JPH0231743B2 - JUSHISOSEIBUTSU - Google Patents

JUSHISOSEIBUTSU

Info

Publication number
JPH0231743B2
JPH0231743B2 JP18336081A JP18336081A JPH0231743B2 JP H0231743 B2 JPH0231743 B2 JP H0231743B2 JP 18336081 A JP18336081 A JP 18336081A JP 18336081 A JP18336081 A JP 18336081A JP H0231743 B2 JPH0231743 B2 JP H0231743B2
Authority
JP
Japan
Prior art keywords
resin
parts
polyphenylene ether
epoxy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18336081A
Other languages
Japanese (ja)
Other versions
JPS5884844A (en
Inventor
Norio Tsujioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SHUEEBERU KK
Original Assignee
ASAHI SHUEEBERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SHUEEBERU KK filed Critical ASAHI SHUEEBERU KK
Priority to JP18336081A priority Critical patent/JPH0231743B2/en
Publication of JPS5884844A publication Critical patent/JPS5884844A/en
Publication of JPH0231743B2 publication Critical patent/JPH0231743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は樹脂組成物に関し、特にプリント配線
基板を製造するに好適な熱硬化性樹脂組成物に関
する。 最近の電子工業の発展に伴ない、プリント基板
が色々の分野に使用されるようになつてきた。プ
リント基板には、たとえば樹脂としてはエポキシ
樹脂、不飽和ポリエステル樹脂、フエノール樹脂
などが、基材としてはガラスクロス、ガラス繊維
不織布、ガラスマツトなどのガラス製品や紙、あ
るいは綿布などが使われている。そして一般に民
生用分野には紙フエノール積層板が、産業用には
ガラスエポキシ積層板が最もよく使われている。
ガラスエポキシ積層板はプリント回路基板に必要
な耐熱性、電気絶縁性、耐薬品性、スルホール
性、耐ハンダ性などに優れており、優れたプリン
ト回路基板であるが、比較的誘電率や誘電正接が
大きいため高周波やマイクロ波装置用としての用
途には不向きである。 一方、ポリフエニレンエーテルは非常に誘電率
や誘電正接が小さく、また熱可塑性樹脂ではある
が熱変形温度が高く、寸法安定性、耐薬品性、耐
水性などにも優れているため、マイクロ波装置用
のプリント回路基板として、極めて有用な材料と
して評価されている。しかしながら、これを何ら
の基材を用いずに用いる場合には、強度的にも寸
法安定性の上からも産業用のプリント回路板とし
て用いるには欠陥が多いため、ガラスクロスなど
の基材をベースにする試みがあつた。しかしなが
らポリフエニレンエーテルは熱可塑性樹脂であ
り、かつきわめて極性が小さい樹脂のため、通常
の熱硬化性樹脂とガラス基材とからなる複合材料
のごとく、ガラスと樹脂をある種のシランカツプ
リング剤を介して化学的に橋かけすることがきわ
めて困難であることが判明した。従来一般に知ら
れているように例えばガラスクロス・エポキシ樹
脂等からなる積層板においては、その界面にシラ
ンカツプリング剤を介在せしめて、これにより通
常不可能な無機質と有機質の化学的な結合を形成
可能となし、プリント回路基板を作成している。
スルホール壁面への銅メツキ工程において、この
界面からメツキ液が浸入するといつた重大な欠陥
の発生を防止しているが、ポリフエニレンエーテ
ルとガラスクロスからなる積層板ではこうして欠
陥を防止することは不可能であつた。さらにま
た、両者の結合力が弱いことはドリルによる穴あ
け工程において穴の壁面が平滑になりにくく、ス
ルーホールメツキが平滑にできないため、最終製
品での電気的性能にトラブルを生ずる原因となつ
ていた。こうしたことから今日、高周波やマイク
ロ波装置用として誘電率や誘電正接が低い値をも
ち、且つプリント回路基板としての充分な耐熱
性、耐ハンダ性、耐薬品性、強度、難燃性を保持
し、しかもコスト的に廉価な材料の開発が強く要
望されている。 本発明者は、ポリフエニレンエーテルとエポキ
シ樹脂の特徴を生かしたプリント回路基板の材料
を開発すべく鋭意研究を重ねた結果、ポリフエニ
レンエーテルにエポキシ基と反応可能なフエノー
ル性水酸基を有するスチレン系の化合物をグラフ
トしたグラフトポリマーとエポキシ樹脂の混合樹
脂組成物が、きわめて優れたプリント回路基板用
の樹脂を形成することを見出した。 本発明の要旨は、ポリフエニレンエーテルに、
分子中にフエノール性水酸基を有するスチレン系
化合物をグラフトせしめてなつたグラフト共重合
体とエポキシ樹脂を混合してなることを特徴とす
る樹脂組成物であつて、その目的はプリント回路
基板用として優れた性能を有する樹脂組成物を提
供するものである。 本発明において用いるポリフエニレンエーテル
とは例えば特公昭36−18692、42−3195、42−
4673などに記載されたごとき方法により、フエノ
ール類単量体を酸化重合することにより得られる
もので、次式に示す循環構造を有する。 (R1,R2,R3,R4は、水素、ハロゲン、炭化水
素、もしくは炭素数1〜4のアルキル基を示す) 本発明において、フエノール性水酸基を有する
スチレン系化合物とは、例えばヒドロキシスチレ
ン、クロールヒドロキシスチレン、ジクロロヒド
ロキシスチレン、ブロムヒドロキシスチレン、テ
トラブロモヒドロキシスチレン、アミノヒドロキ
スチレン、ヒドロキシαメチルスチレンなどの単
量体の単一物または混合物およびこれら単量体か
らなるホモポリマー、またはコポリマー、あるい
は少くともこれらの単量体の一種類以上を使い、
これらに共重合可能な単量体を使用してなる共重
合体などが挙げられる。 本発明に用いられるグラフト化合物は、例えば
特公昭47−47862に記載されたごとき方法により
ポリフエニレンエーテルにスチレン系化合物単量
体をグラフトすることにより、あるいは特開昭55
−118945に記載の方法により、ポリフエニレンエ
ーテルにフエノール性水酸基を有するスチレン系
化合物重合体をグラフトすることによつて得られ
る。 また、本発明に用いられるP−ヒドロキシスチ
レンまたはこのハロゲン化合物の重合体はその単
量体を熱重合させることにより得られるもので、
例えば商品名レジンMあるいはレジンMBとして
丸善石油(株)から販売されている。 本発明で用いるエポキシ樹脂は特に限定されな
いが、分子内に少くとも2個のエポキシ基をもつ
ものが用いられ、具体的にはビスフエノール系エ
ポキシ樹脂、ノボラツク系エポキシ樹脂含窒素エ
ポキシ樹脂およびこれらのハロゲン化合物が挙げ
られ、これらは単独でも混合されても用いること
ができる。 また、本組成物は熱硬化性の樹脂組成物であ
り、通常用いられるエポキシ樹脂の硬化剤や硬化
促進剤を混合して用いることも可能である。具体
的な硬化剤または硬化促進剤としては、たとえば
脂肪族アミン、芳香族アミン、酸無水物、3フツ
