JPH02312316A - High frequency oscillation type proximity switch - Google Patents

High frequency oscillation type proximity switch

Info

Publication number
JPH02312316A
JPH02312316A JP1134234A JP13423489A JPH02312316A JP H02312316 A JPH02312316 A JP H02312316A JP 1134234 A JP1134234 A JP 1134234A JP 13423489 A JP13423489 A JP 13423489A JP H02312316 A JPH02312316 A JP H02312316A
Authority
JP
Japan
Prior art keywords
oscillation
circuit
frequency
amplitude
proximity switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1134234A
Other languages
Japanese (ja)
Inventor
Hidehiro Tomioka
富岡 秀浩
Masakatsu Hosoya
細谷 正勝
Kenji Ueda
建治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP1134234A priority Critical patent/JPH02312316A/en
Priority to EP19900110062 priority patent/EP0399563A3/en
Priority to US07/529,357 priority patent/US5034704A/en
Publication of JPH02312316A publication Critical patent/JPH02312316A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/101Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil
    • G01V3/102Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil by measuring amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/9505Constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K17/9537Proximity switches using a magnetic detector using inductive coils in a resonant circuit
    • H03K17/954Proximity switches using a magnetic detector using inductive coils in a resonant circuit controlled by an oscillatory signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/945Proximity switches
    • H03K2217/95Proximity switches using a magnetic detector
    • H03K2217/952Detection of ferromagnetic and non-magnetic conductive targets

Abstract

PURPOSE:To detect an article based on the reduction of the amplitude level by obtaining the same sensitivity reduction for a metallic material independently of its material like iron or aluminium. CONSTITUTION:A tank circuit T2 having a resonance frequency slightly higher than the oscillation frequency is connected to the positive feedback loop of an oscillating circuit 13 to constitute a proximity switch. When a nonmagnetic body made of aluminium or the like is approximated to this proximity switch, the resonance frequency of the tank circuit T2 is changed to the higher side to reduce the extent of positive feedback and the oscillation amplitude is reduced, and when a magnetic body made of iron or the like is approximated to the proximity switch, the oscillation output is reduced because the loss component of a coil L2 of the tank circuit T2 is increased. Consequently, the oscillation frequency of the oscillating circuit 13 is set to a proper value to obtain the same reduction of the amplitude level for proximity of iron and that of aluminium. Thus, the magnetic body and the nonmagnetic body are detected with the same sensitivity.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は高周波発振型近接スイッチに関し、特に非磁性
体の金属体等を検出できるようにした高周波発振型の近
接スイッチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a high frequency oscillation type proximity switch, and more particularly to a high frequency oscillation type proximity switch capable of detecting non-magnetic metal objects.

〔従来の技術〕[Conventional technology]

一般に高周波発振型近接スイッチは、例えば第8図に示
すように検出コイルLとコンデンサCによって並列共振
回路1が構成され、この並列共振回路1に発振回路2が
接続されて共振周波数の高周波を発振させており、その
発振信号を検波回路3によって検波している。そして検
出コイルLの近傍に金属体4が接近すれば検出コイルL
の損失が増加し発振状態が変化するためその振幅値も低
下する。従って検波回路3の出力を比較回路5に与え所
定レベルで弁別して物体検知信号を得て出力回路6より
外部に与えるようにしている。こうすれば発振回路2の
振幅値の低下に基づいて物体の近接を検出することがで
きる。
Generally, in a high-frequency oscillation type proximity switch, a parallel resonant circuit 1 is configured by a detection coil L and a capacitor C, as shown in FIG. The oscillation signal is detected by the detection circuit 3. If the metal body 4 approaches the detection coil L, the detection coil L
As the loss increases and the oscillation state changes, its amplitude value also decreases. Therefore, the output of the detection circuit 3 is applied to the comparison circuit 5 and discriminated at a predetermined level to obtain an object detection signal, which is then applied to the outside from the output circuit 6. In this way, the proximity of an object can be detected based on the decrease in the amplitude value of the oscillation circuit 2.

従来の高周波発振型近接スイッチでは、金属体、特に磁
性体である鉄製の部材の接近により検出コイルの損失が
大きくなるので磁性体に対する感度が高くなっている。
In conventional high-frequency oscillation type proximity switches, the loss of the detection coil increases due to the proximity of a metal body, particularly a magnetic iron member, so the sensitivity to magnetic bodies is high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来の高周波発振型近接スイッチでは、非磁
性材料例えばアルミニウム等の部材を検″知することが
できない、近年種々の設備の軽量化に伴い工場等の加工
対象(ワーク)として軽いアルミニウム材料が多く使用
されるようになり、これらの材質の物体を検出する必要
が高まっている。
Conventional high-frequency oscillation type proximity switches cannot detect non-magnetic materials such as aluminum.In recent years, as various types of equipment have become lighter, lightweight aluminum materials have been used as processing objects (workpieces) in factories. are increasingly used, and there is an increasing need to detect objects made of these materials.

