JPH023151Y2 - - Google Patents

Info

Publication number
JPH023151Y2
JPH023151Y2 JP1983173585U JP17358583U JPH023151Y2 JP H023151 Y2 JPH023151 Y2 JP H023151Y2 JP 1983173585 U JP1983173585 U JP 1983173585U JP 17358583 U JP17358583 U JP 17358583U JP H023151 Y2 JPH023151 Y2 JP H023151Y2
Authority
JP
Japan
Prior art keywords
sample
suction
suction nozzle
hole
measuring section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983173585U
Other languages
Japanese (ja)
Other versions
JPS6079135U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17358583U priority Critical patent/JPS6079135U/en
Publication of JPS6079135U publication Critical patent/JPS6079135U/en
Application granted granted Critical
Publication of JPH023151Y2 publication Critical patent/JPH023151Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 本考案は試料容器から試料を自動的に定量採取
して大気に触れずに他の容器に注入する試料定量
採取装置に関するものである。
[Detailed description of the invention] A. Field of industrial application The present invention relates to a quantitative sample collection device that automatically collects a quantitative amount of a sample from a sample container and injects it into another container without exposing it to the atmosphere.

ロ 従来技術 例えば、固体、液体又は気体中に含まれる微量
水分を測定する方法としてカールフイツシヤー測
定法が知られている。この測定法はメチルアルコ
ール及びビリジンの存在下で、水がヨウ素及び亜
硫酸ガスと、次の化学式に示すように定量的に反
応することを利用した水分定量法である。
B. Prior Art For example, the Karl Fischer measurement method is known as a method for measuring trace amounts of moisture contained in solids, liquids, or gases. This measurement method utilizes the fact that water quantitatively reacts with iodine and sulfur dioxide gas in the presence of methyl alcohol and pyridine as shown in the following chemical formula.

SO2+I2+H2O+3C5H5N→2C5H5N・HI+
C5H5N・SO3C5H5N・SO3+CH3OH→C5H5N・
HSO4CH3 滴定終点は溶液に浸した2本の白金電極間に微
少な一定電流を流して分極させ、カールフイツシ
ヤー試薬の過剰によつて生ずる電位変化を検出す
るいわゆるDead stop法により正確に検出する。
SO 2 +I 2 +H 2 O+3C 5 H 5 N→2C 5 H 5 N・HI+
C 5 H 5 N・SO 3 C 5 H 5 N・SO 3 +CH 3 OH→C 5 H 5 N・
The end point of HSO 4 CH 3 titration can be determined accurately using the so-called dead stop method, which polarizes two platinum electrodes by passing a small constant current between them immersed in the solution, and detects the change in potential caused by excess Karl Fischer reagent. To detect.

そして上記測定原理に基づき、従来例えば次の
ようにして試料中の微量水分が測定される。即
ち、第1図に於いて1は従来のカールフイツシヤ
ー水分計に含まれる滴定フラスコで、この中に試
料とカールフイツシヤー試薬を入れて滴定を行
う。そして滴定フラスコ1にはカールフイツシヤ
ー試薬の注入口2、滴定終点検出用の双白金電極
3が設けられており、更に開口部はゴム栓4で閉
じられる。
Based on the above measurement principle, trace amounts of moisture in a sample are conventionally measured, for example, in the following manner. That is, in FIG. 1, numeral 1 is a titration flask included in a conventional Karl Fischer moisture meter, into which a sample and Karl Fischer reagent are placed for titration. The titration flask 1 is provided with an injection port 2 for a Karl Fischer reagent, a twin platinum electrode 3 for detecting the end point of titration, and the opening is closed with a rubber stopper 4.

ここで滴定される試料は大気中の湿気に触れて
水分量が変わることのないよう、注射器5で定量
吸引しその先端針部をゴム栓4に貫通させること
により滴定フラスコ1内に試料を定量注入する。
In order to prevent the sample to be titrated here from changing its water content due to contact with atmospheric moisture, a fixed amount of the sample is drawn into the titration flask 1 by suctioning a fixed amount with a syringe 5 and passing the tip of the needle through the rubber stopper 4. inject.