化ホウ素錯体類などがある。 本発明に用いられるグラフト化合物のグラフト
率は特に限定されるものでないが、少くともポリ
フエニレンエーテル分子鎖1本に対して1個以上
のフエノール性水酸基を有する必要がある。 また本発明組成物におけるエポキシ樹脂とポリ
フエニレンエーテルのグラフトポリマーとの混合
比率も特に限定されるものでなく、自由に調整さ
れるものであるが、エポキシ樹脂のエポキシ当量
1に対してグラフトポリマーの水酸基当量が1未
満の場合は、さらに硬化剤を混合することが最終
の硬化物の諸物性を維持するのに有効である。 さらに本発明においては溶剤を使用することが
可能であり、使用できる溶剤としてはトルエン、
クロロホルム、パークレン等がある。 以下本発明を実施例をもつて詳細に説明する。 ただし本発明は以下の実施例に限定されるもの
ではない。 まず下記のようにして二種類のグラフト共重合
体を合成した。 〔グラフト共重合体A〕 〔η〕が0.50dl/g(クロロホルム、30℃測定)
のポリ(2,6−ジメチルフエニレン−1,4−
エーテル)100部、テトラブロムP−ヒドロキシ
スチレン50部、ラウリルパーオキサイド3部およ
びジクミルパーオキサイド3部をオートクレーブ
中に加え、よく混合し、次いで、水500部にドデ
シルベンゼンスルホン酸ナトリウム0.5部および
ポリビニルアルコール5部を溶解した混合液を撹
拌下、窒素雰囲気下に投入した。投入後撹拌を続
けながら90℃で6時間その後130℃で10時間の反
応を行なつた。反応物をろ別水洗、乾燥して生成
物を得た。 〔グラフト共重合体B〕 〔η〕が0.50dl/g(クロロホルム、30℃測定)
のポリ(2,6−ジメチルフエニレン−1,4−
エーテル)100部、ブロム化ポリP−ヒドロキシ
スチレン(マルゼンレジンMB)50部とテトラメ
チルチウラムモノスルフイド10部を30mmφベント
押出機で減圧下に溶融混練し、グラフト反応物を
得た。押出機内の滞留時間は10分であつた。 次に上記二種類のグラフト共重合体を用いて下
記のようにして樹脂ワニスをつくつた。 実施例 1 ブロム化ビスフエノール系エポキシ樹脂
(AER−711旭化成(株)製)100部、グラフト共重合
体A40部、3,3′−ジクロル−4,4′−ジアミノ
ジフエニルメタン7部を、クロロホルム250部に
溶解して樹脂ワニスを作成した。次にこのワニス
を厚み0.18mmのガラスクロスに含浸し、次いで
140℃で乾燥して樹脂分45%を持つプリプレグを
得た。ついでこのプリプレグを8枚重ね、その両
面に厚みが35μの銅箔を重ねて40Kg/cm2、175℃
で60分間圧縮成形して両面銅張積層板を得た。 実施例 2 グラフト共重合体Bを用いる以外は実施例1と
同様にして樹脂ワニスをつくり、これを用いて両
面銅張積層板を得た。 実施例 3 ビスフエノール系エポキシ樹脂(AER661、旭
化成(株)製)90部、エポキシノボラツク樹脂
(DEN438、ダウケミカル社製)10部、グラフト
共重合体A40部、3・3′−ジクロル−4・4′−ジ
アミノジフエニルメタン7部をクロロホルム250
部に溶解して樹脂ワニスを作成した。これを用い
て実施例1と同様にして両面銅張積層板を得た。 実施例 4 グラフト共重合体Bを用いる以外は実施例3と
同様にして樹脂ワニスをつくり、これを用いて両
面銅張積層板を得た。 比較例 1 ブロム化ビスフエノール系エポキシ樹脂
(AER−711旭化成(株)製)100部、ジシアンジアミ
ド2.5部、ベンジルジメチルアミン0.2部を
MEK25部、ジメチルホルアミド20部、メチルセ
ロゾルブ20部の混合溶媒中に溶解して樹脂ワニス
を作成した。これを用いて実施例1と同様にして
両面銅張積層板を得た。 比較例 2 ビスフエノール系エポキシ樹脂(AER661、旭
化成(株)製)90部、エポキシノボラツク樹脂
(DEN−438、ダウケミカル製)10部、ジシアン
ジアミド2.5部、ベンジルジメチルアミン0.2部を
MEK25部、ジメチルホルムアミド20部、メチル
セロゾルブ20部の混合溶媒中に溶解して樹脂ワニ
スを作成した。これを用いて実施例1と同様にし
て両面銅張積層板を得た。 比較例 3 〔η〕が0.50dl/g(クロロホルム、30℃測定)
のポリ(2,6−ジメチルフエニレン−1,4−
エーテル)をクロロホルム中に溶解して、濃度40
%のワニスをつくつた。このワニスを厚み0.18mm
のガラスクロスに含浸し、100℃で20分間乾燥し
て揮発物を飛ばし、樹脂含浸クロスをつくつた。
ついでこれを8枚重ね、その両面に厚みが35μの
銅箔を重ね、1.6mm厚の枠を嵌めて270℃、50Kg/
cm2で12分間加熱圧縮して、厚さ1.6mmの銅張りポ
リフエニレンエーテル積層板を得た。 以上の実施例および比較例において得られた両
面銅張り積層板の性能を試験した。その結果を次
表に示した。
The present invention relates to a resin composition, and particularly to a thermosetting resin composition suitable for manufacturing printed wiring boards. With the recent development of the electronic industry, printed circuit boards have come to be used in various fields. For printed circuit boards, for example, the resin used is epoxy resin, unsaturated polyester resin, phenolic resin, etc., and the base material is glass products such as glass cloth, glass fiber nonwoven fabric, glass mat, paper, or cotton cloth. In general, paper phenol laminates are most commonly used in the consumer sector, and glass epoxy laminates are most commonly used in industrial applications.
Glass epoxy laminates are excellent printed circuit boards, with excellent heat resistance, electrical insulation, chemical resistance, through-hole properties, and solder resistance, which are all required for printed circuit boards, but they have relatively low dielectric constant and dielectric loss tangent. Because of its large value, it is unsuitable for use in high frequency or microwave equipment. On the other hand, polyphenylene ether has a very low dielectric constant and dielectric loss tangent, and although it is a thermoplastic resin, it has a high heat deformation temperature, and has excellent dimensional stability, chemical resistance, water