JPH0231340B2 - - Google Patents

Info

Publication number
JPH0231340B2
JPH0231340B2 JP59073472A JP7347284A JPH0231340B2 JP H0231340 B2 JPH0231340 B2 JP H0231340B2 JP 59073472 A JP59073472 A JP 59073472A JP 7347284 A JP7347284 A JP 7347284A JP H0231340 B2 JPH0231340 B2 JP H0231340B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
electrode
photoacoustic
mcd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073472A
Other languages
Japanese (ja)
Other versions
JPS60216244A (en
Inventor
Osamu Nakamura
Isao Ogino
Masakazu Adachi
Yoshifumi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59073472A priority Critical patent/JPS60216244A/en
Publication of JPS60216244A publication Critical patent/JPS60216244A/en
Publication of JPH0231340B2 publication Critical patent/JPH0231340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素−酸素固体電解質燃料電池におけ
る電極触媒用物質の触媒活性を評価する方法に関
し、更に詳しくは、水素極及び酸化剤極の触媒用
物質についての触媒活性を容易にかつ正確に評価
する方法に関する。 燃料電池は、燃料と酸化剤とを電気化学的に反
応させて電流を取り出す装置であり、その発電効
率が高いことから注目を集め、近年その開発が進
められている。 水素−酸素固体電解質燃料電池は、基本的には
水素極(アノード)、酸化剤極(カソード)、両電
極間に密接介在する固体電解質並びに水素及び酸
素(又は空気)をそれぞれ水素極及び酸化剤極に
供給するガスハウジングより構成されている。。
このような電池は、電流を取り出す際に抵抗とし
て働く電池内部の分極として、電解質の抵抗とし
ての抵抗分極、電極部における分極である活性化
分極(イオン化分極及び反応分極)並びに反応ガ
スの供給の際生ずる濃度分極があり、これら分極
のための電流が大きくなるにつれて電圧が低下す
る。 従つてより高い電圧及びより大きな電流を得る
ためには上記分極及び副反応を出来る限り抑制し
なければならない。このためには、高いプロトン
導電性を持つ電解質の開発、高活性な電極触媒の
開発等が必要となる。この種の触媒としては、現
在のところ白金系のものが最も優れ、良く知られ
ているが、高価であり、且つ資源量が限られてい
るという民生用燃料電池実用上の難点のため、こ
れに代わるものが求められている。特に低温、例
えば室温で作動する12−モリブドリン酸及び12−
タングストリン酸結晶を固体電解質とする燃料電
池においては、新しい電極触媒の開発が必要不可
欠である。 一般に電極触媒としての良否は、電池を組み立
てた後、放電性能を調べることにより評価してい
るが、このような方法では、電池組み立てに手間
がかかるだけでなく、電池組み立てに伴う種々の
要因により測定値が異なり正確な評価が出来ない
という欠点を有している。 本発明者は、この様な現状に鑑みて、種々研究
した結果触媒用物質の光音響スペクトルを測定す
ることにより、電池を組み立てることなく、容易
にかつ正確に触媒活性を評価出来ることを見出
し、ここに本発明を完成した。 即ち、本発明は水素−酸素固体電解質燃料電池
用触媒の活性評価方法において、触媒の光音響ス
ペクトル強度を測定し、これと触媒を構成する物
質本来の光音響スペクトル強度とを比較すること
により、触媒の活性を評価する方法に係る。 本発明者は、水素−酸素固体電解質燃料電池に
おいて高活性な電極触媒を開発すべく各種金属酸