そして注入口2からカールフイツシヤー試薬を
注入していき、滴定が行われ、滴定終点が双白金
電極3の電位変化により検出される。
Then, the Karl Fischer reagent is injected through the injection port 2, titration is performed, and the end point of the titration is detected by the potential change of the twin platinum electrodes 3.

このように滴定に係る試料は大気の湿気に触れ
て水分量の変ることのないよう、試料容器からの
試料の採取及び滴定フラスコ内への注入は密閉系
で行われる。而して、H2Omg/l又はppmなど
の単位で試料中の水分濃度を出すためには前もつ
て滴定に係る試料の容量を測定しておかなければ
ならない。
In this manner, the sample for titration is collected from the sample container and injected into the titration flask in a closed system so that the sample for titration does not change its moisture content due to exposure to atmospheric moisture. Therefore, in order to calculate the water concentration in a sample in units such as H 2 Omg/l or ppm, the volume of the sample for titration must be measured in advance.

ところが従来はこれらを手作業で行つていたた
め作業性の低下を招いていた。しかも従来の注射
器5のように針部尖端に吸引孔がある場合、針部
がゴム栓4を貫通する時、貫通を繰り返すにつれ
て針部尖端がゴム栓4を削つて微小なゴム片4′
が生じこれにより吸引孔に目詰まりが発生し試料
の吸引に支障をきたす。この時、ゴム栓4が荒ら
されるため試料の密閉も不十分になる。
However, in the past, these processes were performed manually, resulting in a decrease in work efficiency. Moreover, when the needle tip has a suction hole as in the conventional syringe 5, when the needle penetrates the rubber stopper 4, as the needle passes through the rubber stopper 4, the needle point scrapes the rubber stopper 4 and creates minute rubber pieces 4'.
This causes the suction hole to become clogged, making it difficult to aspirate the sample. At this time, since the rubber stopper 4 is damaged, the sealing of the sample becomes insufficient.

ハ 考案の目的 本考案の目的は、例えばカールフイツシヤー測
定法による試料中微量水分測定のように測定時の
試料に大気が触れてはならない場合において密閉
状態で試料を容器から自動的に採取して他の容器
へ注入し、かつその試料の容量を自動的に計量す
る装置を提供することである。
C. Purpose of the invention The purpose of the invention is to automatically collect a sample from a container in a sealed state in cases where the air must not come into contact with the sample during measurement, such as when measuring trace amounts of moisture in a sample using the Karl Fischer measurement method. An object of the present invention is to provide an apparatus for automatically measuring the volume of a sample and injecting the sample into another container.

ニ 考案の構成 本考案は、注射針の尖端を封じ、かつ、尖端部
側方に吸引孔6aを設けて形成され、試料容器9
内に出入りして試料を吸引する試料吸引ノズル6
と、上記吸引ノズル6を案内・支持するガイド孔
7bおよびガイド孔7bから分岐し、滴定フラス
コ12に挿し込んだ注入ノズル11と貫通する貫
通孔7aを有する固定ブロツク7と、一端が前記
吸引ノズル6に連通し、所定容積の測定空間を有
する試料計量部13と、前記試料計量部13の他
端に連通し、試料容器9から試料吸引ノズル6を
通して試料計量部13に試料を吸引して収納させ
る試料吸引機構15と、試料計量部13の前記他
端に連通し、乾燥空気又は脱水溶剤を押し出して
試料計量部13に収納された試料を測定容器に注
入する試料溶剤押し出し機構18と、試料の吸引
時に試料溶剤押し出し機構18を閉じ、かつ、乾
燥空気又は脱水溶剤の押し出し時に試料吸引機構
15を閉じるバルブ14とを具備し、上記吸引ノ
ズル6を、降下位置で試料容器9内に、また、上
昇位置で吸引ノズル6の吸引孔6aと固定ブロツ
ク7の貫通孔7aとを連通させるようになしたこ
とを特徴とする。
D. Structure of the invention The present invention is formed by sealing the tip of an injection needle and providing a suction hole 6a on the side of the tip, and a sample container 9.
Sample suction nozzle 6 that enters and exits the sample to suck the sample
and a fixed block 7 having a guide hole 7b for guiding and supporting the suction nozzle 6, a through hole 7a branching from the guide hole 7b and penetrating the injection nozzle 11 inserted into the titration flask 12, and one end of which is connected to the suction nozzle. 6, and a sample measuring section 13 having a measurement space of a predetermined volume; and the other end of the sample measuring section 13, and the sample is sucked from the sample container 9 into the sample measuring section 13 through the sample suction nozzle 6 and stored therein. a sample suction mechanism 15 that communicates with the other end of the sample measuring section 13 and pushes out dry air or dehydrated solvent to inject the sample stored in the sample measuring section 13 into the measurement container; and a valve 14 that closes the sample solvent extrusion mechanism 18 when suctioning dry air or dehydrated solvent, and closes the sample suction mechanism 15 when extruding dry air or dehydrated solvent, and the suction nozzle 6 is placed in the sample container 9 in the lowered position, and , the suction hole 6a of the suction nozzle 6 and the through hole 7a of the fixed block 7 are made to communicate with each other in the raised position.