resistance, etc. It is evaluated as an extremely useful material for printed circuit boards for devices. However, when using this without any base material, there are many defects in terms of strength and dimensional stability that make it unsuitable for use as an industrial printed circuit board, so a base material such as glass cloth is used. There was an attempt to make it a base. However, since polyphenylene ether is a thermoplastic resin and has extremely low polarity, it can be used as a composite material consisting of a normal thermosetting resin and a glass base material by combining glass and resin with a type of silane coupling agent. It turned out to be extremely difficult to cross-link chemically through . As is generally known in the past, for example, in laminated plates made of glass cloth, epoxy resin, etc., a silane coupling agent is interposed at the interface, thereby forming a chemical bond between inorganic and organic materials that is normally impossible. It is possible to create a printed circuit board.
In the process of copper plating on the walls of through-holes, serious defects such as those caused by infiltration of plating liquid from this interface are prevented from occurring, but defects cannot be prevented in this way with laminates made of polyphenylene ether and glass cloth. It was impossible. Furthermore, the weak bonding force between the two makes it difficult to make the wall of the hole smooth during the drilling process, and the through-hole plating cannot be made smooth, causing problems with the electrical performance of the final product. . For these reasons, today there are materials that have low dielectric constants and dielectric loss tangents for use in high-frequency and microwave equipment, and have sufficient heat resistance, solder resistance, chemical resistance, strength, and flame retardancy for printed circuit boards. Moreover, there is a strong demand for the development of inexpensive materials. As a result of intensive research to develop a material for printed circuit boards that takes advantage of the characteristics of polyphenylene ether and epoxy resin, the present inventor discovered that polyphenylene ether contains styrene, which has a phenolic hydroxyl group that can react with epoxy groups. It has been found that a mixed resin composition of a graft polymer grafted with a compound of the above-mentioned type and an epoxy resin forms an extremely excellent resin for printed circuit boards. The gist of the present invention is to provide polyphenylene ether with
A resin composition characterized by being made by mixing an epoxy resin with a graft copolymer obtained by grafting a styrene compound having a phenolic hydroxyl group in the molecule, and its purpose is to provide excellent use in printed circuit boards. The present invention provides a resin composition having excellent performance. The polyphenylene ether used in the present invention is, for example, Japanese Patent Publication No. 36-18692, 42-3195, 42-
It is obtained by oxidative polymerization of phenolic monomers by a method such as that described in Japanese Patent No. 4673, etc., and has a cyclic structure shown in the following formula. (R 1 , R 2 , R 3 , and R 4 represent hydrogen, halogen, hydrocarbon, or an alkyl group having 1 to 4 carbon atoms) In the present invention, a styrene compound having a phenolic hydroxyl group is, for example, hydroxy Monomers or mixtures of monomers such as styrene, chlorohydroxystyrene, dichlorohydroxystyrene, bromohydroxystyrene, tetrabromohydroxystyrene, aminohydroxystyrene, hydroxy α-methylstyrene, and homopolymers or copolymers made of these monomers , or at least one or more of these monomers,
