JPH0232486Y2 - - Google Patents

Info

Publication number
JPH0232486Y2
JPH0232486Y2 JP1985043991U JP4399185U JPH0232486Y2 JP H0232486 Y2 JPH0232486 Y2 JP H0232486Y2 JP 1985043991 U JP1985043991 U JP 1985043991U JP 4399185 U JP4399185 U JP 4399185U JP H0232486 Y2 JPH0232486 Y2 JP H0232486Y2
Authority
JP
Japan
Prior art keywords
switching valve
compressor
condenser
evaporator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985043991U
Other languages
Japanese (ja)
Other versions
JPS61161011U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985043991U priority Critical patent/JPH0232486Y2/ja
Publication of JPS61161011U publication Critical patent/JPS61161011U/ja
Application granted granted Critical
Publication of JPH0232486Y2 publication Critical patent/JPH0232486Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、室内冷房用の冷房用冷凍装置と、エ
ンジン水温を利用して室内の暖房を行なう温水式
暖房装置とを有する車両用空気調和装置に関する
ものである。
[Detailed description of the invention] (Field of industrial application) The present invention is an air conditioner for a vehicle that has a refrigeration system for cooling the room and a hot water heating system that heats the room using engine water temperature. It is related to the device.

(従来技術) 従来から、室内冷房用の冷房用冷凍装置と、エ
ンジン水温を利用して室内の暖房を行なう温水式
暖房装置とを有する車両用空気調和装置が知られ
ている。
(Prior Art) Vehicle air conditioners have been known that include a cooling refrigeration system for cooling the room and a hot water heating system that heats the room using engine water temperature.

この冷房用冷凍装置は、冷房用冷媒管路で順に
接続されたコンプレツサとコンデンサとリキツド
タンクと膨脹弁とエバポレータとから構成されて
いる。この冷房用冷凍装置は、コンデンサとエバ
ポレータの間で冷媒を循環させると共に、室内空
気をエバポレータを通して循環させて、室内空気
が有する熱をそのエバポレータを介して冷媒に奪
わせ、コンデンサにおいてその冷媒を凝縮してそ
の冷媒が奪つた熱を室外に放出して室内の冷房を
行なうようにしている。また、その温水式暖房装
置は、エンジン冷却水を車室内の熱交換器に導
き、内気又は外気とエンジン冷却水との間で熱の
交換を行なつて室内空気を昇温させ、室内暖房を
行なうようになつている。尚、リキツドタンク
は、コンデンサで液化された、冷媒の中に含まれ
る冷媒ガスを分離し、気体を含まない完全な液体
冷媒にするために必要なもので一般に冷凍サイク
ルの構成部品として使用されているが必ずしも無
くてはならないものではないので設けられていな
いものもある。
This cooling refrigeration system includes a compressor, a condenser, a liquid tank, an expansion valve, and an evaporator, which are connected in order through a cooling refrigerant pipe. This cooling refrigeration system circulates refrigerant between a condenser and an evaporator, circulates indoor air through the evaporator, causes the refrigerant to absorb heat from the indoor air via the evaporator, and condenses the refrigerant in the condenser. The heat taken by the refrigerant is then released outside to cool the room. In addition, the hot water type heating system guides engine cooling water to a heat exchanger inside the vehicle interior, and exchanges heat between the inside air or outside air and the engine cooling water to raise the temperature of the indoor air, thereby heating the room. I'm starting to do it. The liquid tank is necessary to separate the refrigerant gas contained in the refrigerant that has been liquefied in the condenser to make it a complete liquid refrigerant that does not contain gas, and is generally used as a component of the refrigeration cycle. There are some items that are not provided because they are not necessarily indispensable.

(考案が解決しようとする問題点) ところで、外気温度が0℃から15℃までの所定
範囲の中間期において、エンジン始動直後から車
両を走行させると共に室内暖房を行ないたい場合
があるが、従来の温水式暖房装置では、冷却水温
度としてのエンジン水温が温水式暖房装置の暖房
効率を考慮して定められた所定温度である40℃以
上にならないと暖房効果を期待できないため、従
来は、エンジン始動直後から車両を走行させる際
には、外気をシヤツトして、室内暖房については
我漫しつつ車両走行に入るようにしており、従来
のものでは、そのような場合に暖房効果をすぐに
期待できない不具合がある。
(Problem to be solved by the invention) By the way, there are cases where it is desired to run the vehicle immediately after starting the engine and heat the interior of the vehicle in the middle period of a predetermined range of outside air temperature from 0°C to 15°C. With hot water heating systems, heating effects cannot be expected unless the engine water temperature as a cooling water temperature reaches 40°C or higher, which is a predetermined temperature determined in consideration of the heating efficiency of the hot water heating system. Immediately after the vehicle is started, outside air is shut off and the vehicle is started running while being careless about heating the interior.With conventional systems, heating effects cannot be expected immediately in such cases. There is a problem.

また、補助電気ヒータを設けてエンジン冷却水
の水温が上昇するまでの間、その補助電気ヒータ
により暖房するようにした空気調和装置もある
が、このものでは、電気的に負荷が大きく、いわ
ゆるバツテリがあがりやすいという欠点がある。
There is also an air conditioner that is equipped with an auxiliary electric heater and uses the auxiliary electric heater to heat the engine until the temperature of the engine coolant rises. It has the disadvantage of being easily damaged.

さらに、冷房用冷凍装置を切換えて、ヒートポ
ンプとして使用する空気調和装置(特開昭59−
38113号公報)も知られているが、このものでは
熱源として排気ガスを使用するために、その熱交
換器を高温かつ酸化に耐え得るように構成しなけ
ればならず、かつ、排気ガスに対する安全性を考
慮した気密構造としなければならないために、そ
の空気調和装置の構成が一層複雑となる欠点を有
する。
In addition, we have developed an air conditioner that can be used as a heat pump by switching the cooling refrigeration system (Japanese Patent Application Laid-open No.
No. 38113) is also known, but since this uses exhaust gas as a heat source, the heat exchanger must be constructed to withstand high temperatures and oxidation, and it also requires safety against exhaust gas. Since the air conditioner must have an airtight structure that takes into account the nature of the air conditioner, it has the disadvantage that the configuration of the air conditioner becomes more complicated.