化物について研究した過程において、光音響スペ
クトル強度と触媒活性との間に相関関係があるこ
とを見出した。即ち、光音響スペクトル強度が強
くなるほど該物質の触媒活性が高くなるという関
係である。例えば実施例1に於いて示すように、
各種の製法のCr2O3について光音響スペクトルを
測定して750nmでのスペクトル強度と該物質を
水素極用触媒とした固定電解質燃料電池の最大電
流密度(以下MCDという)との間の関係を求め
た。ここでMCDとは端子間の電圧がゼロとなつ
たときの電流値であり、触媒活性の良否を判定す
る尺度として用いられ、触媒活性が高いものほど
このMCDは大きな値となる。その結果を第2図
に示す。図中の記号はCr2O3の製法の違いを表す
記号であり、実施例1で示したCr2O3の記号と一
致する。第2図よりスペクトル強度が強くなるほ
どMCDが大きくなること、即ち触媒活性が高く
なるという関係があることがわかる。 ここで光音響スペクトルとは一般に知られてい
るように、密閉容器内に位置した物質に断続的に
光をあて、励起状態にした後熱過程を経て緩和す
る時の断続的な温度変化に基づき熱力学の基本的
関係式PV=RTによつて圧力Pの断続的変化に
変換されることにより密閉容器内で発生した疎密
波を高感度マイクロフオンを用いて電気信号に変
換したものであり、光の波長を連続的にスキヤン
させることにより、スペクトルを得るものであ
る。このようにして得られるスペクトルは物質の
表面の電子状態に関係するので表面状態を反映し
たものとなる。 この光音響スペクトルが触媒活性に関係がある
理由としては未だ明らかではないが、以下のごと
く推定している。即ち、上述したように光音響ス
ペクトルは、物質の表面状態を反映しており、例
えばCr2O3の光音響スペクトルにおいて750nmで
のスペクトル強度が強いということは600nm付
近の吸収バンドの幅が広がつていること及び原子
価状態の異なるCr原子間の電子のホツピング等
が考えられ、これを言い換えれば表面状態が乱れ
ていることを表し、このように表面状態が乱れて
いるものは反応に関与しやすくなるので触媒とし
ての活性が高くなるものと考えられる。 本発明に使用する測定装置及び測定方法につい
ては特に制限はなく、一般の光音響スペクトル測
定装置により、測定装置に適合した方法で行うこ
とが出来る。 本発明の対象となる物質は、水素−酸素固体電
解質燃料電池の酸化剤極用触媒及び水素極用触媒
として用い得ると思われる物質であり、触媒活性
について不明な物質である。具体的には化合物半
導体、有色化合物等が対象として考えられる。 本発明方法は、各種物質について光音響スペク
トルを測定した後、スペクトル強度を比較するこ
とにより相対的な触媒活性の高低を評価するもの
であり、スペクトル強度が強い物質ほど触媒活性
が高いということが判定できる。この場合スペク
トル強度を比較すべき波長は特に限定されずスペ
クトル強度差が大きく現れている波長を任意に選
定することが出来る。 本発明方法によると電池を組んで電気化学的測
定をする従来方法のように手間がかかり、しかも
測定者により差異が生じるということなく、容易
にかつ正確に触媒活性が評価出来るものであり、
燃料電池の発展に大きく寄与するものと考えられ
る。 次に実施例を示し更に詳しく説明する。 実施例 1 下記に示すCr2O3について光音響スペクトルを
測定した。 <Cr2O3の種類> (A):半井以学薬品(株)K2Cr2O7と石津製薬(株)特級試
薬イオウをメノウ乳鉢で混合し、空気中550℃
で1時間加熱反応させ、冷却し副生したK2SO4
を洗い去り過後乾燥して得た。 (B):半井化学薬品(株)特級試薬K2Cr2O7とキシダ化
学(株)特級試薬NH4Clをメノウ乳鉢で混合し、
空気中600℃で3時間加熱反応させ冷却後、副
生したKClを洗い去り、過後乾燥して得た。 (C):半井化学薬品(株)特級試薬K2Cr2O7と和光純薬
(株)特級試薬(NH42SO4をメノウ乳鉢で混合し
空気中600℃で15時間加熱反応させ副生する
K2SO4を洗い去り、過後乾燥して得た。 (D):半井化学薬品(株)特吸試薬Cr(OH)3を窒素雰
囲気下200℃で25時間、加熱分解して得た。 (E):半井化学薬品(株)特級試薬Cr(OH)3を窒素雰
囲気下300℃で20時間加熱分解して得た。 (E):半井化学薬品(株)特級試薬Cr(OH)3を窒素雰
囲気下620℃で7時間加熱分解して得た。 (G):関東化学(株)一級試薬Cr(NO33・9H2Oを窒