ホ 実施例 本考案に係る試料定量採取装置の一実施例を第
3図に示す概略構成から説明する。図において6
は試料を吸引する吸引ノズルであり、固定ブロツ
ク7によつて案内・支持され、かつモーター8を
駆動源として上下動する注射針より構成される。
E. Example An example of the quantitative sample collection device according to the present invention will be described from the schematic configuration shown in FIG. 3. In the figure 6
Reference numeral denotes a suction nozzle for aspirating a sample, and is composed of an injection needle that is guided and supported by a fixed block 7 and that moves up and down using a motor 8 as a driving source.

この吸引ノズル6の尖端部、及び固定ブロツク
7を拡大すれば第4図のようになる。即ち第4図
に示すように吸引ノズル6の尖端は封じられてお
り、かつ尖端近傍側方には吸引孔6aが形成され
ている。従つて吸引ノズル6が試料容器9のゴム
栓10を貫通する時、従来のように吸引孔6aが
ゴム栓10を荒らすことはなく、吸引孔6aの目
詰まりやゴム栓10の密閉不良は生じない。そし
て固定ブロツク7には、吸引ノズル6を案内・支
持するガイド孔7bと、このガイド孔7bから側
方に貫通する孔7aが設けられており、吸引ノズ
ル6が上昇位置にあるとき、固定ブロツク7の孔
7aと吸引ノズル6の吸引孔6aとは重なり合
う。
If the tip of the suction nozzle 6 and the fixing block 7 are enlarged, it becomes as shown in FIG. 4. That is, as shown in FIG. 4, the tip of the suction nozzle 6 is sealed, and a suction hole 6a is formed on the side near the tip. Therefore, when the suction nozzle 6 penetrates the rubber stopper 10 of the sample container 9, the suction hole 6a does not damage the rubber stopper 10 as in the conventional case, and the suction hole 6a is not clogged or the rubber stopper 10 is not sealed properly. do not have. The fixed block 7 is provided with a guide hole 7b for guiding and supporting the suction nozzle 6, and a hole 7a penetrating laterally from the guide hole 7b.When the suction nozzle 6 is in the raised position, the fixed block The hole 7a of No. 7 and the suction hole 6a of the suction nozzle 6 overlap.

即ち第3図に示すように孔7aには注入ノズル
11の一端が嵌合されており、後に述べるように
吸引ノズル6に吸引された試料が吸引孔6aを通
して注入ノズル11から、例えば滴定フラスコ1
2に注入される。
That is, as shown in FIG. 3, one end of the injection nozzle 11 is fitted into the hole 7a, and as will be described later, the sample sucked into the suction nozzle 6 is transferred from the injection nozzle 11 through the suction hole 6a to, for example, the titration flask 1.
Injected into 2.

又、13はパイプ形状の試料計量部であり、一
端が吸引ノズル6に連通し他端に三方バルブ14
の第1の孔14aが連結される。
Further, 13 is a pipe-shaped sample measuring section, one end of which communicates with the suction nozzle 6 and the other end of which is connected to a three-way valve 14.
The first holes 14a of the two are connected to each other.