(考案の目的) 本考案は、上記の事情に鑑みてなされたもの
で、室内冷房用に冷房用冷凍装置と、エンジン水
温を利用して室内の暖房を行なう温水式暖房装置
とを備えた車両用空気調和装置において、外気温
度としての室外温度が0℃から15℃までの所定範
囲にあるときであつて、エンジン水温が温水式暖
房装置の暖房効率を考慮して定められた所定温度
よりも低いときに、冷房用冷凍装置をヒートポン
プとして作動させてすぐに暖房効果を発揮させる
ことを、構成を大幅に変更することなくしてする
ことができ、かつ、温水式暖房装置による暖房効
率が冷房用冷凍装置をヒートポンプとして作動さ
せての暖房効率よりも高くなつた場合に、温水式
暖房装置による効率のよい暖房を行う一方におい
て、冷房用冷凍装置が依然として暖房効率の低い
ヒートポンプとして作動し続けるのを防止するこ
とのできる車両用空気調和装置を提供することを
目的とする。
(Purpose of the invention) The present invention was made in view of the above circumstances, and is a vehicle equipped with a refrigeration system for cooling the room and a hot water heating system that heats the room using the engine water temperature. In a commercial air conditioner, when the outdoor temperature is within a predetermined range from 0°C to 15°C, and the engine water temperature is lower than the predetermined temperature determined in consideration of the heating efficiency of the hot water heating system. When the temperature is low, the cooling refrigeration system can be operated as a heat pump to immediately produce a heating effect without making any major changes to the configuration, and the heating efficiency of the hot water heating system is comparable to that for cooling. If the heating efficiency is higher than the heating efficiency of operating the refrigeration system as a heat pump, the system will prevent the cooling refrigeration system from continuing to operate as a heat pump with low heating efficiency while the hot water heating system performs efficient heating. An object of the present invention is to provide a vehicle air conditioner that can prevent such problems.

(問題点を解決するための手段) 本考案に係る車両用空気調和装置の特徴は、 室内冷房用の冷房用冷凍装置と、エンジン水温
を利用して室内の暖房を行う温水式暖房装置とを
有し、前記冷房用冷凍装置が冷房用冷媒管路で順
に接続された少なくともコンプレツサとコンデン
サと膨張弁とエバポレータとから構成されている
車両用空気調和装置において、 前記コンプレツサと前記コンデンサとの間に存
在する冷房用冷媒管路に前記コンプレツサの冷媒
圧送方向上流側から順にコンプレツサ吐出方向切
換弁とコンデンサ流入方向切換弁とを設け、前記
コンデンサと前記エバポレータとの間に存在する
冷房用冷媒管路に前記コンプレツサの冷媒圧送方
向上流側から順にコンデンサ流出方向切換弁とエ
バポレータ流入方向切換弁とを設け、前記エバポ
レータと前記コンプレツサとの間に存在する冷房
用冷媒管路に前記コンプレツサの冷媒圧送方向上
流側から順にエバポレータ流出方向切換弁とコン
プレツサ流入方向切換弁とを設け、 前記冷房用冷凍装置によつて冷暖房を行わせる
ため、前記コンプレツサ吐出方向切換弁と前記エ
バポレータ流入方向切換弁との間、前記エバポレ
ータ流出方向切換弁と前記コンデンサ流入方向切
換弁との間、前記コンデンサ流出方向切換弁と前
記コンプレツサ流入方向切換弁との間が、各暖房
用冷媒管路で接続され、 前記各切換弁を前記冷房用冷媒管路と前記暖房
用冷媒管路との間で切換え制御する制御回路を備
え、 該制御回路は、室外温度が0℃から15℃までの
所定範囲内でかつエンジン水温が前記温水式暖房
装置の暖房効率を考慮して定められた所定温度よ
りも低いときに、乗員の手動スイツチ操作によつ
て前記冷房用冷凍装置をヒートポンプとして作動
させるために、前記コンプレツサから流れ出た冷
媒が前記コンデンサと前記コンプレツサとの間の
冷房用冷媒管路を経由して前記コンデンサに流れ
込みかつ該コンデンサから流れ出た冷媒が前記エ
バポレータと前記コンデンサとの間の冷房用冷媒
管路の膨張弁を経由して前記エバポレータに流れ
込みしかも該エバポレータから流れ出た冷媒が前
記コンプレツサと前記エバポレータとの間の冷房
用冷媒管路を通つて前記コンプレツサに循環可能
の状態から、前記コンプレツサから流れ出た冷媒
が前記コンプレツサ吐出方向切換弁とエバポレー
タ流入方向切換弁との間の暖房用冷媒管路を通つ
て前記エバポレータに流れ込みかつ前記エバポレ
ータから流れ出た冷媒が前記エバポレータ流出方
向切換弁と前記コンデンサ流入方向切換弁との間
の暖房用冷媒管路の膨張弁を通つて前記コンデン
サに流れ込みしかも前記コンデンサから流れ出た
冷媒が前記コンデンサ流出方向切換弁と前記コン
プレツサ流入方向切換弁との間の暖房用冷媒管路
を通つて前記コンプレツサへ流れ込む循環可能の
状態に、前記各切換弁を制御する構成であるとこ
ろにある。
(Means for Solving Problems) The characteristics of the vehicle air conditioner according to the present invention include: a cooling refrigeration system for indoor cooling, and a hot water heating system that heats the room using engine water temperature. and wherein the cooling refrigeration device is composed of at least a compressor, a condenser, an expansion valve, and an evaporator, which are connected in order through a cooling refrigerant pipe, wherein between the compressor and the condenser, A compressor discharge direction switching valve and a condenser inflow direction switching valve are provided in order from the upstream side of the refrigerant pumping direction of the compressor in the existing cooling refrigerant pipe, and the cooling refrigerant pipe existing between the condenser and the evaporator is provided with a compressor discharge direction switching valve and a condenser inflow direction switching valve. A condenser outflow direction switching valve and an evaporator inflow direction switching valve are provided in order from the upstream side in the refrigerant pumping direction of the compressor, and a cooling refrigerant pipe existing between the evaporator and the compressor is provided on the upstream side in the refrigerant pumping direction of the compressor. An evaporator outflow direction switching valve and a compressor inflow direction switching valve are provided in this order, and in order to perform heating and cooling by the cooling refrigeration device, between the compressor discharge direction switching valve and the evaporator inflow direction switching valve, the evaporator Each heating refrigerant pipe connects between the outflow direction switching valve and the condenser inflow direction switching valve, and between the condenser outflow direction switching valve and the compressor inflow direction switching valve, and each of the switching valves is connected to the cooling direction switching valve. a control circuit that performs switching control between a refrigerant pipe for heating and a refrigerant pipe for heating; When the temperature is lower than a predetermined temperature determined in consideration of the heating efficiency of the device, the refrigerant flowing out from the compressor is connected to the condenser in order to operate the cooling refrigeration device as a heat pump by a passenger's manual switch operation. The refrigerant that flows into the condenser via the cooling refrigerant pipe between the compressor and the condenser flows into the evaporator via the expansion valve of the cooling refrigerant pipe between the evaporator and the condenser. From a state in which refrigerant flows into the evaporator and can circulate to the compressor through the cooling refrigerant pipe between the compressor and the evaporator, the refrigerant flows out from the compressor into the compressor discharge direction switching valve. The refrigerant flows into the evaporator through the heating refrigerant pipe between the evaporator inflow direction switching valve and the heating refrigerant pipe between the evaporator outflow direction switching valve and the condenser inflow direction switching valve. The refrigerant flowing into the condenser through an expansion valve in the condenser and flowing out of the condenser is circulated through a heating refrigerant line between the condenser outflow direction switching valve and the compressor inflow direction control valve and flowing into the compressor. The configuration is such that each of the switching valves is controlled in the state shown in FIG.