素雰囲気下200℃で10時間加熱分解して得た。 (H):関東化学(株)一級試薬Cr(NO33・9H2Oを窒
素雰囲気下300℃で7時間加熱分解して得た。 (I):関東化学(株)一級試薬Cr(NO33・9H2Oを窒
素雰囲気下620℃で5時間加熱分解して得た。 (J):関東化学(株)一級試薬Cr(NO33・9H2O溶液
に10%−アンモニア水を加えて得られた沈澱を
過、洗浄後110〜120℃で48時間乾燥して得
た。 (K):関東化学(株)一級試薬Cr(NO33・9H2O溶液
に10%−アンモニア水を加えて得られた沈澱を
過、洗浄後空気中300℃で3時間加熱して得
た。 (L):関東化学(株)一級試薬Cr(NO33・9H2O溶液
に10%−アンモニア水を加えて得られた沈澱を
過、洗浄後空気中620℃で3時間加熱して得
た。 (S):井半化学薬品(株)特級試薬Cr2O3 上記各種Cr2O3紛末について英国
EDTResearch社製OAS400を用いて光音響スペ
クトルを測定した。その結果の代表的を第1図に
示す。図中の記号はCr2O3の製法に違いを表わす
記号であり上記した記号と一致する。 次にこれらのCr2O3のいずれかを用い、下記の
様にして本発明水素−酸素固体電解質燃料電池を
作製した。 12−モリブドリン酸(米山化学(株)製特級試薬)
500gを133mlの水に溶かし、飽和溶液としたもの
を電子冷却装置(ヤマト科学、クールニクス
CTE)で10日間で5℃下げることによつて得ら
れた単結晶を粉砕して得た粉末約2gを固体電解
質とする。水素極としては上記各種Cr2O3試料と
活性炭粉末の重量比1:1のもの0.06gを用い、
酸化剤極として白金黒と活性炭粉末の重量比1:
1のもの0.06gを用い、それぞれ12−モリブドリ
ン酸の両側に位置させ、ガラス繊維強化エポキシ
樹脂製プレス型を用い1000Kg/cm2で加圧して直径
18mm、厚さ約3mmのペレツトを得た。次に水素
極、酸化剤極の背後にそれぞれ水素及ぼ酸素のガ
スハウジングを装置し、水素−酸素固体電解燃料
電池とした。 かくして得られた燃料電池について外部回路に
負荷としてタケダ理研(株)製TR6141定電流発生器
を接続し、MCDを求めた。測定結果を第1表に
示す。
The present invention relates to a method for evaluating the catalytic activity of an electrode catalyst material in a hydrogen-oxygen solid electrolyte fuel cell, and more specifically, a method for easily and accurately evaluating the catalytic activity of a catalyst material for a hydrogen electrode and an oxidizer electrode. Regarding the method. A fuel cell is a device that generates electric current by electrochemically reacting a fuel and an oxidizing agent, and has attracted attention due to its high power generation efficiency, and its development has been progressing in recent years. A hydrogen-oxygen solid electrolyte fuel cell basically consists of a hydrogen electrode (anode), an oxidizer electrode (cathode), a solid electrolyte closely interposed between the two electrodes, and hydrogen and oxygen (or air) connected to the hydrogen electrode and the oxidizer, respectively. It consists of a gas housing that supplies the poles. .