Examples include copolymers formed using monomers copolymerizable with these. The graft compound used in the present invention can be obtained by grafting a styrene compound monomer onto polyphenylene ether by the method described in, for example, Japanese Patent Publication No. 47-47862, or
-118945, by grafting a styrene compound polymer having a phenolic hydroxyl group to polyphenylene ether. Moreover, the polymer of P-hydroxystyrene or this halogen compound used in the present invention is obtained by thermally polymerizing the monomer thereof,
For example, it is sold by Maruzen Sekiyu Co., Ltd. under the trade name Resin M or Resin MB. The epoxy resin used in the present invention is not particularly limited, but those having at least two epoxy groups in the molecule are used. Specifically, bisphenol epoxy resins, novolak epoxy resins, nitrogen-containing epoxy resins, and these epoxy resins are used. Examples include halogen compounds, and these can be used alone or in combination. Moreover, this composition is a thermosetting resin composition, and it is also possible to mix and use a curing agent or a curing accelerator for a commonly used epoxy resin. Specific curing agents or curing accelerators include, for example, aliphatic amines, aromatic amines, acid anhydrides, and boron trifluoride complexes. Although the grafting rate of the graft compound used in the present invention is not particularly limited, it is necessary to have at least one phenolic hydroxyl group per one polyphenylene ether molecular chain. Furthermore, the mixing ratio of the epoxy resin and the graft polymer of polyphenylene ether in the composition of the present invention is not particularly limited and can be adjusted freely. When the hydroxyl equivalent of is less than 1, it is effective to further mix a curing agent to maintain various physical properties of the final cured product. Furthermore, in the present invention, it is possible to use a solvent, and examples of solvents that can be used include toluene,
Examples include chloroform and percrene. The present invention will be explained in detail below using examples. However, the present invention is not limited to the following examples. First, two types of graft copolymers were synthesized as follows. [Graft copolymer A] [η] is 0.50 dl/g (chloroform, measured at 30°C)
poly(2,6-dimethylphenylene-1,4-
ether), 50 parts of tetrabromo P-hydroxystyrene, 3 parts of lauryl peroxide and 3 parts of dicumyl peroxide were added into an autoclave and mixed well, and then 0.5 parts of sodium dodecylbenzenesulfonate and polyvinyl were added to 500 parts of water. A mixed solution containing 5 parts of alcohol was charged into a nitrogen atmosphere while stirring. After the addition, the reaction was carried out at 90°C for 6 hours while stirring, and then at 130°C for 10 hours. The reaction product was filtered, washed with water, and dried to obtain a product. [Graft copolymer B] [η] is 0.50 dl/g (chloroform, measured at 30°C)
poly(2,6-dimethylphenylene-1,4-