(作用) この車両用空気調和装置によれば、室外温度が
所定範囲にあるときであつてかつエンジン水温が
所定温度以下のときに、切換弁を冷房用冷媒管路
の側から暖房用冷媒管路の側に切換えると冷媒が
暖房用管路を通つて流れ、冷房時のエバポレータ
がコンデンサとして機能すると共に冷房時のコン
デンサがエバポレータとして機能することになつ
て、エンジン水温が所定温度以下で温水式暖房装
置による暖房効果がすぐに期待できない場合で
も、冷房用冷凍装置を使用して室内を暖房するこ
とができる。
(Function) According to this vehicle air conditioner, when the outdoor temperature is within a predetermined range and the engine water temperature is below a predetermined temperature, the switching valve is switched from the cooling refrigerant pipe side to the heating refrigerant pipe side. When switched to the road side, the refrigerant flows through the heating pipe, and the evaporator during cooling functions as a condenser, and the condenser during cooling functions as an evaporator. Even if the heating effect of the heating device cannot be expected immediately, the room can be heated using the cooling refrigeration device.

(実施例) 以下に本考案に係る車両用空気調和装置の実施
例を図面を参照しつつ説明する。
(Example) Examples of the vehicle air conditioner according to the present invention will be described below with reference to the drawings.

第1図において、1は室内冷房用の冷房用冷凍
装置を示しており、2は温水式暖房装置を示して
いる。温水式暖房装置2はエンジン3とエンジン
冷却用のラジエータ47と冷却水管4と温水ヒー
タとしての熱交換器5と送風用のフアン6とから
大略構成されている。エンジン冷却水は、エンジ
ン3を通過する際に、そのエンジン3の有する熱
を受熱して熱交換器5に導かれるものであり、フ
アン6は外気又は内気を取り入れ、熱交換器5を
介して室内に送風する機能を有している。外気又
は内気はその熱交換器5によりエンジン冷却水の
有する熱を受熱して昇温され、温風として室内に
導かれ、これによつて室内暖房が行なわれるもの
である。なお、エンジン冷却水は、熱交換器5を
通過した後、ラジエータ47に導かれ、その有す
る熱を外気に放熱し、冷却されて再びエンジン3
に導かれるものである。
In FIG. 1, numeral 1 indicates a cooling refrigeration device for indoor cooling, and numeral 2 indicates a hot water type heating device. The hot water heating device 2 is roughly composed of an engine 3, a radiator 47 for cooling the engine, a cooling water pipe 4, a heat exchanger 5 as a hot water heater, and a fan 6 for blowing air. When the engine cooling water passes through the engine 3, it receives heat from the engine 3 and is guided to the heat exchanger 5. The fan 6 takes in outside air or inside air and passes it through the heat exchanger 5. It has the function of blowing air into the room. The outside air or inside air is heated by receiving heat from the engine cooling water through the heat exchanger 5, and is led into the room as warm air, thereby heating the room. In addition, after passing through the heat exchanger 5, the engine cooling water is guided to the radiator 47, radiates its heat to the outside air, is cooled, and returns to the engine 3.
It is guided by.

冷房用冷凍装置1は、室内冷房系統7と室内暖
房系統8とを有して室内の冷暖房を行なうヒート
ポンプ式とされている。この冷房用冷凍装置1
は、室内冷房系統7と室内暖房系統8との間で切
換え可能である。すなわち、冷房用冷凍装置1
は、コンプレツサ9と、コンデンサ10とフアン
11とリキツドタンク12とエバポレータ13と
を有しており、室内冷房系統7と室内暖房系統8
とは、このコンプレツサ9、コンデンサ10、エ
バポレータ13、フアン11、リキツドタンク1
2を共用している。コンプレツサ9とコンデンサ
10とリキツドタンク12とエバポレータ13と
は、冷房用冷媒管路14,15,16,17によ
り順に接続されており、冷房用冷媒管路16の途
中には、膨張弁18が設けられており、この膨張
弁18は高圧高温の液体の冷媒を低圧低温の液体
冷媒に変換する機能を有し、コンデンサ10は高
圧高温の冷媒を凝縮点まで冷却し気体から高圧の
液体に環元する機能を有し、エバポレータ13
は、液体の冷媒を蒸発させて内気の有する熱を奪
い気体の冷媒とする機能を有する。
The cooling refrigeration device 1 is of a heat pump type that has an indoor cooling system 7 and an indoor heating system 8 and performs indoor heating and cooling. This cooling refrigeration device 1
can be switched between the indoor cooling system 7 and the indoor heating system 8. That is, the cooling refrigeration device 1
has a compressor 9, a condenser 10, a fan 11, a liquid tank 12, and an evaporator 13, and an indoor cooling system 7 and an indoor heating system 8.
means this compressor 9, capacitor 10, evaporator 13, fan 11, liquid tank 1
2 are shared. The compressor 9, the condenser 10, the liquid tank 12, and the evaporator 13 are connected in order through cooling refrigerant pipes 14, 15, 16, and 17, and an expansion valve 18 is provided in the middle of the cooling refrigerant pipe 16. The expansion valve 18 has the function of converting a high-pressure, high-temperature liquid refrigerant into a low-pressure, low-temperature liquid refrigerant, and the condenser 10 cools the high-pressure, high-temperature refrigerant to a condensation point, converting it from gas to high-pressure liquid. Evaporator 13
has the function of evaporating a liquid refrigerant to remove heat from the internal air and converting it into a gaseous refrigerant.

冷房用冷媒管路14,15,16,17にはそ
れぞれ切換弁が設けられている。この切換弁はコ
ンプレツサ9の冷媒圧送方向上流側から第1切換
弁19、第2切換弁20、第3切換弁21、第4
切換弁22、第5切換弁23、第6切換弁24、
第7切換弁25が順に設けられている。コンプレ
ツサ9とコンデンサ10との間に存在する冷房用
冷媒管路14にはコンプレツサ吐出方向切換弁で
ある第1切換弁19とコンデンサ流入方向切換弁
である第2切換弁20とが設けられ、コンデンサ
10とリキツドタンク12との間に存在する冷房
用冷媒管路15にはコンプレツサ9の冷媒圧送方
向上流側から順にコンデンサ流出方向切換弁であ
る第3切換弁21とリキツドタンク流入方向切換
弁である第4切換弁22とが設けられ、リキツド
タンク12とエバポレータ13との間に存在する
冷房用冷媒管路16にはコンプレツサの冷媒圧送
方向上流側から順にリキツドタンク流出方向切換
弁である第5切換弁23とエバポレータ流入方向
切換弁である第6切換弁24とが設けられ、エバ
ポレータ13とコンプレツサ9との間に存在する
冷房用冷媒管路17にはコンプレツサ9の冷媒圧
送方向上流側から順にエバポレータ流出方向切換
弁である第7切換弁25とコンプレツサ流入方向
切換弁である第8切換弁26とが設けられてい
る。なお、前記第6切換弁24は膨脹弁18とエ
バポレータ13の間に配置されている。そして冷
房用冷凍装置1によつて暖房を行なうことができ
るように、第1切換弁19と第6切換弁24とが
第1暖房用冷媒管路27で接続され、第7切換弁
25と第4切換弁22とが第2暖房用冷媒管路2
8で接続され、第5切換弁23と第2切換弁20
とが第3暖房用冷媒管路29で接続され、第3切
換弁21と第8切換弁換弁26とが第4暖房用冷
媒管路30で接続されている。車両冷房時には、
冷媒は、冷房用冷媒管路14〜17を矢印A〜H
方向に循環されるものであり、車両暖房時には、
冷媒は、暖房用冷媒管路27〜30を矢印I〜T
方向に循環されるものである。コンデンサ10の
上流には、膨張弁31が設けられ、この膨張弁3
1は室内暖房時に高圧常温の冷媒を低圧低温の冷
媒に変換する機能を有し、冷房時のコンデンサ1
0は暖房時に冷媒を蒸発させて外気の有する熱を
奪うエバポレータとして機能し、冷房時のエバポ
レータ13は暖房時に高圧高温の冷媒を凝縮点ま
で冷却しその有する熱を放熱して高圧の液体に環
元するコンデンサとして機能する。
Each of the cooling refrigerant pipes 14, 15, 16, and 17 is provided with a switching valve. These switching valves are, from the upstream side of the compressor 9 in the refrigerant pumping direction, a first switching valve 19, a second switching valve 20, a third switching valve 21, and a fourth switching valve.
switching valve 22, fifth switching valve 23, sixth switching valve 24,
A seventh switching valve 25 is provided in this order. A cooling refrigerant pipe 14 existing between the compressor 9 and the condenser 10 is provided with a first switching valve 19 which is a compressor discharge direction switching valve and a second switching valve 20 which is a condenser inflow direction switching valve. The cooling refrigerant pipe 15 existing between the compressor 10 and the liquid tank 12 has a third switching valve 21 which is a condenser outflow direction switching valve and a fourth switching valve which is a liquid tank inflow direction switching valve in order from the upstream side of the compressor 9 in the refrigerant feeding direction. A switching valve 22 is provided, and the cooling refrigerant pipe 16 that exists between the liquid tank 12 and the evaporator 13 is provided with a fifth switching valve 23, which is a liquid tank outflow direction switching valve, and a fifth switching valve 23, which is a liquid tank outflow direction switching valve, in order from the upstream side in the refrigerant feeding direction of the compressor. A sixth switching valve 24 which is an inflow direction switching valve is provided, and an evaporator outflow direction switching valve is provided in the cooling refrigerant pipe 17 existing between the evaporator 13 and the compressor 9 in order from the upstream side of the compressor 9 in the refrigerant feeding direction. A seventh switching valve 25 which is a switching valve for the compressor inflow direction and an eighth switching valve 26 which is a compressor inflow direction switching valve are provided. Note that the sixth switching valve 24 is disposed between the expansion valve 18 and the evaporator 13. Then, the first switching valve 19 and the sixth switching valve 24 are connected by the first heating refrigerant pipe line 27, and the seventh switching valve 25 and the sixth switching valve 24 are connected to each other so that the cooling refrigeration device 1 can perform heating. 4 switching valve 22 and the second heating refrigerant pipe line 2
8, the fifth switching valve 23 and the second switching valve 20
are connected by a third heating refrigerant pipe 29, and the third switching valve 21 and the eighth switching valve 26 are connected by a fourth heating refrigerant pipe 30. When cooling the vehicle,
The refrigerant is connected to the cooling refrigerant pipes 14 to 17 by arrows A to H.
When the vehicle is heated,
The refrigerant is connected to heating refrigerant pipes 27 to 30 by arrows I to T.
It is something that is circulated in the same direction. An expansion valve 31 is provided upstream of the condenser 10.
1 has the function of converting high-pressure room temperature refrigerant into low-pressure low-temperature refrigerant during indoor heating, and condenser 1 during cooling.
During heating, the evaporator 13 evaporates the refrigerant and removes the heat from the outside air. During heating, the evaporator 13 cools the high-pressure, high-temperature refrigerant to the condensation point during heating, radiates the heat, and converts it into high-pressure liquid. Functions as a capacitor for the source.