Such batteries have polarization inside the battery that acts as resistance when extracting current, resistance polarization as the resistance of the electrolyte, activation polarization (ionization polarization and reactive polarization) that is polarization in the electrode part, and polarization in the supply of reactive gas. There are concentration polarizations that occur, and as the current for these polarizations increases, the voltage decreases. Therefore, in order to obtain higher voltage and larger current, the above polarization and side reactions must be suppressed as much as possible. For this purpose, it is necessary to develop electrolytes with high proton conductivity and highly active electrode catalysts. Currently, platinum-based catalysts are the best and well-known as this type of catalyst, but they are expensive and have limited resources, which are difficult to implement in civilian fuel cells. An alternative is needed. 12-molybdophosphoric acid and 12-molybdophosphoric acid which operate especially at low temperatures, e.g. room temperature.
In fuel cells that use tungstophosphate crystals as a solid electrolyte, the development of new electrode catalysts is essential. Generally, the quality of the electrode catalyst is evaluated by examining the discharge performance after assembling the battery, but this method not only takes time and effort to assemble the battery, but also The disadvantage is that the measured values are different and accurate evaluation is not possible. In view of the current situation, the present inventor has conducted various studies and found that by measuring the photoacoustic spectrum of a catalytic substance, it is possible to easily and accurately evaluate the catalytic activity without assembling a battery. The present invention has now been completed. That is, the present invention provides a method for evaluating the activity of a hydrogen-oxygen solid electrolyte fuel cell catalyst, by measuring the photoacoustic spectrum intensity of the catalyst and comparing it with the original photoacoustic spectrum intensity of the substance constituting the catalyst. This invention relates to a method for evaluating the activity of a catalyst. In the process of researching various metal oxides in order to develop highly active electrode catalysts for hydrogen-oxygen solid electrolyte fuel cells, the present inventor discovered that there is a correlation between photoacoustic spectral intensity and catalytic activity. Ta. That is, the relationship is such that the stronger the photoacoustic spectrum intensity, the higher the catalytic activity of the substance. For example, as shown in Example 1,
We measured the photoacoustic spectra of Cr 2 O 3 manufactured by various methods and determined the relationship between the spectral intensity at 750 nm and the maximum current density (hereinafter referred to as MCD) of a fixed electrolyte fuel cell using this material as a hydrogen electrode catalyst. I asked for it. Here, MCD is the current value when the voltage between the terminals becomes zero, and is used as a measure to judge the quality of the catalyst activity, and the higher the catalyst activity, the larger the MCD value. The results are shown in FIG. The symbols in the figure represent the different manufacturing methods of Cr 2 O 3 and match the symbols for Cr 2 O 3 shown in Example 1. From FIG. 2, it can be seen that there is a relationship in which the stronger the spectral intensity, the larger the MCD, that is, the higher the catalytic activity. Here, the photoacoustic spectrum, as is generally known, is based on intermittent temperature changes when a substance located in a closed container is intermittently irradiated with light, brought to an excited state, and then relaxed through a thermal process. The compression waves generated in a closed container by being converted into intermittent changes in pressure P according to the basic thermodynamic relational expression PV = RT are converted into electrical signals using a highly sensitive microphone. A spectrum is obtained by continuously scanning the wavelengths of light. The spectrum obtained in this way is related to the electronic state of the surface of the substance, and therefore reflects the surface state. Although it is not yet clear why this photoacoustic spectrum is related to catalytic activity, it is estimated as follows. In other words, as mentioned above, the photoacoustic spectrum reflects the surface condition of the substance. For example, in the photoacoustic spectrum of Cr 2 O 3 , the strong spectrum intensity at 750 nm means that the absorption band around 600 nm is wide. This is thought to be caused by electron hopping between Cr atoms with different valence states, and in other words, the surface state is disordered. It is thought that the activity as a catalyst increases because it becomes easier to react. There are no particular limitations on the measuring device and measuring method used in the present invention, and the measurement can be carried out using a general photoacoustic spectrum measuring device using a method suitable for the measuring device. The substance targeted by the present invention is a substance that is thought to be usable as an oxidizer electrode catalyst and a hydrogen electrode catalyst of a hydrogen-oxygen solid electrolyte fuel cell, and its catalytic activity is unknown. Specifically, compound semiconductors, colored compounds, etc. are considered as targets. The method of the present invention evaluates relative catalytic activity by measuring photoacoustic spectra of various substances and comparing the spectral intensities. Can be judged. In this case, the wavelength at which the spectral intensities should be compared is not particularly limited, and any wavelength at which a large difference in spectral intensity appears can be arbitrarily selected. According to the method of the present invention, the catalytic activity can be easily and accurately evaluated without requiring the time and effort of the conventional method of assembling a battery and performing electrochemical measurements, and without causing differences depending on the measurer.
It is believed that this will greatly contribute to the development of fuel cells. Next, examples will be shown and explained in more detail. Example 1 The photoacoustic spectrum of Cr 2 O 3 shown below was measured. <Types of Cr 2 O 3 > (A): K 2 Cr 2 O 7 from Hani Igaku Pharmaceutical Co., Ltd. and sulfur, a special grade reagent from Ishizu Pharmaceutical Co., Ltd., were mixed in an agate mortar and heated at 550°C in air.
The reaction was heated for 1 hour, and the by-produced K 2 SO 4 was cooled.
was washed away and dried. (B): Mix Hani Chemical Co., Ltd. special grade reagent K 2 Cr 2 O 7 and Kishida Chemical Co., Ltd. special grade reagent NH 4 Cl in an agate mortar,
After heating and reacting in the air at 600°C for 3 hours and cooling, by-produced KCl was washed away, and the mixture was dried. (C): Hanui Chemical Co., Ltd. special grade reagent K 2 Cr 2 O 7 and Wako Pure Chemical
Special Reagent Co., Ltd. (NH 4 ) 2 SO 4 is mixed in an agate mortar and heated in air at 600℃ for 15 hours to produce a by-product.
The product was obtained by washing off K 2 SO 4 and drying. (D): Obtained by thermally decomposing Cr(OH) 3 , a special absorption reagent manufactured by Hani Chemical Co., Ltd., at 200°C for 25 hours in a nitrogen atmosphere. (E): Obtained by thermally decomposing Cr(OH) 3 , a special grade reagent manufactured by Hanui Chemical Co., Ltd., at 300°C for 20 hours in a nitrogen atmosphere. (E): Obtained by thermally decomposing Cr(OH) 3 , a special grade reagent manufactured by Hanui Chemical Co., Ltd., at 620°C for 7 hours in a nitrogen atmosphere. (G): Obtained by thermal decomposition of Kanto Kagaku Co., Ltd.'s first-class reagent Cr(NO 3 ) 3.9H 2 O at 200° C. for 10 hours in a nitrogen atmosphere. (H): Obtained by thermal decomposition of Kanto Kagaku Co., Ltd.'s first-class reagent Cr(NO 3 ) 3.9H 2 O at 300° C. for 7 hours in a nitrogen atmosphere. (I): Obtained by heating and decomposing Cr(NO 3 ) 3.9H 2 O, a first-class reagent manufactured by Kanto Kagaku Co., Ltd., at 620° C. for 5 hours in a nitrogen atmosphere. (J): Kanto Kagaku Co., Ltd. First-class reagent Cr (NO 3 ) 3.9H 2 Add 10% aqueous ammonia to the O solution, filter the resulting precipitate, wash it, and then dry it at 110-120℃ for 48 hours. Obtained. (K): Kanto Kagaku Co., Ltd. First-class reagent Cr (NO 3 ) 3.9H 2 Add 10% aqueous ammonia to the O solution, filter the precipitate obtained, wash it, and heat it in the air at 300℃ for 3 hours. Obtained. (L): Kanto Kagaku Co., Ltd. First-class reagent Cr (NO 3 ) 3.9H 2 O solution was added with 10% ammonia water, and the resulting precipitate was filtered, washed, and then heated in air at 620°C for 3 hours. Obtained. (S): Ihan Chemical Co., Ltd. Special grade reagent Cr 2 O 3 About the above various Cr 2 O 3 powders UK
Photoacoustic spectra were measured using OAS400 manufactured by EDT Research. A typical result is shown in FIG. The symbols in the figure represent differences in the manufacturing method of Cr 2 O 3 and match the symbols described above. Next, a hydrogen-oxygen solid electrolyte fuel cell of the present invention was produced using any of these Cr 2 O 3 in the following manner. 12-molybdophosphoric acid (special grade reagent manufactured by Yoneyama Chemical Co., Ltd.)
Dissolve 500g in 133ml of water to make a saturated solution using an electronic cooling device (Yamato Scientific, Coolnics).
About 2 g of powder is used as a solid electrolyte by crushing a single crystal obtained by lowering the temperature by 5°C over 10 days using CTE. As a hydrogen electrode, 0.06 g of the above various Cr 2 O 3 samples and activated carbon powder with a weight ratio of 1:1 was used.
As the oxidizer electrode, the weight ratio of platinum black and activated carbon powder is 1:
Using 0.06 g of 1, place each on both sides of 12-molybdophosphoric acid, pressurize at 1000 kg/cm 2 using a press mold made of glass fiber reinforced epoxy resin, and reduce the diameter.
A pellet of 18 mm and approximately 3 mm thick was obtained. Next, hydrogen and oxygen gas housings were installed behind the hydrogen electrode and the oxidizer electrode, respectively, to form a hydrogen-oxygen solid electrolysis fuel cell. For the fuel cell thus obtained, a TR6141 constant current generator manufactured by Takeda Riken Co., Ltd. was connected to an external circuit as a load, and the MCD was determined. The measurement results are shown in Table 1.

【表】 次に光音響スペクトルの750nmでのスペクト
ル強度とMCDとの関係を求めた結果を第2図に
示す。 これよりCr2O3の750nmでの光音響スペクトル
強度が強くなれば、該物質を水素極触媒とした電
池のMCDが大きくなること、即ち触媒活性が大
きくなることがわかる。 実施例 2 下記に示す3種のCu2Oについて光音響スペク
トルを測定した。 <Cu2Oの種類> (A) Cu(CH3COO)2(キシダ化学(株)製特級試薬)
10gを160mlの水に溶かして20%ヒドラジン水
溶液を15ml加え、約80℃に加熱してCu2Oを沈
澱させ、これを別、洗浄、乾燥して得たも
の。 (B) 反応を室温で行なつた以外は(A)と同様にして
得たもの。 (S) 市販品のCu2O紛末(半井化学(株)製化学用試
薬)。 上記3種Cu2Oについて実施例1と同様の方法
で光音響スペクトルを測定し、その結果を第3図
に示す。図中の記号はCu2Oの製法の違いを表す
記号であり上記(A)〜(S)と一致する。 次にこれらのCu2Oのいずれかを用い、下記の
様にして本発明水素−酸素固体電解質燃料電池を
調製した。 12−モリブドリン酸の飽和水溶液の温度を25℃
から22℃に下げることにより得られた単結晶約2
gを、相対湿度85〜95%の雰囲気下で粉砕して粉
末状とする。得られた12−モリブドリン酸の粉末
を、ガラス繊維で補強されたエボキシ樹脂製プレ
ス型を用いて、直径18mm、厚さ3mmのペレツトに
1000Kg/cm2の圧力で圧縮成形した。 次に、上記で得られたペレツトの一方の端面に
白金黒20重量%及び鱗状黒鉛80重量%の混合物
100mgを常法により圧着して水素極(燃料極)と
した。もう一方の端面には上記(A)、(B)又は(S)
のCu2O粉末50重量%及び鱗状黒鉛50重量%の混
合物100mgを常法により圧着して酸素極(酸化剤
極)とした。次に水素極及び酸素極の背後にそれ
ぞれ水素及び酸素のガスハウジングを装着した。 かくして得られた燃料電池について実施例1と
同様の方法によりMCDを測定し、その結果を第
2表に示す。
[Table] Next, Figure 2 shows the relationship between the spectral intensity at 750 nm of the photoacoustic spectrum and the MCD. It can be seen from this that as the photoacoustic spectrum intensity of Cr 2 O 3 at 750 nm becomes stronger, the MCD of the battery using this material as a hydrogen electrode catalyst increases, that is, the catalytic activity increases. Example 2 Photoacoustic spectra were measured for the three types of Cu 2 O shown below. <Type of Cu 2 O> (A) Cu (CH 3 COO) 2 (special grade reagent manufactured by Kishida Chemical Co., Ltd.)