ether), 50 parts of brominated polyP-hydroxystyrene (Marzen Resin MB), and 10 parts of tetramethylthiuram monosulfide were melt-kneaded under reduced pressure in a 30 mmφ vented extruder to obtain a graft reaction product. Residence time in the extruder was 10 minutes. Next, a resin varnish was prepared using the above two types of graft copolymers in the following manner. Example 1 100 parts of brominated bisphenol epoxy resin (AER-711 manufactured by Asahi Kasei Corporation), 40 parts of graft copolymer A, and 7 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane, A resin varnish was prepared by dissolving it in 250 parts of chloroform. Next, impregnate a glass cloth with a thickness of 0.18 mm with this varnish, and then
A prepreg with a resin content of 45% was obtained by drying at 140°C. Next, 8 sheets of this prepreg were stacked, and copper foil with a thickness of 35μ was layered on both sides to give a temperature of 40Kg/cm 2 at 175℃.
Compression molding was performed for 60 minutes to obtain a double-sided copper-clad laminate. Example 2 A resin varnish was prepared in the same manner as in Example 1 except that graft copolymer B was used, and a double-sided copper-clad laminate was obtained using this resin varnish. Example 3 90 parts of bisphenol epoxy resin (AER661, manufactured by Asahi Kasei Corporation), 10 parts of epoxy novolac resin (DEN438, manufactured by Dow Chemical Company), 40 parts of graft copolymer A, 3,3'-dichloro-4・7 parts of 4'-diaminodiphenylmethane and 250 parts of chloroform
A resin varnish was prepared by dissolving the resin in the following parts. Using this, a double-sided copper-clad laminate was obtained in the same manner as in Example 1. Example 4 A resin varnish was prepared in the same manner as in Example 3 except that graft copolymer B was used, and a double-sided copper-clad laminate was obtained using this resin varnish. Comparative Example 1 100 parts of brominated bisphenol epoxy resin (AER-711 manufactured by Asahi Kasei Corporation), 2.5 parts of dicyandiamide, and 0.2 parts of benzyldimethylamine.
A resin varnish was prepared by dissolving it in a mixed solvent of 25 parts of MEK, 20 parts of dimethylformamide, and 20 parts of methyl cellosolve. Using this, a double-sided copper-clad laminate was obtained in the same manner as in Example 1. Comparative Example 2 90 parts of bisphenol epoxy resin (AER661, manufactured by Asahi Kasei Corporation), 10 parts of epoxy novolac resin (DEN-438, manufactured by Dow Chemical), 2.5 parts of dicyandiamide, and 0.2 parts of benzyldimethylamine.
A resin varnish was prepared by dissolving it in a mixed solvent of 25 parts of MEK, 20 parts of dimethylformamide, and 20 parts of methyl cellosolve. Using this, a double-sided copper-clad laminate was obtained in the same manner as in Example 1. Comparative example 3 [η] is 0.50 dl/g (chloroform, measured at 30°C)
poly(2,6-dimethylphenylene-1,4-
ether) in chloroform to a concentration of 40
% varnish was made. This varnish has a thickness of 0.18mm.
A glass cloth was impregnated with the resin and dried at 100°C for 20 minutes to remove volatile substances, creating a resin-impregnated cloth.
Next, stack 8 of these, layer copper foil with a thickness of 35μ on both sides, fit a frame with a thickness of 1.6mm, and heat at 270℃, 50kg/
cm 2 for 12 minutes to obtain a copper-clad polyphenylene ether laminate with a thickness of 1.6 mm. The performance of the double-sided copper-clad laminates obtained in the above Examples and Comparative Examples was tested. The results are shown in the table below.

【表】 試験方法; 銅箔引き剥し強さ、吸水率、誘電率、誘電正
接、絶縁抵抗、ハンダ耐熱性はJIS−C−6481に
よつた。 試験条件の表わし方はMEMAによつた。 すなわち、 A:受け入れ状態 C−96/20/65:96時間、20℃、65%RH保存 D−2/100:2時間、100℃で煮沸 E−24/ :48時間、50℃で保存 などである。
[Table] Test method: Copper foil peel strength, water absorption rate, dielectric constant, dielectric loss tangent, insulation resistance, and soldering heat resistance were in accordance with JIS-C-6481. The method of expressing test conditions was based on MEMA. That is, A: Acceptance state C-96/20/65: Stored at 20℃, 65%RH for 96 hours D-2/100: Boiled at 100℃ for 2 hours E-24/: Stored at 50℃ for 48 hours, etc. It is.

Claims (1)

【特許請求の範囲】 1 一般式 (R1,R2,R3,R4はそれぞれ水素原子、ハロゲ
ン原子、もしくは炭素数1〜4のアルキル基をあ
らわす。) を構造単位とするポリフエニレンエーテルに分子
中にフエノール性水酸基を有するスチレン系化合
物をグラフトせしめてなつたグラフト共重合体と
エポキシ樹脂を混合してなることを特徴とする樹
脂組成物。 2 分子中にフエノール性水酸基を有する化合物
はP−ヒドロキシスチレンまたはそのハロゲン化
合物の単量体または重合体であることを特徴とす
る特許請求の範囲第1項記載の樹脂組成物。
[Claims] 1. General formula (R 1 , R 2 , R 3 , and R 4 each represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.) The polyphenylene ether has a phenolic hydroxyl group in the molecule. A resin composition characterized in that it is made by mixing a graft copolymer obtained by grafting a styrene-based compound with an epoxy resin. 2. The resin composition according to claim 1, wherein the compound having a phenolic hydroxyl group in the molecule is a monomer or polymer of P-hydroxystyrene or its halogen compound.
JP18336081A 1981-11-16 1981-11-16 JUSHISOSEIBUTSU Expired - Lifetime JPH0231743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18336081A JPH0231743B2 (en) 1981-11-16 1981-11-16 JUSHISOSEIBUTSU

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18336081A JPH0231743B2 (en) 1981-11-16 1981-11-16 JUSHISOSEIBUTSU

Publications (2)

Publication Number Publication Date
JPS5884844A JPS5884844A (en) 1983-05-21
JPH0231743B2 true JPH0231743B2 (en) 1990-07-16

Family

ID=16134389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18336081A Expired - Lifetime JPH0231743B2 (en) 1981-11-16 1981-11-16 JUSHISOSEIBUTSU

Country Status (1)

Country Link
JP (1) JPH0231743B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623558A (en) * 1985-05-29 1986-11-18 W. R. Grace & Co. Reactive plastisol dispersion
US4912172A (en) * 1987-09-03 1990-03-27 General Electric Company Compositions comprising polyphenylene ethers, polyepoxides and aluminum or zinc diketone salt
US4965400A (en) * 1987-09-16 1990-10-23 Richard Vicari Preparation of 3,5-disubstituted-4-acetoxystyrene
KR100709149B1 (en) * 2003-05-22 2007-04-18 아사히 가세이 케미칼즈 가부시키가이샤 Epoxy Resin Composition
EP3124515A1 (en) 2015-07-28 2017-02-01 Evonik Degussa GmbH Reactive non-aqueous dispersions for paints, adhesives and sealants

Also Published As

Publication number Publication date
JPS5884844A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
CN112204105B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
EP0234450B1 (en) Thermosetting resin and prepreg and laminate using the same
EP1508594B1 (en) Resin composition and prepreg for laminate and metal-clad laminate
KR20220024148A (en) Resin composition, prepreg, resin-added film, resin-added metal foil, metal clad laminate, and wiring board
JPH01121356A (en) Thermosetting resin composition and prepreg and laminated board produced by using same
EP0138609A2 (en) Resin compositions for laminated boards
JPH0231743B2 (en) JUSHISOSEIBUTSU
JPH0579686B2 (en)
CN112236464A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP4852292B2 (en) Copper-clad laminate
JPS61192720A (en) Resin composition for laminated sheet
JP4499344B2 (en) Resin composition and prepreg, laminate and multilayer printed circuit board using the same
JPS6356548A (en) Thermosetting resin composition, laminated sheet produced by using same and production thereof
JP2003342312A (en) Organic phosphorus compound containing resin composition, and prepreg, laminated sheet and multilayer printed circuit board prepared by using it
JP2570138B2 (en) Laminated board using flame-retardant resin composition
JPH09124806A (en) Production of prepreg
JP2533747B2 (en) Laminated board and manufacturing method thereof
JPH04161454A (en) Polyphenylene oxide-based resin composition
JP2859413B2 (en) Propargyl ether compound and composition containing the same
JPH0747637B2 (en) Curable resin composition
JP4040278B2 (en) Resin composition for producing metal-clad laminate, prepreg, laminate, metal-clad laminate and multilayer printed wiring board
JPH06211964A (en) Low-permittivity thermosetting resin composition
JPH02185517A (en) Thermosetting resin composition and prepreg and laminate prepared therefrom
JPH01145A (en) Thermosetting resin compositions, prepregs and laminates
JPH06279601A (en) Prepreg and laminate using thermosetting resin composition