第2図は、冷凍用冷房装置1によつて暖房を行
なうに際しての室内暖房用制御回路を示してお
り、この図において、32は室内暖房設定スイツ
チである。この室内暖房設定スイツチ32は、可
動接点33と固定接点34,35とを備えてい
る。可動接点33を固定接点34の側に切換えて
おくと、暖房系統8が作動可能の状態となり、固
定接点35の側に切換えておくと作動オフの状態
となる。室内暖房用制御回路は室外温度を検出す
る室外温度検出センサ36,37とエンジン水温
を検出するエンジン水温検出センサ38とからな
る直列回路39を備えている。室外温度検出セン
サ36は室外温度が0℃以下になるとオフし、室
外温度が0℃以上になるとオンし、室外温度検出
センサ37は室外温度が15℃以上になるとオフ
し、室外温度が15℃以下になるとオンし、エンジ
ン水温検出センサ38はエンジン水温が温水式暖
房装置の暖房効率を考慮して定められた所定温度
である40℃以下になるとオンし、エンジン水温が
40℃以上になるとオフするものである。直列回路
39はリレー40とリレー41とに接続されてお
り、リレー40は負荷42としての冷房用冷凍装
置1の切換弁19〜26を切換え駆動させる機能
を有し、室外温度が0℃から15℃までの所定範囲
にあつてかつエンジン水温が40℃以下のときに、
コイル43に通電されて常開接点44が閉成さ
れ、負荷42に通電され、負荷としての切換弁1
9〜26が室内暖房系統8の側に切換えられて、
冷媒は暖房用冷媒管路27〜30を通つて循環す
るものとなり、暖房系統8が作動する。なお、そ
の際リレー41のコイル45に通電されて、その
常開接点46が閉成され、冷房用冷凍装置1のコ
ンプレツサ9、フアン11等を通電するものであ
り、第3図は冷房用冷凍装置1の暖房系統8の作
動及びその解除を説明するためのフローチヤート
である。
FIG. 2 shows an indoor heating control circuit when heating is performed by the refrigeration cooling device 1, and in this figure, 32 is an indoor heating setting switch. This indoor heating setting switch 32 includes a movable contact 33 and fixed contacts 34 and 35. When the movable contact 33 is switched to the fixed contact 34 side, the heating system 8 becomes operational, and when the movable contact 33 is switched to the fixed contact 35 side, the heating system 8 is turned off. The indoor heating control circuit includes a series circuit 39 consisting of outdoor temperature detection sensors 36, 37 that detect outdoor temperature and an engine water temperature detection sensor 38 that detects engine water temperature. The outdoor temperature detection sensor 36 turns off when the outdoor temperature becomes 0°C or less, and turns on when the outdoor temperature becomes 0°C or more.The outdoor temperature detection sensor 37 turns off when the outdoor temperature becomes 15°C or more, and turns off when the outdoor temperature reaches 15°C. The engine water temperature detection sensor 38 turns on when the engine water temperature falls below 40°C, which is a predetermined temperature determined in consideration of the heating efficiency of the hot water heating system.
It turns off when the temperature exceeds 40℃. The series circuit 39 is connected to a relay 40 and a relay 41, and the relay 40 has a function of switching and driving the switching valves 19 to 26 of the cooling refrigeration system 1 as a load 42, and when the outdoor temperature ranges from 0°C to 15°C. ℃ and when the engine water temperature is below 40℃,
The coil 43 is energized, the normally open contact 44 is closed, the load 42 is energized, and the switching valve 1 as a load is energized.
9 to 26 are switched to the indoor heating system 8 side,
The refrigerant circulates through the heating refrigerant pipes 27 to 30, and the heating system 8 operates. At this time, the coil 45 of the relay 41 is energized, its normally open contact 46 is closed, and the compressor 9, fan 11, etc. of the cooling refrigeration system 1 are energized. This is a flowchart for explaining the activation and deactivation of the heating system 8 of the device 1.

以下に冷房用冷凍装置の冷媒の流れを第4図、
第5図を参照しつつ詳述する。
The flow of refrigerant in the cooling refrigeration system is shown in Figure 4 below.
This will be explained in detail with reference to FIG.

(1) 冷房用冷凍装置を冷房装置として駆動させる
場合。
(1) When operating a cooling refrigeration device as a cooling device.

第2図に示すスイツチ33が固定接点35
の側にあるとき、冷房用冷凍装置を駆動させ
ると、第4図に示すようにコンプレツサ9か
ら吐出された冷媒は第1切換弁19を矢印A
方向に通つて冷房用冷媒管路14を流れ、第
2切換弁20を矢印B方向に通つてコンデン
サ10に流れ込む。このコンデンサ10によ
りコンプレツサ9から流れ出た高温高圧の冷
媒を低温高圧の冷媒に冷却される。コンデン
サ10から流れ出た冷媒は矢印C方向に第3
切換弁21を通つて冷房用冷媒管路15を流
れ、第4切換弁22を矢印D方向に通つてリ
キツドタンク12に流れ込む。リキツドタン
ク12から流れ出た冷媒は第5切換弁23を
矢印E方向に通つて冷房用冷媒管路16を流
れ、膨張弁18に流れ込む。この膨張弁18
により低温高圧の冷媒は低温低圧の冷媒とさ
れる。この膨張弁18から流れ出た冷媒は第
6切換弁24を矢印F方向に通つてエバポレ
ータ13に流れ込む。このエバポレータ13
に流れ込んだ低温低圧の冷媒により室内の冷
却が行われる。エバポレータ13から流れ出
た冷媒は第7切換弁25を矢印G方向に通つ
て冷房用冷媒管路17を流れ、第8切換弁2
6を矢印H方向に通つてコンプレツサ9に流
れ込み、循環する。
The switch 33 shown in FIG. 2 is a fixed contact 35.
When the cooling refrigeration system is driven when the refrigerant is on the side shown in FIG.
The refrigerant flows through the cooling refrigerant pipe 14 in the direction of arrow B, and flows into the condenser 10 through the second switching valve 20 in the direction of arrow B. The condenser 10 cools the high-temperature, high-pressure refrigerant flowing out from the compressor 9 into a low-temperature, high-pressure refrigerant. The refrigerant flowing out of the condenser 10 flows in the direction of arrow C.
The refrigerant flows through the cooling refrigerant pipe 15 through the switching valve 21, passes through the fourth switching valve 22 in the direction of arrow D, and flows into the liquid tank 12. The refrigerant flowing out of the liquid tank 12 passes through the fifth switching valve 23 in the direction of arrow E, flows through the cooling refrigerant pipe 16, and flows into the expansion valve 18. This expansion valve 18
Accordingly, a low-temperature, high-pressure refrigerant is treated as a low-temperature, low-pressure refrigerant. The refrigerant flowing out of the expansion valve 18 passes through the sixth switching valve 24 in the direction of arrow F and flows into the evaporator 13. This evaporator 13
The room is cooled by the low-temperature, low-pressure refrigerant that flows into the room. The refrigerant flowing out from the evaporator 13 passes through the seventh switching valve 25 in the direction of arrow G, flows through the cooling refrigerant pipe 17, and then flows through the eighth switching valve 25.
6 in the direction of arrow H, flows into compressor 9, and is circulated.

第2図に示すスイツチ33が固定接点34
の側にあつても、室外温度検出センサ36,
37、エンジン水温検出センサ38の少なく
とも一つがオフの時(室外温度が0℃から15
℃までの所定範囲にないか又はエンジン水温
が40℃以上のとき)は、切換弁19〜26は
そのままであり、冷房用冷凍装置を駆動させ
ると、冷媒はと同様の方向に流れる。
The switch 33 shown in FIG. 2 is a fixed contact 34.
Even if the outdoor temperature detection sensor 36,
37. When at least one of the engine water temperature detection sensors 38 is off (when the outdoor temperature is between 0°C and 15°C)
(or when the engine water temperature is above 40°C), the switching valves 19 to 26 remain as they are, and when the cooling refrigeration system is driven, the refrigerant flows in the same direction.

(2) 冷房用冷凍装置をヒートポンプとして作動さ
せる場合。
(2) When operating a cooling refrigeration device as a heat pump.

スイツチ33が固定接点34の側にあつて、室
外温度検出センサ36,37、エンジン水温検出
センサ38がオンのとき(外気温度が0℃から15
℃までの所定範囲内であつてかつエンジン水温が
40℃以下のとき)のときは、切換弁19〜26が
切り換えられる。また、コンプレツサ9、フアン
11等が自動的に駆動される。従つて、コンプレ
ツサ9から流れ出た冷媒は第5図に示すように第
1切換弁19を矢印I方向に通つて第1暖房用冷
媒管路27を矢印J方向に流れ、第6切換弁24
を矢印K方向に通つてエバポレータ13に流れ込
む。このエバポレータ13によつて高温高圧の冷
媒は冷却され、その冷媒の有する熱が放熱され、
低温高圧の冷媒となる。これによつて、室内の暖
房が行われる。エバポレータ13から流れ出た冷
媒は第7切換弁25を矢印L方向に通つて第2暖
房用冷媒管路28を矢印M方向に流れ、第4切換
弁22を矢印N方向に通つてリキツドタンク12
に流れ込む。リキツドタンク12から流れ出た冷
媒は第5切換弁23を矢印O方向に通つて第3暖
房用冷媒管路29を矢印P方向に流れ、膨張弁3
1に流れ込む。この膨張弁31によつて高圧常温
の冷媒は低圧低温の冷媒となる。この膨張弁31
を流れ出た低温低圧の冷媒は第2切換弁20を矢
印Q方向に通つてコンデンサ10に流れ込む。こ
のコンデンサ10によつて低温低圧の冷媒は外気
の有する熱を奪つて高温常圧の冷媒となる。コン
デンサ10を流れ出た冷媒は第3切換弁21を矢
印R方向に通つて第4暖房用冷媒管路30を矢印
S方向に流れ、第8切換弁26を矢印T方向に通
つてコンプレツサ9に流れ込み、循環する。
When the switch 33 is on the side of the fixed contact 34 and the outdoor temperature detection sensors 36, 37 and the engine water temperature detection sensor 38 are on (the outdoor temperature is between 0°C and 15°C)
℃ and the engine water temperature is within the specified range.
(when the temperature is below 40°C), the switching valves 19 to 26 are switched. Further, the compressor 9, fan 11, etc. are automatically driven. Therefore, as shown in FIG. 5, the refrigerant flowing out of the compressor 9 passes through the first switching valve 19 in the direction of arrow I, flows through the first heating refrigerant pipe 27 in the direction of arrow J, and then passes through the sixth switching valve 24.
flows in the direction of arrow K into the evaporator 13. The high-temperature, high-pressure refrigerant is cooled by this evaporator 13, and the heat of the refrigerant is radiated.
It becomes a low-temperature, high-pressure refrigerant. This heats the room. The refrigerant flowing out from the evaporator 13 passes through the seventh switching valve 25 in the direction of the arrow L, flows through the second heating refrigerant pipe 28 in the direction of the arrow M, passes through the fourth switching valve 22 in the direction of the arrow N, and is transferred to the liquid tank 12.
flows into. The refrigerant flowing out from the liquid tank 12 passes through the fifth switching valve 23 in the direction of arrow O, flows through the third heating refrigerant pipe 29 in the direction of arrow P, and then flows through the expansion valve 3.
Flows into 1. This expansion valve 31 turns the high-pressure, normal-temperature refrigerant into a low-pressure, low-temperature refrigerant. This expansion valve 31
The low-temperature, low-pressure refrigerant flowing out passes through the second switching valve 20 in the direction of arrow Q and flows into the condenser 10. With this condenser 10, the low-temperature, low-pressure refrigerant absorbs heat from the outside air and becomes a high-temperature, normal-pressure refrigerant. The refrigerant flowing out of the condenser 10 passes through the third switching valve 21 in the direction of arrow R, flows through the fourth heating refrigerant pipe 30 in the direction of arrow S, passes through the eighth switching valve 26 in the direction of arrow T, and flows into the compressor 9. , circulate.

(考案の効果) 本考案は以上説明したように構成したので、以
下の効果を奏する。
(Effects of the invention) Since the present invention is constructed as described above, it has the following effects.

従来の温水式暖房装置と冷房用冷凍装置とを
備えた車両用空気調和装置の構成を大幅に変更
することなく、エンジン水温が温水式暖房装置
の暖房効率を考慮して定められた所定温度より
も低くて、温水式暖房装置を用いての暖房効果
がすぐに期待できない場合で室外温度が0℃か
ら15℃までの所定範囲にあるとき(すなわち、
春、秋等の中間期で暖気を必要と感じる温度帯
であるが暖房効果がすぐに期待できない場合)
には、従来から搭載されている冷房用冷凍装置
をヒートポンプとして作動させることにより、
すぐに暖房効果を発揮させることができるとい
う効果を期待でき、かつ、エンジン水温がその
所定温度以上のときには、温水式暖房装置によ
る効率のよい暖房が行われる一方において、冷
房用冷凍装置が本来の冷房機能を発揮する系統
に切換弁により切り換えられるので、冷房用冷
凍装置がいつまでも暖房効率の低いヒートポン
プとして作動し続けるのを防止できる。
Without significantly changing the configuration of a vehicle air conditioner equipped with a conventional hot water heating system and a cooling refrigeration system, the engine water temperature can be lower than a predetermined temperature determined in consideration of the heating efficiency of the hot water heating system. When the outdoor temperature is within a specified range from 0℃ to 15℃ (i.e., when the outdoor temperature is within a specified range from 0℃ to 15℃ (i.e.,
(If you are in a temperature range where you feel the need for warm air during the intermediate seasons such as spring or autumn, but you cannot expect the heating effect immediately)
By operating the conventional cooling refrigeration equipment as a heat pump,
When the heating effect can be expected immediately, and when the engine water temperature is above the specified temperature, the hot water heating system performs efficient heating, while the cooling refrigeration system performs its original function. Since the switching valve is used to switch to a system that performs the cooling function, it is possible to prevent the cooling refrigeration system from continuing to operate as a heat pump with low heating efficiency.

室外温度が所定温度以上のときには、冷房用
冷凍装置が本来の冷房機能を発揮する系統に各
切換弁により切り換えられるので、不用意にス
イツチ操作しても、冷房用冷凍装置がヒートポ
ンプとして作動せず、したがつて、不用意なス
イツチ操作により温風が室内に吹き出されて、
乗員に不快感を与えることも防止される。
When the outdoor temperature is above a predetermined temperature, each switching valve switches the cooling refrigeration system to the system that performs its original cooling function, so even if the switch is operated carelessly, the cooling refrigeration system will not operate as a heat pump. Therefore, warm air may be blown into the room due to careless switch operation.
It also prevents the occupants from feeling uncomfortable.

室外温度が0℃以下のときには、冷房用冷凍
装置がヒートポンプとして作動しないため、エ
バポレータのフイン、コンデンサのフインが凍
結するおそれを防止できる。
When the outdoor temperature is 0° C. or lower, the cooling refrigeration device does not operate as a heat pump, so it is possible to prevent the fins of the evaporator and the condenser from freezing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る車両用空気調和装置の全
体構成図、第2図は第1図に示す冷凍用冷房装置
の暖房系統を作動させるための室内暖房用制御回
路図、第3図は第1図に示す冷房用冷凍装置の暖
房系統の作動を説明するためのフローチヤート、
第4図は冷房用冷凍装置を冷房装置として作動さ
せた場合の冷媒の流れの説明図、第5図は冷房用
冷凍装置をヒートポンプとして作動させた場合の
冷媒の流れの説明図、である。 1……冷房用冷凍装置、2……温水式暖房装
置、3……エンジン、9……コンプレツサ、10
……コンデンサ、12……リキツドタンク、13
……エバポレータ、14〜17……冷房用冷媒管
路、19〜26……切換弁、27〜30……暖房
用冷媒管路。
FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to the present invention, FIG. 2 is an indoor heating control circuit diagram for operating the heating system of the refrigeration cooling device shown in FIG. 1, and FIG. A flowchart for explaining the operation of the heating system of the cooling refrigeration device shown in FIG.
FIG. 4 is an explanatory diagram of the flow of refrigerant when the cooling refrigeration device is operated as a cooling device, and FIG. 5 is an explanatory diagram of the flow of refrigerant when the cooling refrigeration device is operated as a heat pump. 1... Cooling refrigeration device, 2... Hot water heating device, 3... Engine, 9... Compressor, 10
... Capacitor, 12 ... Liquid tank, 13
... Evaporator, 14-17... Refrigerant pipe line for cooling, 19-26... Switching valve, 27-30... Refrigerant pipe line for heating.

Claims (1)