Dissolve 10g in 160ml of water, add 15ml of 20% hydrazine aqueous solution, heat to about 80°C to precipitate Cu 2 O, separate, wash and dry. (B) Obtained in the same manner as (A) except that the reaction was carried out at room temperature. (S) Commercially available Cu 2 O powder (chemical reagent manufactured by Hanui Chemical Co., Ltd.). The photoacoustic spectra of the three types of Cu 2 O mentioned above were measured in the same manner as in Example 1, and the results are shown in FIG. The symbols in the figure represent the different manufacturing methods of Cu 2 O, and correspond to (A) to (S) above. Next, using any of these Cu 2 O, a hydrogen-oxygen solid electrolyte fuel cell of the present invention was prepared in the following manner. The temperature of the saturated aqueous solution of 12-molybdophosphoric acid was set to 25℃.
About 2 single crystals obtained by lowering the temperature from
g is ground into powder in an atmosphere with relative humidity of 85-95%. The obtained 12-molybdophosphoric acid powder was made into pellets with a diameter of 18 mm and a thickness of 3 mm using an epoxy resin press mold reinforced with glass fiber.
Compression molding was performed at a pressure of 1000 Kg/cm 2 . Next, a mixture of 20% by weight of platinum black and 80% by weight of scaly graphite was added to one end surface of the pellet obtained above.
100 mg was crimped using a conventional method to form a hydrogen electrode (fuel electrode). The other end face has the above (A), (B) or (S).
100 mg of a mixture of 50% by weight of Cu 2 O powder and 50% by weight of scaly graphite was compressed by a conventional method to form an oxygen electrode (oxidizer electrode). Next, hydrogen and oxygen gas housings were installed behind the hydrogen electrode and oxygen electrode, respectively. The MCD of the thus obtained fuel cell was measured in the same manner as in Example 1, and the results are shown in Table 2.

【表】 次に光音響スペクトルの700nmでのスペクト
ル強度とMCDとの関係を求めた結果第4図に示
す。 これよりCu2Oの700nmでの光音響スペクトル
強度が強くなれば、該物質を酸化剤極触媒とした
電池のMCDが大きくなることから、即ち触媒活
性が大きくなることがわかる。
[Table] Next, the relationship between the spectral intensity at 700 nm of the photoacoustic spectrum and the MCD is shown in Figure 4. It can be seen from this that as the photoacoustic spectrum intensity of Cu 2 O at 700 nm becomes stronger, the MCD of the battery using this substance as an oxidant electrode catalyst increases, that is, the catalytic activity increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr2O3の光音響スペクトルの代表例を
示す。第2図はCr2Oの750nmでの光音響スペク
トル強度とMCDとの関係を示す。第3図はCu2O
の光音響スペクトルを示す。第4図はCu2Oの
700nmでの光音響スペクトル強度とMCDとの関
係を示す。
FIG. 1 shows a typical example of the photoacoustic spectrum of Cr 2 O 3 . Figure 2 shows the relationship between the photoacoustic spectrum intensity of Cr 2 O at 750 nm and MCD. Figure 3 shows Cu 2 O
The photoacoustic spectrum of Figure 4 shows Cu 2 O
The relationship between the photoacoustic spectrum intensity at 700 nm and MCD is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 水素−酸素固体電解質燃料電池用触媒の活性
評方法において、触媒の光音響スペクトル強度を
測定し、これと触媒を構成する物質本来の光音響
スペクトル強度とを比較することにより、触媒の
活性を評価する方法。
1 In a method for evaluating the activity of catalysts for hydrogen-oxygen solid electrolyte fuel cells, the activity of the catalyst can be evaluated by measuring the photoacoustic spectral intensity of the catalyst and comparing this with the original photoacoustic spectral intensity of the substances that make up the catalyst. How to evaluate.