しかし鉄製の物体が検出コイルに接近したときには検出
コイルの損失が増加するように変化し、アルミニウムの
物体が近接したときには検出コイルのサセプタンスが増
加することとなる。従ってアルミニウムが接近しても検
出コイルに与える損失分が小さいため、振幅変化が小さ
く検出感度が低いという欠点があった。
However, when a steel object approaches the detection coil, the loss of the detection coil increases, and when an aluminum object approaches, the susceptance of the detection coil increases. Therefore, even if aluminum approaches, the loss imparted to the detection coil is small, so there is a drawback that the amplitude change is small and the detection sensitivity is low.

本願の請求項1の発明はこのような従来の高周波発振型
近接スイッチの問題点に鑑みてなされたものであって、
鉄等の磁性体とアルミニウム等の非磁性体とを同一の感
度で検出できるようにすることを技術的課題とする。
The invention of claim 1 of the present application was made in view of the problems of the conventional high frequency oscillation type proximity switch,
The technical challenge is to be able to detect magnetic materials such as iron and non-magnetic materials such as aluminum with the same sensitivity.

又本願の請求項2の発明はアルミニウム材料等の非磁性
体にのみ感度を有する高周波発振型近接スイッチを提供
することを技術的課題とする。
The technical object of the invention of claim 2 of the present application is to provide a high frequency oscillation type proximity switch that is sensitive only to non-magnetic materials such as aluminum materials.

又本願の請求項3の発明は鉄等の磁性体にのみ感度を有
する高周波発振型近接スイッチを提供することを技術的
課題とする。
Further, the technical object of the invention according to claim 3 of the present application is to provide a high frequency oscillation type proximity switch that is sensitive only to magnetic materials such as iron.

〔課題を解決するための手段〕[Means to solve the problem]

本願の請求項1の発明は発振周波数f0で発振する発振
回路と、発振回路の正帰還ループ間に接続され発振周波
数よりわずかに高い共振周波数tz (fo<fg)を
有するタンク回路と、発振回路の振幅を所定の閾値レベ
ルで弁別する比較回路と、を有し、磁性体及び非磁性体
金属体が同一位置に近接したとき同一の発振レベルが低
下する発振周波数に設定したことを特徴とするものであ
る。
The invention of claim 1 of the present application includes an oscillation circuit that oscillates at an oscillation frequency f0, a tank circuit connected between the positive feedback loop of the oscillation circuit and having a resonant frequency tz (fo<fg) slightly higher than the oscillation frequency, and an oscillation circuit. and a comparison circuit that discriminates the amplitude of the oscillation at a predetermined threshold level, and is characterized in that the oscillation frequency is set to such that the same oscillation level decreases when the magnetic material and the non-magnetic metal material are close to the same position. It is something.

又本願の請求項2の発明は発振周波数f0で発振する発
振回路と、発振回路の正帰還ループ間に接続され発振周
波数よりわずかに低い共振周波数f。
Further, the invention according to claim 2 of the present application is an oscillation circuit that oscillates at an oscillation frequency f0, and a resonant frequency f slightly lower than the oscillation frequency, which is connected between the positive feedback loop of the oscillation circuit.

(fg>fs)を有するタンク回路と、発振回路の振幅
を所定の閾値レベルで弁別する比較回路と、を有し、比
較回路は非磁性体の近接による発振振幅の上昇に基づい
て非磁性体のみを検出するものであることを特徴とする
ものである。
(fg>fs), and a comparison circuit that discriminates the amplitude of the oscillation circuit at a predetermined threshold level. This feature is characterized in that it detects only

更に本願の請求項3の発明は発振周波数f、で発振する
発振回路と、発振回路の正帰還ループ間に接続され発振
周波数よりわずかに低い共振周波数・fs (fg>f
s)を有するタンク回路と、発振回路の振幅を所定の閾
値レベルで弁別する比較回路と、を有し、比較回路は磁
性体の近接による発振振幅の低下に基づいて磁性体のみ
を検出するものであることを特徴とするものである。
Furthermore, the invention of claim 3 of the present application provides an oscillation circuit that oscillates at an oscillation frequency f, and a positive feedback loop of the oscillation circuit that is connected to a resonant frequency fs (fg>f) that is slightly lower than the oscillation frequency.
s), and a comparison circuit that discriminates the amplitude of the oscillation circuit at a predetermined threshold level, and the comparison circuit detects only the magnetic material based on a decrease in the oscillation amplitude due to the proximity of the magnetic material. It is characterized by:

〔作用〕[Effect]

