶縁膜の上表面に対して法線方向の二側
面の少なくとも一部に少なくとも一種類の膜種からなる
第二の絶縁膜群を形成する工程と、前記ゲート電極上の
少なくとも一部、ソース領域となる半導体領域、ドレイ
ン領域となる半導体領域もしくはこれらの半導体領域上
の少なくとも一部に半導体窒化膜を形成する工程と、前
記第二の絶縁膜群に隣接して半導体膜を形成する工程と
、前記ゲート電極、ソース領域となる半導体領域、ドレ
イン領域となる半導体領域及び半導体窒化膜中にチタン
をイオン注入する工程とを含むことを特徴とした半導体
装置の製造方法。
In a method for manufacturing a field effect semiconductor device, two side surfaces of a gate electrode formed on a first insulating film on a semiconductor substrate in a direction normal to the upper surface of the first insulating film immediately below the side surfaces of the gate electrode are formed on a first insulating film on a semiconductor substrate. a step of forming a second insulating film group made of at least one type of film on at least a portion thereof; and at least a portion of the gate electrode, a semiconductor region serving as a source region, a semiconductor region serving as a drain region, or these semiconductors. a step of forming a semiconductor nitride film on at least a portion of the region; a step of forming a semiconductor film adjacent to the second insulating film group; a semiconductor region that will become the gate electrode, the source region, and the drain region; A method of manufacturing a semiconductor device, comprising the step of ion-implanting titanium into a semiconductor region and a semiconductor nitride film.
JP18293288A 1988-07-22 1988-07-22 Method for manufacturing semiconductor device Expired - Fee Related JP2575314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18293288A JP2575314B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18293288A JP2575314B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0232545A true JPH0232545A (en) 1990-02-02
JP2575314B2 JP2575314B2 (en) 1997-01-22

Family

ID=16126895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18293288A Expired - Fee Related JP2575314B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2575314B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215072A (en) * 2008-05-02 2008-09-18 Osamu Ito Corner awning device
KR100913054B1 (en) * 2002-10-29 2009-08-20 매그나칩 반도체 유한회사 Method for manufacturing a semiconductor device
JP4769954B2 (en) * 2005-10-03 2011-09-07 収 伊藤 Movable awning device
JP4769957B2 (en) * 2006-01-06 2011-09-07 収 伊藤 Movable awning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913054B1 (en) * 2002-10-29 2009-08-20 매그나칩 반도체 유한회사 Method for manufacturing a semiconductor device
JP4769954B2 (en) * 2005-10-03 2011-09-07 収 伊藤 Movable awning device
JP4769957B2 (en) * 2006-01-06 2011-09-07 収 伊藤 Movable awning device
JP2008215072A (en) * 2008-05-02 2008-09-18 Osamu Ito Corner awning device

Also Published As

Publication number Publication date
JP2575314B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
KR100530401B1 (en) Semiconductor device having a low-resistance gate electrode
US5326722A (en) Polysilicon contact
US20050130380A1 (en) Semiconductor device structures including metal silicide interconnects and dielectric layers at substantially the same fabrication level
JPH0750276A (en) Method for manufacture of low-resistance contact in junction between regions of different conductivity types
US6441444B1 (en) Semiconductor device having a nitride barrier for preventing formation of structural defects
KR960000177B1 (en) Semiconductor apparatus and manufacturing method thereof
JPS5826184B2 (en) Zetsuen Gate Denkai Kouka Transistor No.
GB1566072A (en) Semiconductor device
US6291890B1 (en) Semiconductor device having a silicide structure
JP3486118B2 (en) Method for manufacturing semiconductor device
US20020009871A1 (en) Method for fabricating local interconnect structure for integrated circuit devices, source structures
JPH0232545A (en) Manufacture of semiconductor device
JP4730993B2 (en) Method for forming conductive line of semiconductor element
JP3889816B2 (en) Thin film transistor and manufacturing method thereof
JPH05243575A (en) Thin film transistor and manufacture thereof
KR100223736B1 (en) Method of manufacturing semiconductor device
JP3067433B2 (en) Method for manufacturing semiconductor device
KR100439770B1 (en) Method for fabricating semiconductor device to prevent channeling phenomenon caused by ldd ion implantation and reduce resistance of silicide
JPH0756866B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH05291567A (en) Semiconductor device and its manufacture
US20010019159A1 (en) Local interconnect structure for integrated circuit devices, source structure for the same, and method for fabricating the same
JPH0671010B2 (en) Method for manufacturing semiconductor device
JPH0878358A (en) Manufacture of semiconductor device
JPH11186548A (en) Semiconductor device and manufacture thereof
JPH05226647A (en) Manufacture of semiconductor integrated circuit device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees