JPH0231510B2 - - Google Patents
Info
- Publication number
- JPH0231510B2 JPH0231510B2 JP59140543A JP14054384A JPH0231510B2 JP H0231510 B2 JPH0231510 B2 JP H0231510B2 JP 59140543 A JP59140543 A JP 59140543A JP 14054384 A JP14054384 A JP 14054384A JP H0231510 B2 JPH0231510 B2 JP H0231510B2
- Authority
- JP
- Japan
- Prior art keywords
- divided
- shield plate
- refrigerant flow
- heat
- shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 20
- 238000009413 insulation Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/001—Thermal insulation specially adapted for cryogenic vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0308—Radiation shield
- F17C2203/032—Multi-sheet layers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は超電導装置に係り、特に超電導コイル
と真空容器との間に設置される熱輻射シールドの
構造を改良した超電導装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting device, and particularly to a superconducting device in which the structure of a thermal radiation shield installed between a superconducting coil and a vacuum vessel is improved.
核融合装置などに使用される超電導コイルは超
電導現象を得るために極低温(4.2〓)に冷却す
ることが絶対的条件となる。従つて、大気よりの
熱侵入を防ぐことが必要となる。この熱侵入を防
止する手段として熱輻射シールドを設けている。
Superconducting coils used in nuclear fusion devices, etc. must be cooled to an extremely low temperature (4.2〓) in order to achieve superconductivity. Therefore, it is necessary to prevent heat from entering from the atmosphere. A thermal radiation shield is provided as a means to prevent this heat from entering.
この熱輻射シールドは、超電導コイルを覆うよ
うな形状で熱伝導性の良い銅製シールド板を主体
に、低温流体(たとえば液体窒素)を流通させる
管をシールド板上に蛇行させて巻回し固着する。
そして、この上に熱反射を行なうためのアルミ蒸
着極薄膜を多層に重ね合わせたものである。 This thermal radiation shield consists mainly of a copper shield plate that has a shape that covers the superconducting coil and has good thermal conductivity, and a tube through which a low-temperature fluid (for example, liquid nitrogen) flows is wound around the shield plate in a meandering manner and fixed to the shield plate.
On top of this, multiple layers of aluminum evaporated ultra-thin films are superimposed for heat reflection.
第2図に上述した熱輻射シールドを備えた超電
導装置を示す。 FIG. 2 shows a superconducting device equipped with the above-mentioned thermal radiation shield.
該図の如く、超電導コイル(図示せず)を収納
し、かつ、真空断熱を行なう真空容器1は円筒状
に形成され、かつ、上下にフランジが設けられ真
空蓋(図示せず)がかぶさるようになつている。
そして、真空容器1内の壁面にそつてほぼ円筒形
の熱輻射シールドの銅製シールド板2が設けら
れ、真空容器1の内壁より吊り上げ具3で保持さ
れている。この銅製シールド板2には冷媒流通管
4が蛇行して巻回され固着されている。更に、こ
の上にアルミ蒸着極薄膜等の多層断熱膜5が貼り
合わせてある。冷媒流通管4の流入口6は真空容
器1の壁を貫通し外部へ引き出してある。 As shown in the figure, a vacuum container 1 that houses a superconducting coil (not shown) and performs vacuum insulation is formed in a cylindrical shape, and has flanges on the top and bottom so that it can be covered with a vacuum lid (not shown). It's getting old.
A substantially cylindrical copper shield plate 2 of a thermal radiation shield is provided along the wall surface of the vacuum container 1, and is held by a lifting tool 3 from the inner wall of the vacuum container 1. A refrigerant flow pipe 4 is wound around the copper shield plate 2 in a meandering manner and is fixed thereto. Furthermore, a multilayer heat insulating film 5 such as an extremely thin aluminum vapor-deposited film is bonded thereon. The inlet 6 of the refrigerant flow pipe 4 penetrates the wall of the vacuum container 1 and is drawn out to the outside.
このような熱輻射シールドを有する超電導装置
においては、装置が小形であつたため銅製シール
ド板2を円筒状に成形し、この銅製シールド板2
に冷媒流通管4を固着した一体形構造が可能であ
るが、この従来の構造では次のような欠点があ
る。 In a superconducting device having such a thermal radiation shield, since the device is small, the copper shield plate 2 is formed into a cylindrical shape.
Although it is possible to have an integral structure in which the refrigerant flow pipe 4 is fixed to the refrigerant flow pipe 4, this conventional structure has the following drawbacks.
即ち、一般に熱伝導の良い銅製シールド板2を
使用するため、大形であれ小形であれ、必要な銅
製シールド板2の厚みは一定である。従つて、銅
製シールド板2の径が大きくなると剛性が低下
し、例えば冷媒流通管4を半田付やろう付する際
の熱により変形してしまい、製作上困難となると
共に、取扱い上も剛性低下により難しいものとな
る。また、取り付け後、冷媒流通管4に冷媒を流
通させると、単位長さ当りの熱収縮量が一定でも
大径になるため、銅製シールド板2内に生じる内
部応力が過大になり、ひどい場合は変形してしま
う。 That is, since a copper shield plate 2 with good thermal conductivity is generally used, the necessary thickness of the copper shield plate 2 is constant regardless of whether it is large or small. Therefore, as the diameter of the copper shield plate 2 increases, its rigidity decreases, and for example, it is deformed by the heat generated when soldering or brazing the refrigerant flow pipe 4, making it difficult to manufacture and reducing its rigidity in handling. It becomes more difficult. In addition, when refrigerant is passed through the refrigerant flow pipe 4 after installation, the diameter becomes large even if the amount of heat shrinkage per unit length is constant, so the internal stress generated within the copper shield plate 2 becomes excessive, and in severe cases It becomes deformed.
本発明は上述の点に鑑み成されたもので、その
目的とするところは、熱輻射シールドの径が大き
くなつても、熱侵入を防止する効果を損うことな
く剛性の低下や熱変形が少なく、かつ、内部応力
を低減でき、しかも製作が容易な超電導装置を提
供するにある。
The present invention has been made in view of the above points, and its purpose is to prevent a decrease in rigidity and thermal deformation without impairing the effect of preventing heat intrusion even if the diameter of the thermal radiation shield becomes large. It is an object of the present invention to provide a superconducting device that can reduce internal stress and is easy to manufacture.
本発明は、シールド板を周方向に分割した分割
シールド板と、各分割シールド板ごとにこれに蛇
行して固着された分割冷媒流通管と、各分割シー
ルド板ごとにこれを覆う分割多層断熱膜とから複
数の分割熱輻射シールドを構成し、相隣接する分
割シールド板の各分割端部を互に重ね合わせてほ
ぼ円筒形の熱輻射シールドとすることにより所期
の目的を達成するようにしたものである。
The present invention provides a divided shield plate obtained by dividing a shield plate in the circumferential direction, a divided refrigerant flow pipe meanderingly fixed to the divided shield plate for each divided shield plate, and a divided multilayer insulation film covering each divided shield plate. The desired purpose was achieved by configuring a plurality of divided heat radiation shields from the above, and by overlapping each divided end of the adjacent divided shield plates to form a substantially cylindrical heat radiation shield. It is something.
以下、図面の実施例に基づいて本発明を説明す
る。尚、符号は従来と同一のものは同符号を使用
する。
The present invention will be described below based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.
第1図は本発明の一実施例を示す。該図の如
く、真空容器1は従来と同様な構成で、熱輻射シ
ールドはこの真空容器1の内壁に従来と同様に吊
り金具(図示せず)で保持されている。本実施例
の熱輻射シールドも銅製シールド板、冷媒流通
管、及び多層断熱膜とから構成されるが、本実施
例では、銅製シールド板を周方向に複数に分割し
た分割シールド板7と、各分割銅製シールド板7
ごとにこれに所定間隔で蛇行して半田付などで固
着された分割冷媒流通管8と、分割冷媒流通管8
が固着されている側の各分割銅製シールド板7上
にアルミ蒸着薄膜などを多層に貼り合わせてなる
分割多層断熱膜10とから複数の分割熱輻射シー
ルドが構成され、相隣接する分割熱輻射シールド
における分割銅製シールド板7の各分割端部を互
に重ね合わせることにより、ほぼ円筒形の熱輻射
シールドに組立てられている。なお、各分割冷媒
流通管8は真空容器1の壁を貫通しており、その
端部には流入口9を有し、互いの流入口9は真空
容器1の外部で接続されている。 FIG. 1 shows an embodiment of the invention. As shown in the figure, the vacuum container 1 has the same structure as the conventional one, and the thermal radiation shield is held on the inner wall of the vacuum container 1 by a hanging fitting (not shown) as in the conventional one. The thermal radiation shield of this embodiment is also composed of a copper shield plate, a refrigerant flow pipe, and a multilayer insulation film. Divided copper shield plate 7
The divided refrigerant distribution pipes 8 meander at predetermined intervals and are fixed by soldering or the like, and the divided refrigerant distribution pipes 8
A plurality of divided thermal radiation shields are constituted by a divided multilayer thermal insulation film 10 formed by laminating a multilayer aluminum vapor-deposited thin film or the like on each divided copper shield plate 7 on the side to which the divided copper shield plates 7 are fixed, and the adjacent divided thermal radiation shields are By overlapping each divided end portion of the divided copper shield plate 7, a substantially cylindrical thermal radiation shield is assembled. Note that each divided refrigerant flow pipe 8 penetrates the wall of the vacuum vessel 1 and has an inlet 9 at its end, and the inlets 9 are connected to each other outside the vacuum vessel 1.
本実施例によれば、ほぼ円筒形の銅製シールド
板を周方向に複数に分割して周方向幅の小さい分
割銅製シールド板7としたので、大形装置に適用
して銅製シールド板の径が大きくなつても、熱侵
入を防止する効果を損うことなく剛性の低下や冷
媒流通管を半田付などで固着する際の熱変形を防
ぎ、前記剛性の低下や熱変形に起因する製作上の
困難性を除くと共に、冷却時における熱収縮によ
る内部応力も著しく低減することができる。ま
た、冷媒流通管も各分割銅製シールド板7ごとに
分割し流通路の短かい分割冷媒流通管8としたの
で、各分割銅製シールド板7を均一にかつ効率よ
く冷却することができる。しかも、熱輻射シール
ドはユニツト化されている各分割熱輻射シールド
を単に組立てるだけで構成できるため、その製作
が極めて容易である。 According to this embodiment, a substantially cylindrical copper shield plate is divided into a plurality of pieces in the circumferential direction to form divided copper shield plates 7 having a small width in the circumferential direction. Even if the size increases, it will prevent a decrease in rigidity and thermal deformation when fixing refrigerant flow pipes by soldering, etc., without impairing the effect of preventing heat intrusion. In addition to eliminating this difficulty, it is also possible to significantly reduce internal stress due to thermal contraction during cooling. Moreover, since the refrigerant flow tubes are also divided for each divided copper shield plate 7 to form divided refrigerant flow tubes 8 with short flow paths, each divided copper shield plate 7 can be cooled uniformly and efficiently. Moreover, since the thermal radiation shield can be constructed by simply assembling each of the divided thermal radiation shields, it is extremely easy to manufacture.
なお、シールド板の材質は熱伝導性の良いもの
なら良く、例えばアルミニウムでもよい。 Note that the material of the shield plate may be any material as long as it has good thermal conductivity; for example, aluminum may be used.
以上説明した本発明の超電導装置によれば、ほ
ぼ円筒形のシールド板を周方向に複数に分割して
周方向幅の小さい分割シールド板としたので、大
形装置に適用してシールド板の径が大きくなつて
も、熱侵入を防止する効果を損うことなく剛性の
低下や冷媒流通管を半田付などで固着する際の熱
変形を防ぎ、前記剛性の低下や熱変形に起因する
製作上の困難性を除くと共に、冷却時における熱
収縮による内部応力も著しく低減することができ
る。また、冷媒流通管も各分割シールド板ごとに
分割し流通路の短かい分割冷媒流通管としたの
で、各分割シールド板を均一にかつ効率よく冷却
することができる。しかも、熱輻射シールドはユ
ニツト化されている各分割熱輻射シールドを単に
組立てるだけで構成できるため、その製作が極め
て容易である。
According to the superconducting device of the present invention described above, the substantially cylindrical shield plate is divided into a plurality of pieces in the circumferential direction to form a divided shield plate with a small width in the circumferential direction. Even if the temperature increases, it prevents a decrease in rigidity and thermal deformation when fixing refrigerant flow pipes by soldering, etc., without impairing the effect of preventing heat intrusion. In addition to eliminating this difficulty, it is also possible to significantly reduce internal stress due to thermal contraction during cooling. Moreover, since the refrigerant flow tubes are also divided for each divided shield plate to form divided refrigerant flow tubes with short flow paths, each divided shield plate can be cooled uniformly and efficiently. Moreover, since the thermal radiation shield can be constructed by simply assembling each of the divided thermal radiation shields, it is extremely easy to manufacture.
第1図は本発明に採用される極低温容器の部分
斜視図、第2図は従来のものに採用された極低温
容器の部分斜視図である。
1……真空容器、7……分割銅製シールド板、
8……分割冷媒流通管、10……分割多層断熱
膜。
FIG. 1 is a partial perspective view of a cryogenic container employed in the present invention, and FIG. 2 is a partial perspective view of a conventional cryogenic container. 1... Vacuum container, 7... Divided copper shield plate,
8...Divided refrigerant flow pipe, 10...Divided multilayer heat insulating membrane.
Claims (1)
ほぼ円筒状の真空容器と、該真空容器の内壁と前
記超電導コイルとの間に設置され、該超電導コイ
ルへの熱侵入を防止するほぼ円筒形の熱輻射シー
ルドとを備え、前記熱輻射シールドは、熱伝導性
の良いほぼ円筒形のシールド板と、該シールド板
に蛇行して巻回固着され、極低温冷媒を流通させ
る冷媒流通管と、該冷媒流通管が固着されている
側の前記シールド板を覆い熱反射を行う多層断熱
膜とから構成された超電導装置において、前記シ
ールド板を周方向に複数に分割した分割シールド
板と、各分割シールド板ごとにこれに蛇行して固
着された分割冷媒流通管と、各分割シールド板ご
とにこれを覆う分割多層断熱膜とから複数の分割
熱輻射シールドを構成し、相隣接する分割シール
ド板の各分割端部を互に重ね合わせたことを特徴
とする超電導装置。1. A superconducting coil, a substantially cylindrical vacuum container housing the superconducting coil, and a substantially cylindrical heat sink installed between the inner wall of the vacuum container and the superconducting coil to prevent heat from entering the superconducting coil. The thermal radiation shield includes a substantially cylindrical shield plate with good thermal conductivity, a refrigerant flow pipe that is wound and fixed to the shield plate in a meandering manner and allows the cryogenic refrigerant to flow through it, and In a superconducting device comprising a multilayer heat-insulating film that covers the shield plate on the side to which the flow pipe is fixed and performs heat reflection, a divided shield plate that divides the shield plate into a plurality of parts in the circumferential direction, and each divided shield plate A plurality of divided heat radiation shields are constructed from divided refrigerant flow pipes meanderingly fixed to each divided refrigerant flow pipe and divided multilayer insulation films that cover each divided shield plate, and each division of adjacent divided shield plates A superconducting device characterized by overlapping ends.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59140543A JPS6041271A (en) | 1984-07-09 | 1984-07-09 | Superconductive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59140543A JPS6041271A (en) | 1984-07-09 | 1984-07-09 | Superconductive device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6041271A JPS6041271A (en) | 1985-03-04 |
JPH0231510B2 true JPH0231510B2 (en) | 1990-07-13 |
Family
ID=15271117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59140543A Granted JPS6041271A (en) | 1984-07-09 | 1984-07-09 | Superconductive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6041271A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3000401U (en) * | 1994-01-24 | 1994-08-09 | 株式会社サン食材 | Lunch box |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458593A (en) * | 1987-08-31 | 1989-03-06 | Dainippon Printing Co Ltd | Print and usage thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111785A (en) * | 1974-06-05 | 1976-01-30 | Bristol Myers Co | |
JPS5330537A (en) * | 1976-08-30 | 1978-03-22 | Yokohama Rubber Co Ltd:The | Structure of crawler track for snowmobile |
-
1984
- 1984-07-09 JP JP59140543A patent/JPS6041271A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111785A (en) * | 1974-06-05 | 1976-01-30 | Bristol Myers Co | |
JPS5330537A (en) * | 1976-08-30 | 1978-03-22 | Yokohama Rubber Co Ltd:The | Structure of crawler track for snowmobile |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3000401U (en) * | 1994-01-24 | 1994-08-09 | 株式会社サン食材 | Lunch box |
Also Published As
Publication number | Publication date |
---|---|
JPS6041271A (en) | 1985-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4492089A (en) | Flexible cryogenic conduit | |
US4287720A (en) | Cryogenic liquid container | |
US20020024338A1 (en) | Minimal magnetic field-measurement dewar vessel | |
US5494740A (en) | Method of high vacuum heat insulation and a vacuum heat insulator used therein | |
EP0188389B1 (en) | Cryogenic vessel for a superconducting apparatus | |
GB2454571A (en) | A method of constructing a thermal radiation shield in a cryostat | |
US20010035224A1 (en) | Superinsulation support system | |
US4713941A (en) | Cryogenic vessel | |
EP0228683A2 (en) | A low cost intermediate radiation shield for a magnet cryostat | |
JPH0231510B2 (en) | ||
US4745313A (en) | Stator having three-phase superconducting windings | |
US3781733A (en) | Low heat conductant temperature stabilized structural support | |
US4020371A (en) | Electric rotating machine having a cryo-inductor | |
US11703556B2 (en) | Self-supporting flexible thermal radiation shield | |
JPH09126389A (en) | Extremely low temperature thermal insulation pipe | |
US4680935A (en) | Cryogenic container | |
JPS603555Y2 (en) | superconducting coil | |
GB1602719A (en) | Sealing constructions for finned heat pipes | |
JPS6156853B2 (en) | ||
JPH0416130Y2 (en) | ||
JPS6060780A (en) | Horizontal cryostat and manufacture thereof | |
JPS6366043B2 (en) | ||
JPH0621520A (en) | Cryostat | |
JPS6310911B2 (en) | ||
GB2457524A (en) | A Joining Conduit for Forming an Integral Part of a Thermal Radiation Shield for a Cryostat |