JP59073472A 1984-04-11 1984-04-11 Evaluation of catalyst activity for hydrogen-oxygen solid electrolytic fuel battery Granted JPS60216244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073472A JPS60216244A (en) 1984-04-11 1984-04-11 Evaluation of catalyst activity for hydrogen-oxygen solid electrolytic fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073472A JPS60216244A (en) 1984-04-11 1984-04-11 Evaluation of catalyst activity for hydrogen-oxygen solid electrolytic fuel battery

Publications (2)

Publication Number Publication Date
JPS60216244A JPS60216244A (en) 1985-10-29
JPH0231340B2 true JPH0231340B2 (en) 1990-07-12

Family

ID=13519247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073472A Granted JPS60216244A (en) 1984-04-11 1984-04-11 Evaluation of catalyst activity for hydrogen-oxygen solid electrolytic fuel battery

Country Status (1)

Country Link
JP (1) JPS60216244A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290264B1 (en) * 1997-01-22 2001-09-22 호소이 쇼지로 Electrostatic chuck and its manufacturing method
JP5281221B2 (en) * 2001-08-03 2013-09-04 トヨタ自動車株式会社 Precious metal-base metal alloy catalyst, its evaluation and production method

Also Published As

Publication number Publication date
JPS60216244A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
Guo et al. A rechargeable Al–N 2 battery for energy storage and highly efficient N 2 fixation
Lima et al. Borohydride electrooxidation on Au and Pt electrodes
Younesi et al. Li–O2 battery degradation by lithium peroxide (Li2O2): a model study
Matsuda et al. Behavior of some ions in mixed organic electrolytes of high energy density batteries
He et al. Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution
JP3555097B2 (en) Electrode materials and secondary batteries
Ravikumar et al. Effect of methanol crossover in a liquid‐feed polymer‐electrolyte direct methanol fuel cell
JPH04262368A (en) Electrochemical cell, cathode agent thereof and manufacture thereof
Karami et al. A novel dry bipolar rechargeable battery based on polyaniline
Pan et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH
WO2016011970A1 (en) Use of tungsten-containing material
Menart et al. Triquinoxalinediol as organic cathode material for rechargeable aqueous zinc-ion batteries
CA1120099A (en) Borides of molybdenum as catalyst in fuel cell electrodes
Liu et al. Plasma‐Assisted Defect Engineering on p‐n Heterojunction for High‐Efficiency Electrochemical Ammonia Synthesis
Nakayama et al. Effects of heat-treatment on the spectroscopic and electrochemical properties of a mixed manganese/vanadium oxide film prepared by electrodeposition
Long et al. A Carbon‐Free and Free‐Standing Cathode From Mixed‐Phase TiO2 for Photo‐Assisted Li–CO2 Battery
JPH0231340B2 (en)
JP5386684B2 (en) FUEL CELL REACTOR AND METHOD FOR PRODUCING COMPOUND USING THE SAME
US3579384A (en) Electric current-producing cells
KR100570689B1 (en) Catalyst for fuel cell and fuel cell comprising same
JPH0351058B2 (en)
Moshtev On the electrochemistry of the nonaqueous lithium cell
Chen et al. Solid state protonic conductor NH4PO3–(NH4) 2Mn (PO3) 4 for intermediate temperature fuel cells
Arakawa et al. Decomposition of propylene carbonate in a lithium/metal phthalocyanine cell
CN112186203A (en) Preparation method of all-solid-state lithium-air battery anode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term