このような特徴を有する本願の請求項1の発明によれば
、発振回路の正帰還ループに発振周波数よりわずかに高
い共振周波数を持つタンク回路を接続して近接スイッチ
が構成されている。この近接スイッチにアルミニウム等
の非磁性体の物体が近接したときにはタンク回路の共振
周波数が高い周波数側に変化して正帰還量が小さくなり
発振振幅が低下する。同様にして鉄製等の磁性体の部材
が近接したときにはタンク回路のコイルの損失分が増加
するため発振出力が低下する。従って発振回路の発振周
波数を適当な値に設定しておくことにより鉄とアルミニ
ウムの近接時に同一の振幅レベルの低下となるように設
定することができる。
According to the invention of claim 1 of the present application having such features, a proximity switch is constructed by connecting a tank circuit having a resonant frequency slightly higher than the oscillation frequency to the positive feedback loop of the oscillation circuit. When a non-magnetic object such as aluminum comes close to this proximity switch, the resonance frequency of the tank circuit changes to a higher frequency side, the amount of positive feedback becomes smaller, and the oscillation amplitude decreases. Similarly, when a magnetic member made of iron or the like comes close to each other, the loss of the coil of the tank circuit increases, and the oscillation output decreases. Therefore, by setting the oscillation frequency of the oscillation circuit to an appropriate value, it is possible to set the oscillation frequency so that the same amplitude level decreases when iron and aluminum come close to each other.

又本願の請求項2の発明によれば、正帰還ループの共振
周波数を発振周波数よりわずかに低い周波数としている
。このときアルミニウム等の非磁性体が接近すればタン
ク回路の共振周波数が上昇するため発振が開始され、又
は発振の振幅が上昇する。又鉄等の磁性体が近接すれば
発振回路は発振せず又は振幅レベルが低下するため、非
磁性体のみを弁別して検知するようにしている。
According to the invention of claim 2 of the present application, the resonant frequency of the positive feedback loop is set to be slightly lower than the oscillation frequency. At this time, if a non-magnetic material such as aluminum approaches, the resonant frequency of the tank circuit increases, so oscillation starts or the amplitude of oscillation increases. Furthermore, if a magnetic material such as iron comes close, the oscillation circuit will not oscillate or the amplitude level will drop, so only non-magnetic material is discriminated and detected.

又本願の請求項3の発明においても正帰還ループの共振
周波数を発振周波数よりわずかに低い周波数としている
。このとき鉄等の磁性体が接近すれば振幅レベルが低下
するため磁性体のみを弁別して検出するようにしている
Also, in the invention of claim 3 of the present application, the resonant frequency of the positive feedback loop is set to be slightly lower than the oscillation frequency. At this time, if a magnetic material such as iron approaches, the amplitude level will drop, so only the magnetic material is discriminated and detected.

〔発明の効果〕〔Effect of the invention〕

そのため本願の請求項1の発明によれば、鉄やアルミニ
ウム等の材質にかかわらず金属物に対して同一の感度低
下が得られるため、この振幅レベルの低下に基づいて物
品を検出することができる。
Therefore, according to the invention of claim 1 of the present application, the same sensitivity reduction can be obtained for metal objects regardless of the material, such as iron or aluminum, so that the object can be detected based on this reduction in the amplitude level. .

又本願の請求項2の発明では、鉄の近接時には発振回路
は発振せず又は発振レベルが低下し、アルミニウム等の
非磁性体が近接したときには発振が開始され又は振幅レ
ベルが上昇するので、非磁性体の物品のみを検出するこ
とができるという効果が得られる。
Furthermore, in the invention of claim 2 of the present application, when iron comes close, the oscillation circuit does not oscillate or the oscillation level decreases, and when a non-magnetic material such as aluminum comes close, oscillation starts or the amplitude level increases. The effect is that only magnetic articles can be detected.

更に本願の請求項3の発明では、鉄等の磁性体の近接に
伴う発振振幅の低下により磁性体のみを非磁性体と弁別
して検出することができるという効果が得られる。
Furthermore, in the invention of claim 3 of the present application, the oscillation amplitude decreases as magnetic materials such as iron come close to each other, so that it is possible to detect only magnetic materials while distinguishing them from non-magnetic materials.

〔実施例の説明〕[Explanation of Examples]

第1図は本発明の近接スイッチの基本的な構成を示すブ
ロック図である。本図において増幅回路11に正帰還回
路12が接続されて発振回路13を構成している。発振
回路13の出力は前述した従来例と同様に検波回路3に
与えられる。検波回路3はこの出力を検波して振幅に対
応した直流レベルの信号に変換し比較回路5に与える。
FIG. 1 is a block diagram showing the basic configuration of a proximity switch of the present invention. In this figure, a positive feedback circuit 12 is connected to an amplifier circuit 11 to form an oscillation circuit 13. The output of the oscillation circuit 13 is given to the detection circuit 3 as in the conventional example described above. The detection circuit 3 detects this output, converts it into a DC level signal corresponding to the amplitude, and supplies it to the comparison circuit 5.

比較回路5は所定の閾値でその出力を弁別するものであ
り、出力回路6を介して物体検知信号を外部に出力する
ことは前述した従来例と同様である。さて本発明では正
帰還回路12に発振周波数と異なるタンク回路が接続さ
れる。
The comparison circuit 5 discriminates its output using a predetermined threshold value, and outputting the object detection signal to the outside via the output circuit 6 is similar to the conventional example described above. Now, in the present invention, a tank circuit having a different oscillation frequency is connected to the positive feedback circuit 12.

第2図は本実施例の発振回路13を示す回路図である。FIG. 2 is a circuit diagram showing the oscillation circuit 13 of this embodiment.

この3発振回路13はLC型の発振回路であって、コイ
ルL1及びコンデンサC1,C2から成り共振周波数f
、の第1のタンク回IItTlを有している。このタン
ク回路TIのコイルL1のホントエンド端はトランジス
タTriのベースに接続されている。トランジスタTr
iのコレクタは電源端に接続され、そのエミッタには正
帰還回路12が接続される。本実施例においては正帰還
回路12は直列接続された抵抗R1,R2を有し、その
中点と接地端間には第2のタンク回路T2が接続される
。第2のタンク回路T2は検出コイルL2とコンデンサ
C3から構成され、第1のタンク回路T1の共振周波数
f1よりわずかに高い共振周波数f2を有するものとす
る。コイルL2は近接スイッチの前面に設けられ近接す
る物体によってコイルの損失分やサセプタンスが変化す
るように構成される。そしてコイルLlには二次側にコ
イルL3が接続されコイルL3を介して発振出力が検波
回路3に伝えられる。
This three-oscillation circuit 13 is an LC type oscillation circuit, and consists of a coil L1 and capacitors C1 and C2, and has a resonance frequency f
, has a first tank time IItTl. The real end of the coil L1 of this tank circuit TI is connected to the base of the transistor Tri. Transistor Tr
The collector of i is connected to the power supply end, and the positive feedback circuit 12 is connected to its emitter. In this embodiment, the positive feedback circuit 12 has resistors R1 and R2 connected in series, and a second tank circuit T2 is connected between the midpoint and the ground terminal. The second tank circuit T2 is composed of a detection coil L2 and a capacitor C3, and has a resonant frequency f2 slightly higher than the resonant frequency f1 of the first tank circuit T1. The coil L2 is provided on the front surface of the proximity switch and is configured such that the loss and susceptance of the coil changes depending on the object that approaches. A coil L3 is connected to the secondary side of the coil Ll, and the oscillation output is transmitted to the detection circuit 3 via the coil L3.

第3図は前述した2つのタンク回路Tl、T2のコイル
Ll、L2を熱的に同環境となるようにした近接スイッ
チの構成を示す断面図である。本図に示すようにタンク
回路T1及びT2のコイルLL、L2を夫々図示のよう
に環状の窪みを持つボットコア14.15内に実装し、
検出コイルL2を近接スイッチの前面に配置する。そし
てケース16の内部には発振回路13及び検波回路や比
較回路等信の電子回路部を実装したプリント基板17を
設ける。そしてその増隙部にはエポキシ樹脂18等の充
填材を充填して近接スイッチを構成する。こうすれば2
つのコイルを熱的に同環境にすることができるため温度
ドリフト等に対して安定に動作させることができる。
FIG. 3 is a sectional view showing the configuration of a proximity switch in which the coils Ll and L2 of the two tank circuits Tl and T2 described above are placed in the same thermal environment. As shown in this figure, the coils LL and L2 of tank circuits T1 and T2 are respectively mounted in a bot core 14.15 having an annular recess as shown,
A detection coil L2 is placed in front of the proximity switch. Inside the case 16 is provided a printed circuit board 17 on which the oscillation circuit 13 and electronic circuit sections such as a detection circuit and a comparison circuit are mounted. Then, the increased gap portion is filled with a filler such as epoxy resin 18 to form a proximity switch. If you do this, 2
Since the two coils can be placed in the same thermal environment, they can operate stably against temperature drift, etc.

次に本実施例の動作について説明する。第4図において
曲iA、Bは2つのタンク回路Tl、T2の周波数に対
する振幅レベルの変化を示している。本図に示すように
タンク回路Tlの共振周波数f1を低く、タンク回路T
2の共振周波数f2をより高くなるように設定する。そ
して発振回路13の発振周波数f0は回路全体の利得が
最大となる点、即ち2つのタンク回路の振幅特性の交点
である周波数「。で発振する。さてこの図において第2
のりンク回路T2の検出コイルL2に鉄製の物体が近接
したときには検出コイルの損失成分が増加するため、そ
の振幅特性が81に示すように変化する。
Next, the operation of this embodiment will be explained. In FIG. 4, songs iA and B show changes in amplitude level with respect to frequency of two tank circuits Tl and T2. As shown in this figure, the resonance frequency f1 of the tank circuit Tl is lowered, and the tank circuit T
The resonant frequency f2 of 2 is set to be higher. The oscillation frequency f0 of the oscillation circuit 13 oscillates at the point where the gain of the entire circuit is maximum, that is, the frequency "." which is the intersection of the amplitude characteristics of the two tank circuits.
When an iron object approaches the detection coil L2 of the link circuit T2, the loss component of the detection coil increases, and its amplitude characteristic changes as shown at 81.

従ってそのとき発振周波数f0はわずかに上昇しfol
となり、正帰還の帰還量が低下するため発振回路13の
振幅も低下することとなる。ここでこの振幅の低下は第
4図中の曲線A、Bと曲線A、Blの交点の差D1とし
て示される。さてタンク回路T2の検出コイルL2にア
ルミニウム材料の物体が接近したときには、その振幅特
性は例えばBから82に示すように共振周波数f2が高
く、例えば図示のように周波数f□となるように変化す
る。
Therefore, at that time, the oscillation frequency f0 increases slightly and fol
Therefore, since the amount of positive feedback decreases, the amplitude of the oscillation circuit 13 also decreases. Here, this decrease in amplitude is shown as a difference D1 between the intersections of curves A and B and curves A and Bl in FIG. Now, when an aluminum material object approaches the detection coil L2 of the tank circuit T2, its amplitude characteristics change from B to 82, for example, from a high resonance frequency f2 to a frequency f□ as shown in the figure. .

従って共振周波数f、はわずかに上昇することとなるが
、このとき共振周波数f、の変化に伴い振幅も同時に低
下することとなる。このときの振幅変化は曲線A、Bと
A、B2との交点の差D2として表される。従っである
設定距離に鉄及びアルミニウムの物体が近づいたときの
帰還レベルの変化D1、D2が同一となるように設定す
ることにより、鉄とアルミニウム類の物体に対して同一
の感度特性を得ることができる。
Therefore, the resonant frequency f will rise slightly, but at this time, the amplitude will also decrease as the resonant frequency f changes. The amplitude change at this time is expressed as a difference D2 between the intersections of the curves A and B and A and B2. Therefore, by setting the feedback level changes D1 and D2 to be the same when iron and aluminum objects approach a certain set distance, it is possible to obtain the same sensitivity characteristics for iron and aluminum objects. I can do it.

又前述した実施例ではLC共振回路を用いた発振回路の
正帰還ループに第2のタンク回路を接続してそのコイル
を検出コイルとしているが、第5図に示すように水晶発
振回路の正帰還ループに第2のタンク回路T2を設けこ
のコイルを検出コイルとするようにしてもよい。第5図
ではトランジスタTr2のベース・コレクタ間に水晶発
振器20が取付けられてそのコレクタの出力がエミッタ
フォロワ型のトランジスタTr3によって外部に出力さ
れており、このトランジスタTr2のエミッタと接地端
間に第2のタンク回路T2を持つ正帰還回路12が設け
られる。この場合にはトランジスタTr2のベース側か
ら見たタンク回路T2のインピーダンスは近接する物体
によって変化する。この場合には水晶を用いているため
発振周波数はほとんど同一であり、正帰還のタンク回路
の共振周波数及びその物体に対する特性によって発振回
路の振幅が変化する。即ち第6図に示すように、コイル
L2に物体が近接しないときのタンク回路T2の振幅特
性を曲vAEとし、鉄及びアルミニウム類の物体が近接
したときの特性を夫々曲線El、E2とする。そして鉄
及びアルミニウムの物体が設定距離に近づいたときにこ
れらの振幅の低下を同一になるようにタンク回路を設定
しておくことにより、同一の感度特性を得ることができ
る。
Furthermore, in the embodiment described above, the second tank circuit is connected to the positive feedback loop of the oscillation circuit using the LC resonant circuit, and that coil is used as the detection coil, but as shown in FIG. A second tank circuit T2 may be provided in the loop and this coil may be used as a detection coil. In FIG. 5, a crystal oscillator 20 is attached between the base and collector of the transistor Tr2, and the output of the collector is outputted to the outside by an emitter follower type transistor Tr3. A positive feedback circuit 12 having a tank circuit T2 is provided. In this case, the impedance of the tank circuit T2 viewed from the base side of the transistor Tr2 changes depending on the nearby object. In this case, since a crystal is used, the oscillation frequency is almost the same, and the amplitude of the oscillation circuit changes depending on the resonance frequency of the positive feedback tank circuit and its characteristics with respect to the object. That is, as shown in FIG. 6, the amplitude characteristic of the tank circuit T2 when no object approaches the coil L2 is represented by a curve vAE, and the characteristics when an iron or aluminum object approaches are represented by curves El and E2, respectively. The same sensitivity characteristics can be obtained by setting the tank circuit in such a way that these amplitudes decrease the same when the iron and aluminum objects approach the set distance.