そして、試料の計量は吸引ノズル6と試料計量
部13の容積で決まり、試料計量部13の長さを
任意に変えることにより計量できる容量の大きさ
を調節することができる。15は三方バルブ1
4、試料計量部13、吸引ノズル6を経て試料容
器9から試料を吸引する試料吸引機構であり、例
えばピストン機構で構成される。この試料吸引機
構15は三方バルブ14の第2の孔14bにフレ
キシブルチユーブ16を介して連結され試料を吸
引する。18は試料計量部13に収納される試料
を滴定フラスコ12等の測定容器まで送り出す試
料溶剤押し出し機構であり、例えばエアーポンプ
で構成され、乾燥空気が試料計量部13に押し出
される。即ち試料溶剤押し出し機構18は三方バ
ルブ14の第3の孔14cにフレキシブルチユー
ブ19を介して連結されるが、シリカゲル、五酸
化リン等を含む乾燥筒20が併設されており、湿
気を含む空気が乾燥筒20を通過して乾燥空気と
なる。そして乾燥筒20を通過した乾燥空気が試
料溶剤押し出し機構18のエアーポンプにより三
方バルブ14を介して試料計量部13に送り込ま
れる。又、試料溶剤押し出し機構18としてエア
ーポンプの代わりに液ポンプを用いることも可能
であり、液ポンプにより脱水有機溶剤を試料計量
部13に送り出してもよい。この場合、乾燥筒2
0に代わつて、脱水有機溶剤の貯蔵容器が併設さ
れる。
The measurement of the sample is determined by the volumes of the suction nozzle 6 and the sample measuring section 13, and by arbitrarily changing the length of the sample measuring section 13, the amount of the sample that can be measured can be adjusted. 15 is three-way valve 1
4. A sample suction mechanism that sucks the sample from the sample container 9 via the sample measuring section 13 and the suction nozzle 6, and is composed of, for example, a piston mechanism. This sample suction mechanism 15 is connected to the second hole 14b of the three-way valve 14 via a flexible tube 16, and suctions the sample. Reference numeral 18 denotes a sample solvent extrusion mechanism for delivering the sample stored in the sample measuring section 13 to a measurement container such as the titration flask 12. The mechanism is composed of, for example, an air pump, and dry air is pushed out to the sample measuring section 13. That is, the sample solvent extrusion mechanism 18 is connected to the third hole 14c of the three-way valve 14 via a flexible tube 19, and is equipped with a drying tube 20 containing silica gel, phosphorus pentoxide, etc., so that air containing moisture is removed. The air passes through the drying cylinder 20 and becomes dry air. The dry air that has passed through the drying tube 20 is sent into the sample measuring section 13 via the three-way valve 14 by the air pump of the sample solvent extrusion mechanism 18. Furthermore, a liquid pump can be used instead of the air pump as the sample solvent extrusion mechanism 18, and the dehydrated organic solvent may be sent to the sample measuring section 13 by the liquid pump. In this case, drying cylinder 2
0, a storage container for dehydrated organic solvent is also provided.

上記構成に基づき本考案の動作をカールフイツ
シヤー法による試料中微量水分測定例について説
明する。まず吸引ノズル6を下降させてゴム栓1
0を通過し試料容器9内に吸引ノズル6を貫入す
る。そして吸引ノズル6が試料に届けば試料計量
部13と試料吸引機構15とが連通するように三
方バルブ14を切り換えて試料吸引機構15を駆
動して試料を吸引する。この時、最初に吸引され
た試料は吸引ノズル6及び試料計量部13の内部
等の大気に触れて汚染されることが予想される。
従つて最初に吸引された試料は吸引ノズル6と試
料計量部13を一巡して排液タンク17に排出さ
れる。このように最初に吸引された試料の排出後
に吸引された試料が、吸引ノズル6と試料計量部
13に収納される。この時、試料計量部13は所
定の容積に設定されており、試料は自動的に計量
される。
Based on the above configuration, the operation of the present invention will be explained with reference to an example of measuring a trace amount of moisture in a sample using the Karl Fischer method. First, lower the suction nozzle 6 and remove the rubber stopper 1.
0 and penetrates the suction nozzle 6 into the sample container 9. When the suction nozzle 6 reaches the sample, the three-way valve 14 is switched so that the sample measuring section 13 and the sample suction mechanism 15 communicate with each other, and the sample suction mechanism 15 is driven to aspirate the sample. At this time, it is expected that the first aspirated sample will come into contact with the atmosphere inside the suction nozzle 6 and the sample measuring section 13 and become contaminated.
Therefore, the first sample aspirated goes around the suction nozzle 6 and the sample measuring section 13 and is discharged into the drain tank 17. After the first aspirated sample is discharged in this way, the aspirated sample is stored in the suction nozzle 6 and the sample measuring section 13. At this time, the sample measuring section 13 is set to a predetermined volume, and the sample is automatically measured.

次に吸引ノズル6の吸引孔6aが固定ブロツク
7の孔7aに重なり合うまで吸引ノズル6を引き
上げれば、試料計量部13と試料溶剤押し出し機
構18とが連通するように三方バルブ14を切り
換えて試料溶剤押し出し機構18を駆動すること
により乾燥空気又は脱水有機溶剤を試料計量部1
3へ送り出して、これより試料計量部13、吸引
ノズル6、吸引孔6a、孔7a、及び注入ノズル
11を経て滴定フラスコ12まで試料が乾燥空気
又は脱水有機溶剤により押し出されて一定量注入
される。
Next, when the suction nozzle 6 is pulled up until the suction hole 6a of the suction nozzle 6 overlaps with the hole 7a of the fixed block 7, the three-way valve 14 is switched so that the sample measuring section 13 and the sample solvent extrusion mechanism 18 communicate with each other. By driving the solvent extrusion mechanism 18, dry air or dehydrated organic solvent is supplied to the sample measuring section 1.
From there, the sample is pushed out by dry air or dehydrated organic solvent and injected into the titration flask 12 via the sample measuring section 13, suction nozzle 6, suction hole 6a, hole 7a, and injection nozzle 11. .

即ち、試料容器9から試料を採取し滴定フラス
コ12に試料を注入するまでの動作がすべて密閉
系で行われ試料が大気に触れることはない。
That is, all operations from taking the sample from the sample container 9 to injecting the sample into the titration flask 12 are performed in a closed system, and the sample does not come into contact with the atmosphere.

そして滴定フラスコ12の他の注入口(図示せ
ず)からカールフイツシヤー試薬を注入していき
滴定を行うことにより試料中の微量水分が測定さ
れる。
Then, the Karl Fischer reagent is injected from another injection port (not shown) of the titration flask 12 and titration is performed, thereby measuring the trace amount of water in the sample.

尚、本考案に係る試料定量採取装置は上記カー
ルフイツシヤー法による試料中微量水分測定に用
いられるだけでなく、例えば中和滴定において大
気中のCo2,O2などに触れてはならない試料を滴
定する場合も有効である。
The sample quantitative sampling device according to the present invention is not only used for measuring trace amounts of moisture in a sample using the above-mentioned Karl Fischer method, but also for measuring samples that must not come into contact with atmospheric Co2 , O2, etc. in neutralization titration, for example. It is also effective when titrating.