【実用新案登録請求の範囲】 室内冷房用の冷房用冷凍装置と、エンジン水温
を利用して室内の暖房を行う温水式暖房装置とを
有し、前記冷房用冷凍装置が冷房用冷媒管路で順
に接続された少なくともコンプレツサとコンデン
サと膨張弁とエバポレータとから構成されている
車両用空気調和装置において、 前記コンプレツサと前記コンデンサとの間に存
在する冷房用冷媒管路に前記コンプレツサの冷媒
圧送方向上流側から順にコンプレツサ吐出方向切
換弁とコンデンサ流入方向切換弁とを設け、前記
コンデンサと前記エバポレータとの間に存在する
冷房用冷媒管路に前記コンプレツサの冷媒圧送方
向上流側から順にコンデンサ流出方向切換弁とエ
バポレータ流入方向切換弁とを設け、前記エバポ
レータと前記コンプレツサとの間に存在する冷房
用冷媒管路に前記コンプレツサの冷媒圧送方向上
流側から順にエバポレータ流出方向切換弁とコン
プレツサ流入方向切換弁とを設け、 前記冷房用冷凍装置によつて冷暖房を行わせる
ため、前記コンプレツサ吐出方向切換弁と前記エ
バポレータ流入方向切換弁との間、前記エバポレ
ータ流出方向切換弁と前記コンデンサ流入方向切
換弁との間、前記コンデンサ流出方向切換弁と前
記コンプレツサ流入方向切換弁との間が、各暖房
用冷媒管路で接続され、 前記各切換弁を前記冷房用冷媒管路と前記暖房
用冷媒管路との間で切換え制御する制御回路を備
え、 該制御回路は、室外温度が0℃から15℃までの
所定範囲内でかつエンジン水温が前記温水式暖房
装置の暖房効率を考慮して定められた所定温度よ
りも低いときに、乗員の手動スイツチ操作によつ
て前記冷房用冷凍装置をヒートポンプとして作動
させるために、前記コンプレツサから流れ出た冷
媒が前記コンデンサと前記コンプレツサとの間の
冷房用冷媒管路を経由して前記コンデンサに流れ
込みかつ該コンデンサから流れ出た冷媒が前記エ
バポレータと前記コンデンサとの間の冷房用冷媒
管路の膨張弁を経由して前記エバポレータに流れ
込みしかも該エバポレータから流れ出た冷媒が前
記コンプレツサと前記エバポレータとの間の冷房
用冷媒管路を通つて前記コンプレツサに循環可能
の状態から、前記コンプレツサから流れ出た冷媒
が前記コンプレツサ吐出方向切換弁とエバポレー
タ流入方向切換弁との間の暖房用冷媒管路を通つ
て前記エバポレータに流れ込みかつ前記エバポレ
ータから流れ出た冷媒が前記エバポレータ流出方
向切換弁と前記コンデンサ流入方向切換弁との間
の暖房用冷媒管路の膨張弁を通つて前記コンデン
サに流れ込みしかも前記コンデンサから流れ出た
冷媒が前記コンデンサ流出方向切換弁と前記コン
プレツサ流入方向切換弁との間の暖房用冷媒管路
を通つて前記コンプレツサへ流れ込む循環可能の
状態に、前記各切換弁を制御する構成であること
を特徴とする車両用空気調和装置。
[Scope of Claim for Utility Model Registration] The invention has a cooling refrigeration device for indoor cooling and a hot water heating device that heats the room using engine water temperature, and the cooling refrigeration device is a cooling refrigerant pipe. In a vehicle air conditioner comprising at least a compressor, a condenser, an expansion valve, and an evaporator connected in sequence, a cooling refrigerant pipe existing between the compressor and the condenser is connected upstream of the compressor in a refrigerant pumping direction. A compressor discharge direction switching valve and a condenser inflow direction switching valve are provided in order from the side, and a condenser outflow direction switching valve is provided in order from the upstream side of the refrigerant pumping direction of the compressor in a cooling refrigerant pipe existing between the condenser and the evaporator. and an evaporator inflow direction switching valve, and an evaporator outflow direction switching valve and a compressor inflow direction switching valve are installed in a cooling refrigerant pipeline existing between the evaporator and the compressor in order from the upstream side in the refrigerant pumping direction of the compressor. and between the compressor discharge direction switching valve and the evaporator inflow direction switching valve, and between the evaporator outflow direction switching valve and the condenser inflow direction switching valve, in order to perform heating and cooling by the cooling refrigeration device. The condenser outflow direction switching valve and the compressor inflow direction switching valve are connected by respective heating refrigerant pipes, and each of the switching valves is connected between the cooling refrigerant pipe and the heating refrigerant pipe. The control circuit includes a control circuit that performs switching control, and the control circuit is configured to perform switching control when the outdoor temperature is within a predetermined range from 0°C to 15°C and the engine water temperature is lower than a predetermined temperature determined in consideration of the heating efficiency of the hot water heating device. In order to operate the cooling refrigeration system as a heat pump by a passenger's manual switch operation when the temperature is low, the refrigerant flowing out from the compressor is passed through the cooling refrigerant pipe between the condenser and the compressor. The refrigerant flowing into the condenser and flowing out from the condenser flows into the evaporator via the expansion valve of the cooling refrigerant pipe between the evaporator and the condenser, and the refrigerant flowing out from the evaporator flows between the compressor and the evaporator. The refrigerant flowing out from the compressor is allowed to circulate to the compressor through the cooling refrigerant pipe between the compressor and the heating refrigerant pipe between the compressor discharge direction switching valve and the evaporator inflow direction switching valve. The refrigerant flowing into the evaporator through the evaporator and flowing out from the evaporator flows into the condenser through the expansion valve of the heating refrigerant pipe between the evaporator outflow direction switching valve and the condenser inflow direction switching valve, and flows from the condenser into the condenser. Each of the switching valves is controlled so that the refrigerant that flows out can circulate into the compressor through a heating refrigerant pipe between the condenser outflow direction switching valve and the compressor inflow direction switching valve. A vehicle air conditioner featuring:
JP1985043991U 1985-03-28 1985-03-28 Expired JPH0232486Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985043991U JPH0232486Y2 (en) 1985-03-28 1985-03-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985043991U JPH0232486Y2 (en) 1985-03-28 1985-03-28

Publications (2)

Publication Number Publication Date
JPS61161011U JPS61161011U (en) 1986-10-06
JPH0232486Y2 true JPH0232486Y2 (en) 1990-09-04

Family

ID=30556166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985043991U Expired JPH0232486Y2 (en) 1985-03-28 1985-03-28

Country Status (1)

Country Link
JP (1) JPH0232486Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222735U (en) * 1975-08-06 1977-02-17
JPS5577673A (en) * 1978-12-08 1980-06-11 Nissan Motor Air conditioner for vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108708U (en) * 1976-02-14 1977-08-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222735U (en) * 1975-08-06 1977-02-17
JPS5577673A (en) * 1978-12-08 1980-06-11 Nissan Motor Air conditioner for vehicles

Also Published As

Publication number Publication date
JPS61161011U (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US7155927B2 (en) Exhaust heat utilizing refrigeration system
WO2004056594A1 (en) Air conditioner
JP5003639B2 (en) Vehicle cooling system
KR930013613A (en) Air conditioning for both cooling and heating
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
GB2379972A (en) Integrated heat pump and vehicle coolant circuit
CN112424006B (en) Air conditioner for vehicle
US3444923A (en) Heat pumps with electric booster heaters
JP2012011928A (en) Vehicle water circulation system
JP2014511801A (en) Heat control device for automobile
KR101622631B1 (en) Heat pump system for vehicle and its control method
JPH1142933A (en) Air conditioner
JPH0232486Y2 (en)
JPS60219114A (en) Air conditioner for automobile
JPH04218424A (en) Car airconditioner
JPS6220459B2 (en)
KR101578101B1 (en) Heat pump system for vehicle
JP3458612B2 (en) Brine air conditioner
JPH075825U (en) Automotive air conditioner
JP2019188851A (en) Air conditioner
JP2002234335A (en) Vehicular air conditioner
JPS5810896Y2 (en) heating device
JPS61105208A (en) Air conditioning device for vehicle
JPS6330929Y2 (en)
JP6491969B2 (en) Air conditioner for vehicles