次に本願の請求項2の発明について実施例を参照しつつ
説明する。本実施例においても回路構成は前述した第1
実施例のブロック図及び回路図と同一である。本実施例
では第2のタンク回路T2の共振周波数f、を第1のタ
ンク回路TIの共振周波数f、に対して低くなるように
設定し、通常の状態では発振が開始されないレベルとし
てアルミニウムのみを検出している。第7図(al、 
(b)は物体が近接しない状態での第2のタンク回路の
振幅特性曲wAFに対し、鉄製の物体が近接した場合の
曲線をFl、アルミニウム類の物体が近接した状態の′
曲線をF2として夫々示している。本図に示すように曲
線AとFとが交わる周波数f、の近傍では、発振を開始
していないものとするとアルミニウムの物体の近接に伴
い発振開始レベルgを越えるため、図示のように曲6I
F2と曲線Aとの交点を発振周波数f0として発振が開
始される。しかし鉄製の物品が近接した場合には曲線F
lに示すように振幅レベルが更に低下するため発振開始
レベル以下となって発振は開始しない。従ってアルミニ
ウムの近接によりアルミニウムの物体が接近したときに
のみ発振が開始されることとなり、この出力に基づいて
アルミニウム等の非磁性体を検出することが可能となる
Next, the invention of claim 2 of the present application will be explained with reference to embodiments. In this example as well, the circuit configuration is the same as the first one described above.
It is the same as the block diagram and circuit diagram of the embodiment. In this example, the resonant frequency f of the second tank circuit T2 is set to be lower than the resonant frequency f of the first tank circuit TI, and only aluminum is set to a level at which oscillation does not start under normal conditions. Detected. Figure 7 (al,
(b) shows the amplitude characteristic curve wAF of the second tank circuit when no object is nearby, Fl is the curve when a steel object is nearby, and ′ is when an aluminum object is nearby.
The curves are respectively indicated as F2. As shown in the figure, near the frequency f where curves A and F intersect, if oscillation has not started, the oscillation start level g will be exceeded as the aluminum object approaches.
Oscillation is started with the intersection of F2 and curve A as the oscillation frequency f0. However, when iron objects are close together, curve F
Since the amplitude level further decreases as shown in 1, it becomes below the oscillation start level and oscillation does not start. Therefore, oscillation is started only when an aluminum object approaches due to the proximity of aluminum, and it becomes possible to detect non-magnetic materials such as aluminum based on this output.

又この発振回路を常に発振させておき第7図に示すgを
閾値レベルとすることによりこのレベルを越えたときに
非磁性体を検出するようにしてもよい。
Alternatively, the oscillation circuit may be kept in constant oscillation, and by setting g shown in FIG. 7 as a threshold level, a non-magnetic material may be detected when this level is exceeded.

次に本願の請求項3の発明について説明する。Next, the invention of claim 3 of the present application will be explained.

本実施例においても回路構成は前述した第1実施例のブ
ロック図及び回路図と同一であり、前述した実施例と同
様に第2のタンク回路T2の共振周波数f、を第1のタ
ンク回路TIの共振周波数に対して低くなるように設定
している。そして第7図に示すグラフにおいて比較回路
の閾値を第7図(a)。
The circuit configuration of this embodiment is also the same as the block diagram and circuit diagram of the first embodiment described above, and similarly to the embodiment described above, the resonance frequency f of the second tank circuit T2 is changed to the resonance frequency f of the second tank circuit T2. It is set to be lower than the resonant frequency of. In the graph shown in FIG. 7, the threshold value of the comparison circuit is shown in FIG. 7(a).

(blに示すhのレベルに設定しておくものとする。(It is assumed that the level h shown in bl is set.

こうすれば鉄等の磁性体が接近したときに振幅がこのレ
ベルより低下しアルミニウム等の非磁性体では元の振幅
レベルより大きくなるため、磁性体の金属のみを検出す
ることが可能となる。
In this way, when a magnetic material such as iron approaches, the amplitude decreases below this level, and in the case of a non-magnetic material such as aluminum, the amplitude becomes higher than the original level, making it possible to detect only magnetic metals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の近接スイッチの基本的な構成を示すブ
ロック図、第2図は発振回路の一実施例を示す回路図、
第3図は近接スイッチの構造を示す断面図、第4図はタ
ンク回路の周波数に対する振幅レベルの変化を示す図、
第5図は本発明の梁側による近接スイッチの周波数に対
する振幅特性を示すグラフ、第8図は従来の近接スイッ
チの一例を示すブロック図である。 3・・−・・検波回路  5・−・−・・・比較回路 
 6−・・−=出力回路  11−・−・〜・増幅回路
  12−・−・−正帰還回路  13−・−・・発振
回路  T 1 、 T 2−−タンク回路  L2−
・−検出コイル 特許出願人   立石電機株式会社 代理人 弁理士 岡本官喜(他I名) 第1図 第3図 第4図 ↑1 tolT2   T21   問、IL叡第5図 第6図 io     1@i艷 第7図(a)− 第7図(b)
FIG. 1 is a block diagram showing the basic configuration of the proximity switch of the present invention, FIG. 2 is a circuit diagram showing an example of an oscillation circuit,
FIG. 3 is a cross-sectional view showing the structure of the proximity switch, FIG. 4 is a diagram showing changes in amplitude level with respect to frequency of the tank circuit,
FIG. 5 is a graph showing amplitude characteristics with respect to frequency of the beam-side proximity switch of the present invention, and FIG. 8 is a block diagram showing an example of a conventional proximity switch. 3.---Detection circuit 5.---Comparison circuit
6-...-=Output circuit 11----Amplification circuit 12---Positive feedback circuit 13---Oscillation circuit T1, T2--Tank circuit L2-
・-Detection coil patent applicant Tateishi Electric Co., Ltd. agent Patent attorney Kanki Okamoto (and I others) Figure 1 Figure 3 Figure 4 ↑ 1 tolT2 T21 Q, IL E Figure 5 Figure 6 io 1@i Figure 7 (a) - Figure 7 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)発振周波数f_0で発振する発振回路と、前記発
振回路の正帰還ループ間に接続され前記発振周波数より
わずかに高い共振周波数f_2(f_0<f_2)を有
するタンク回路と、前記発振回路の振幅を所定の閾値レ
ベルで弁別する比較回路と、を有し、磁性体及び非磁性
体金属体が同一位置に近接したとき同一の発振レベルが
低下する発振周波数に設定したことを特徴とする高周波
発振型近接スイッチ。
(1) An oscillation circuit that oscillates at an oscillation frequency f_0, a tank circuit connected between the positive feedback loop of the oscillation circuit and having a resonant frequency f_2 (f_0<f_2) slightly higher than the oscillation frequency, and an amplitude of the oscillation circuit. a comparison circuit for discriminating at a predetermined threshold level, and the oscillation frequency is set to such an oscillation frequency that the same oscillation level decreases when a magnetic material and a non-magnetic metal material come close to the same position. type proximity switch.
(2)発振周波数f_0で発振する発振回路と、前記発
振回路の正帰還ループ間に接続され前記発振周波数より
わずかに低い共振周波数f_3(f_0>f_3)を有
するタンク回路と、前記発振回路の振幅を所定の閾値レ
ベルで弁別する比較回路と、を有し、前記比較回路は非
磁性体の近接による発振振幅の上昇に基づいて非磁性体
のみを検出するものであることを特徴とする高周波発振
型近接スイッチ。
(2) An oscillation circuit that oscillates at an oscillation frequency f_0, a tank circuit connected between the positive feedback loop of the oscillation circuit and having a resonant frequency f_3 (f_0>f_3) slightly lower than the oscillation frequency, and an amplitude of the oscillation circuit. a comparison circuit that discriminates at a predetermined threshold level, the comparison circuit detecting only non-magnetic materials based on an increase in oscillation amplitude due to proximity of the non-magnetic materials. type proximity switch.
(3)発振周波数f_0で発振する発振回路と、前記発
振回路の正帰還ループ間に接続され前記発振周波数より
わずかに低い共振周波数f_3(f_0>f_3)を有
するタンク回路と、前記発振回路の振幅を所定の閾値レ
ベルで弁別する比較回路と、を有し、前記比較回路は磁
性体の近接による発振振幅の低下に基づいて磁性体のみ
を検出するものであることを特徴とする高周波発振型近
接スイッチ。
(3) An oscillation circuit that oscillates at an oscillation frequency f_0, a tank circuit connected between the positive feedback loop of the oscillation circuit and having a resonant frequency f_3 (f_0>f_3) slightly lower than the oscillation frequency, and an amplitude of the oscillation circuit. a comparison circuit for discriminating at a predetermined threshold level, the comparison circuit detecting only a magnetic substance based on a decrease in oscillation amplitude due to proximity of the magnetic substance. switch.
JP1134234A 1989-05-26 1989-05-26 High frequency oscillation type proximity switch Pending JPH02312316A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1134234A JPH02312316A (en) 1989-05-26 1989-05-26 High frequency oscillation type proximity switch
EP19900110062 EP0399563A3 (en) 1989-05-26 1990-05-28 High frequency oscillation type proximity switch
US07/529,357 US5034704A (en) 1989-05-26 1990-05-29 High frequency oscillation type proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134234A JPH02312316A (en) 1989-05-26 1989-05-26 High frequency oscillation type proximity switch

Publications (1)

Publication Number Publication Date
JPH02312316A true JPH02312316A (en) 1990-12-27

Family

ID=15123563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134234A Pending JPH02312316A (en) 1989-05-26 1989-05-26 High frequency oscillation type proximity switch

Country Status (3)

Country Link
US (1) US5034704A (en)
EP (1) EP0399563A3 (en)
JP (1) JPH02312316A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0523563A1 (en) * 1991-07-15 1993-01-20 Omron Corporation Proximity switch
JPH05110412A (en) * 1991-10-15 1993-04-30 Omron Corp Oscillator circuit and high frequency oscillation type proximity switch
DE4330140C2 (en) * 1993-09-07 1997-07-17 Ifm Electronic Gmbh Inductive proximity switch
US5582184A (en) * 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
FR2716979B1 (en) * 1994-03-04 1996-03-29 Telemecanique Inductive proximity switch.
IL110597A (en) * 1994-08-09 2002-11-10 Micro Tag Temed Ltd Method for labeling, verification and/or identifying an object and device for implementing said method
US5801530A (en) * 1995-04-17 1998-09-01 Namco Controls Corporation Proximity sensor having a non-ferrous metal shield for enhanced sensing range
FR2735224B1 (en) * 1995-06-08 1997-07-18 Silec Liaisons Elec ELECTROMAGNETIC SENSOR AND METHOD FOR THE SIMULTANEOUS DETERMINATION OF DIFFERENT PARAMETERS OF AN ASSOCIATED TARGET
US6476604B1 (en) * 1999-04-12 2002-11-05 Chartered Semiconductor Manufacturing Ltd. Method and apparatus for identifying high metal content on a semiconductor surface
US6446012B1 (en) * 1999-06-23 2002-09-03 Bfcs Technology, Inc. Proximity detector for hard-to-detect materials
ITMO20030300A1 (en) * 2003-11-07 2005-05-08 M D Micro Detectors Spa INDUCTIVE PROXIMITY SENSOR, IN PARTICULAR TO DETECT THE PRESENCE OF FERROUS AND NON-FERROUS MATERIALS
JP4385825B2 (en) * 2004-03-31 2009-12-16 オムロン株式会社 Proximity sensor
US7511482B2 (en) * 2005-08-31 2009-03-31 I F M Electronic Gmbh Inductive proximity switch
US8432169B2 (en) * 2007-09-20 2013-04-30 Panasonic Corporation Proximity sensor
US8258777B2 (en) * 2009-09-04 2012-09-04 Weihua Chen Inductive proximity sensor
DE102009044820B4 (en) 2009-12-08 2011-09-01 Turck Holding Gmbh Self-calibrating proximity switch
DE102011016504B4 (en) * 2011-04-08 2013-07-18 Behr-Hella Thermocontrol Gmbh Display device for a vehicle component
GB2495104A (en) 2011-09-28 2013-04-03 Oxford Rf Sensors Ltd Rotor blade sensor
EP2674950A1 (en) 2012-06-11 2013-12-18 Tyco Electronics Nederland B.V. Contactless connector, contactless connector system, and a manufacturing method for the contactless connector
GB2506424B (en) * 2012-09-28 2017-06-07 Salunda Ltd Target clearance measurement device
US9753068B2 (en) * 2015-01-14 2017-09-05 Insitu Inc. Systems and methods for signal quantization
WO2017204663A1 (en) 2016-05-25 2017-11-30 Powerbyproxi Limited A coil arrangement
CN110109183B (en) * 2019-04-29 2024-04-19 于凯鸿 Sensing device for detecting object proximity

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1302191B (en) * 1960-11-24 1971-01-14
FR1344681A (en) * 1963-01-14 1963-11-29 Tateisi Denki Kabushikikaisha Electrical detector device
CH421237A (en) * 1964-02-05 1966-09-30 Ebauches Sa Proximity detector
DE1915044A1 (en) * 1969-03-25 1970-10-15 Schaller Dipl Ing Werner Inductive proximity switch
US3896371A (en) * 1973-12-17 1975-07-22 Allen W Hametta Metal detector with a resonating circuit being driven by a frequency higher than its natural resonance frequency
US3961238A (en) * 1975-01-22 1976-06-01 Robert F. Gardiner Selective metal detector circuit having dual tuned resonant circuits
FR2320663A1 (en) * 1975-08-06 1977-03-04 Itt Produits Ind PROXIMITY DETECTOR OF OBJECTS OF ANY KIND
US4263553A (en) * 1978-05-30 1981-04-21 Cook Kenneth M Discriminating metal detector with compensation for ground minerals
DE3228524C2 (en) * 1982-07-30 1985-05-02 Siemens AG, 1000 Berlin und 8000 München Inductive proximity switch
JPH069336B2 (en) * 1987-04-03 1994-02-02 本田技研工業株式会社 High frequency oscillation type proximity switch
DE3714433C2 (en) * 1987-04-30 1994-04-28 Turck Werner Kg Inductive proximity switch

Also Published As

Publication number Publication date
EP0399563A3 (en) 1991-07-17
EP0399563A2 (en) 1990-11-28
US5034704A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
JPH02312316A (en) High frequency oscillation type proximity switch
US5767672A (en) Inductive proximity sensor for detecting magnetic and non-magnetic metallic objects
US5012206A (en) Inductive proximity switch
US4782308A (en) Circuit arrangement of a reading device for electromagnetic identification cards
US8258777B2 (en) Inductive proximity sensor
CA1194943A (en) Process for compensation of the temperature behaviour of an oscillating circuit, temperature compensated oscillator according to said process and use of said oscillator
US6335619B1 (en) Inductive proximity sensor comprising a resonant oscillatory circuit responding to changes in inductive reaction
US6822440B2 (en) Inductive proximity sensor
US9222805B2 (en) Circuit system and method for evaluating a sensor
EP0171013B1 (en) Proximity switch
JPH11264876A (en) Induction access detector
US4868488A (en) Use of a dielectric microwave resonator and sensor circuit for determining the position of a body
US5508662A (en) Variable frequency inductive proximity sensor
US3230519A (en) Capacitive sensing device
JPH05110412A (en) Oscillator circuit and high frequency oscillation type proximity switch
JP2000131120A (en) Level detecting device for magnetic body
JPH10173437A (en) Lc oscillation circuit and proximity sensor using the same
JPS62186614A (en) Proximity switch
JPS60235524A (en) Proximity switch
JP3353361B2 (en) Proximity switch
JPH06334507A (en) High frequency oscillation type proximity sensor
JPH05315929A (en) Object proximity detector
JPS6138651B2 (en)
JPH0119526B2 (en)
JP3391010B2 (en) Proximity switch