ヘ 考案の効果 本考案によれば、大気中の湿気、酸素、二酸化
炭素などに触れてはならない試料を試料容器から
採取して滴定フラスコなどの測定容器に一定量注
入する作業において、注射針の尖端を封じ、かつ
尖端部側方に吸引孔を設けて形成された吸引ノズ
ルを試料容器のゴム栓に貫入させて試料を吸引す
るようにしたから、吸引孔でゴム栓が荒らされな
いため吸引ノズルの目詰まりを防止でき、かつ密
閉状態において吸引ノズルの上下動一動作だけで
試料を採取できる。そして吸引ノズルの固定部と
の嵌合をきつくしてもノズルの径が細いので、摺
動に支障なく充分な密閉ができる。又、試料計量
部は吸引ノズルに連通しているため試料を吸引す
るだけで自動的に試料は一定量に計量されて測定
容器に注入され、しかも試料計量部の測定空間の
容積は任意に調節できる。更に試料計量部、吸引
ノズルを経て測定容器まで試料を脱水有機溶剤で
押し出せば、試料計量部、吸引ノズルの洗浄が自
動的に行える。
F. Effects of the invention According to the invention, when a sample that must not come into contact with atmospheric moisture, oxygen, carbon dioxide, etc. is collected from a sample container and injected into a measurement container such as a titration flask, the syringe needle is The tip is sealed and the suction nozzle, which is formed by providing a suction hole on the side of the tip, is inserted into the rubber stopper of the sample container to suck the sample, so the rubber stopper is not damaged by the suction hole. The nozzle can be prevented from clogging, and a sample can be collected by simply moving the suction nozzle up and down in a sealed state. Even if the suction nozzle is tightly fitted to the fixing part, the diameter of the nozzle is small, so a sufficient seal can be achieved without any hindrance to sliding. In addition, since the sample measuring section communicates with the suction nozzle, simply by sucking the sample, the sample is automatically weighed to a certain amount and injected into the measurement container, and the volume of the measurement space of the sample measuring section can be adjusted as desired. can. Furthermore, if the sample is pushed out with a dehydrated organic solvent through the sample measuring section and the suction nozzle to the measurement container, the sample measuring section and the suction nozzle can be automatically cleaned.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカールフイツシヤー微量水分測定装置
における滴定容器の概略側面図で、第2図はその
ゴム栓と注射器の針部の部分拡大側断面図、第3
図は本考案に係る試料定量採取装置の概略構成図
で、第4図はその吸引ノズルと試料容器の吸引口
の部分拡大側断面図である。 6……吸引ノズル、6a……孔、9……試料容
器、12……測定容器、13……試料計量部、1
4……バルブ、15……試料吸引機構、18……
試料溶剤押し出し機構。
Fig. 1 is a schematic side view of the titration container in the Karl Fischer trace moisture measuring device, Fig. 2 is a partially enlarged side sectional view of its rubber stopper and the needle of the syringe, and Fig. 3
The figure is a schematic configuration diagram of the quantitative sample collection device according to the present invention, and FIG. 4 is a partially enlarged side sectional view of the suction nozzle and the suction port of the sample container. 6... Suction nozzle, 6a... Hole, 9... Sample container, 12... Measurement container, 13... Sample measuring section, 1
4... Valve, 15... Sample suction mechanism, 18...
Sample solvent extrusion mechanism.

Claims (1)

【実用新案登録請求の範囲】 注射針の尖端を封じ、かつ、尖端部側方に吸引
孔を設けて形成され、試料容器内に出入りして試
料を吸引する試料吸引ノズルと、 上記吸引ノズルを案内・支持するガイド孔およ
びガイド孔から分岐し、滴定フラスコに挿し込ん
だ注入ノズルと貫通する貫通孔を有する固定ブロ
ツクと、 一端が前記吸引ノズルに連通し、所定容積の測
定空間を有する試料計量部と、 前記試料計量部の他端に連通し、試料容器から
試料吸引ノズルを通して試料計量部に試料を吸引
して収納させる試料吸引機構と、 試料計量部の前記他端に連通し、乾燥空気又は
脱水溶剤を押し出して試料計量部に収納された試
料を測定容器に注入する試料溶剤押し出し機構
と、 試料の吸引時に試料溶剤押し出し機構を閉じ、
かつ、乾燥空気又は脱水溶剤の押し出し時に試料
吸引機構を閉じるバルブとを具備し、 上記吸引ノズルを、降下位置で試料容器内に、
また、上昇位置で吸引ノズルの吸引孔と固定ブロ
ツクの貫通孔とを連通させるようになしたこと を特徴とする試料定量採取装置。
[Scope of Claim for Utility Model Registration] A sample suction nozzle that is formed by sealing the tip of an injection needle and providing a suction hole on the side of the tip, and that sucks a sample by going in and out of a sample container; a fixing block having a guide hole for guiding and supporting and a through hole branching from the guide hole and penetrating an injection nozzle inserted into a titration flask; and a sample measuring block having one end communicating with the suction nozzle and having a measurement space of a predetermined volume. a sample suction mechanism that communicates with the other end of the sample measuring section and sucks and stores the sample from the sample container into the sample measuring section through the sample suction nozzle; and a sample suction mechanism that communicates with the other end of the sample measuring section and draws dry air or a sample solvent extrusion mechanism that extrudes the dehydrated solvent and injects the sample stored in the sample measuring section into the measurement container, and closes the sample solvent extrusion mechanism when sucking the sample,
and a valve that closes the sample suction mechanism when extruding dry air or dehydrated solvent, and the suction nozzle is placed in the sample container at the lowered position.
Further, a quantitative sample collection device characterized in that the suction hole of the suction nozzle and the through hole of the fixed block are communicated with each other in the raised position.
JP17358583U 1983-11-08 1983-11-08 Sample quantitative collection device Granted JPS6079135U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17358583U JPS6079135U (en) 1983-11-08 1983-11-08 Sample quantitative collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17358583U JPS6079135U (en) 1983-11-08 1983-11-08 Sample quantitative collection device

Publications (2)

Publication Number Publication Date
JPS6079135U JPS6079135U (en) 1985-06-01
JPH023151Y2 true JPH023151Y2 (en) 1990-01-25

Family

ID=30378113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17358583U Granted JPS6079135U (en) 1983-11-08 1983-11-08 Sample quantitative collection device

Country Status (1)

Country Link
JP (1) JPS6079135U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2575663B2 (en) * 1986-08-21 1997-01-29 三菱瓦斯化学株式会社 Online moisture analyzer
JP5083047B2 (en) * 2008-06-04 2012-11-28 株式会社三菱化学アナリテック Coulometric titrator for moisture measurement
JP5477913B2 (en) * 2010-11-22 2014-04-23 株式会社堀場製作所 Electrode body and measuring apparatus using the electrode body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982899A (en) * 1975-05-22 1976-09-28 Corning Glass Works Fluid handling apparatus
JPS5323509U (en) * 1976-08-07 1978-02-28
JPS57114858A (en) * 1981-01-08 1982-07-16 Fujisawa Pharmaceut Co Ltd Automatic sample supplier for moisture measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982899A (en) * 1975-05-22 1976-09-28 Corning Glass Works Fluid handling apparatus
JPS5323509U (en) * 1976-08-07 1978-02-28
JPS57114858A (en) * 1981-01-08 1982-07-16 Fujisawa Pharmaceut Co Ltd Automatic sample supplier for moisture measurement

Also Published As

Publication number Publication date
JPS6079135U (en) 1985-06-01

Similar Documents

Publication Publication Date Title
US5479923A (en) Method and apparatus for analyzing a sample
US10261009B2 (en) Method for determining an analyte in a water sample by means of a mobile water analysis arrangement
CN105067596B (en) Ozone-detecting element and detection method
US5837199A (en) Measurement apparatus for analyzing fluids
CN105842234A (en) Self-calibration continuous and online nitrogen dioxide detection device and method
KR20200113343A (en) Automatic sampling system for collecting air pollutants and bad odor compounds
CN105738354A (en) Gas-liquid phase chemiluminescence detection device and detection method
EP0384217B1 (en) Device for supplying a sample into the measuring chamber of a sensor and measuring method therefor
JPH023151Y2 (en)
WO1998022794A1 (en) Gas collecting apparatus
CN205607866U (en) From maring continuous on -line measuring device of formula nitrogen dioxide
DE1209775B (en) Arrangement for determining the proportion of a substance that can be extracted from a liquid in gaseous form
CN212646567U (en) Electrolyte analyzer and liquid path system thereof
JP3799501B2 (en) Quantitative sampling device
JP3521420B2 (en) Gas analyzer for gas analysis
JPH0515076Y2 (en)
DE1303494B (en)
CN110940661A (en) Suction-type quantitative analysis device
GB2300261A (en) Sampling and analysing samples from a patient
JP3531072B2 (en) Air pollution measuring device and quantitative sampling device
JPH0116049Y2 (en)
JPH0694586A (en) Polutant sampling device and average pollutant concentration measuring method
JPS5937722Y2 (en) reactor
JPS6324444Y2 (en)
JPH10153532A (en) Sample sampling apparatus