JPH02312283A - Formation of insulating film on polycrystalline silicon film - Google Patents

Formation of insulating film on polycrystalline silicon film

Info

Publication number
JPH02312283A
JPH02312283A JP13433589A JP13433589A JPH02312283A JP H02312283 A JPH02312283 A JP H02312283A JP 13433589 A JP13433589 A JP 13433589A JP 13433589 A JP13433589 A JP 13433589A JP H02312283 A JPH02312283 A JP H02312283A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
oxide film
film
silicon oxide
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13433589A
Other languages
Japanese (ja)
Inventor
Katsuyuki Takahashi
克幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP13433589A priority Critical patent/JPH02312283A/en
Publication of JPH02312283A publication Critical patent/JPH02312283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve a capacitance between a floating gate and a control gate in stability and reliability by a method wherein a polycrystalline silicon oxide film is formed, and then the silicon oxide film is turned into an N<+>-type through the ion implantation of N<+>-type impurity. CONSTITUTION:A silicon oxide film 2 is formed using a P-type silicon substrate 1, and a polycrystalline silicon film 3 is formed. Then, a polycrystalline silicon oxide film 4 is formed, and the polycrystalline silicon film 3 is turned into an N<+>-type by the implantation of phosphorus through the polycrystalline silicon oxide film 4. Therefore, the polycrystalline silicon oxide film 4 is formed uniform in thickness in a wafer, and in a non-volatile memory provided with a floating gate formed of a polycrystalline silicon film, an oxide film on the floating gate becomes stable in thickness. By this setup, a capacitance between a floating gate and a control gate can be improved in stability and reliability.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、多結晶シリコン股上に絶縁膜を形成する方法
に関わり、特に絶縁膜の膜厚均一性の優れた形成方法に
関する。 〔発明の概要〕 この発明は、N°型型詰結晶シリコン膜上絶縁膜を形成
する工程において、多結晶シリコン股上に絶縁膜を形成
した後、N゛型不純物をイオン注入することにより多結
晶シリコン層をN゛型化ることによって絶縁膜の優れた
膜厚均一性を提供するものである。 〔従来の技術〕 第2図+a)〜(clは一般的な多結晶シリコン上の熱
酸化膜の形成工程順を示す断面図である。 6インチP型シリコン基板11を用い、シリコン酸化膜
12を形成し、多結晶シリコン膜13を形成する。 (
第2図(a)) この後、リン拡散法により多結晶シリコン層13をN゛
型化る。(第2図(b)) 次に多結晶シリコン熱酸化膜14を形成する。 (第2図(C)) 〔発明が解決しようとする課題〕 リン拡散法によりN°型化された多結晶シリコン膜上の
熱酸化膜は以下の問題点があった。 N゛型多結晶シリコン膜の酸化速度は、争結晶シリコン
と比較して非常に大きい、従って拡散炉の出し入れの際
に形成されるウェハー内に不均一に形成される外気酸化
膜及びウェハー内の多結晶シリコン層のリン濃度のバラ
ツキにより、ウェハー内で不均一な酸化膜厚となる。従
来の多結晶シリコン酸化膜の形成方法によるウェハー面
内の酸化膜厚均一性を第3図中に鎖線で示す、第3図は
縦軸に6インチウェハー面内に酸化膜厚均一性、横軸に
多結晶シリコン酸化膜の形成回数をとったものである。 ただし、ウェハー面内の酸化膜厚均一性は、ウェハー周
辺部1備を除いた上、中、下、左、右の5ポイント測定
結果である。 (課題を解決するための手段) 上記の問題点を解決するために多結晶シリコン膜を形成
した直後、リン拡散によりN゛型化るのではなく、多結
晶シリコン酸化膜を形成してからN“型不純物のイオン
・インプランテーションにより多結晶シリコン膜をN゛
型化る。 〔作用〕 上記のような形成工程順によって形成された多結晶シリ
コン酸化膜は、ウェハー内で均一に酸化膜厚が形成され
る。 多結晶シリコン膜からなる浮遊ゲートを有する不揮発性
メモリにおいて、浮遊ゲート上の酸化膜厚が安定するの
で、浮遊ゲート−制御ゲート間の容量も安定し、43願
性の高い不揮発性メモリを提供できる。 〔実施例〕 以下、本発明を実施例に基づいて説明する。第1図(a
l〜(C1は本発明の多結晶シリコン絶縁膜の形成工程
順を示す断面図である。 6インチP型シリコン基板lを用い、シリコン酸化膜2
を形成し、多結晶シリコン膜3を11000人形成する
(第1図(a))。 この後、多結晶シリコン熱酸化1124を形成する(第
1図+bl)、次に前記多結晶シリコン酸化膜4を通し
てリンのイオン・インプランテーションを行うことによ
り、前記多結晶シリコン膜3をN゛型化る(第1図(C
))。 本発明の多結晶シリコン酸化膜の形成方法によるウェハ
ー面内の酸化膜厚均一性を第3図中に実線で示す。第3
図から明らかなように本発明の多結晶シリコン酸化膜の
膜厚均一性は、従来の多結晶シリコン酸化膜の膜厚均一
性に比べ大分よくなっていることがわかる。
[Industrial Application Field] The present invention relates to a method of forming an insulating film on a polycrystalline silicon ridge, and particularly to a method of forming an insulating film with excellent film thickness uniformity. [Summary of the Invention] This invention provides a method for forming an insulating film on a polycrystalline silicon film by ion-implanting N° type impurities after forming an insulating film on a polycrystalline silicon film in a step of forming an insulating film on an N° type packed crystalline silicon film. By making the silicon layer N-type, excellent film thickness uniformity of the insulating film is provided. [Prior Art] Fig. 2+a) to (cl) are cross-sectional views showing the order of steps for forming a thermal oxide film on a general polycrystalline silicon. is formed, and a polycrystalline silicon film 13 is formed. (
FIG. 2(a)) Thereafter, the polycrystalline silicon layer 13 is made into an N-type by a phosphorus diffusion method. (FIG. 2(b)) Next, a polycrystalline silicon thermal oxide film 14 is formed. (FIG. 2(C)) [Problems to be Solved by the Invention] A thermally oxidized film on a polycrystalline silicon film made into an N° type by a phosphorus diffusion method has the following problems. The oxidation rate of the N-type polycrystalline silicon film is much higher than that of crystalline silicon. Therefore, the oxidation rate of the N-type polycrystalline silicon film is much higher than that of crystalline silicon. Variations in the phosphorus concentration of the polycrystalline silicon layer result in non-uniform oxide film thickness within the wafer. The oxide film thickness uniformity within the wafer surface by the conventional method of forming a polycrystalline silicon oxide film is shown in Figure 3 by the chain line. The axis represents the number of times a polycrystalline silicon oxide film is formed. However, the uniformity of the oxide film thickness within the wafer surface is the result of measurement at five points: top, middle, bottom, left, and right, excluding one area around the wafer. (Means for solving the problem) In order to solve the above problem, instead of forming a polycrystalline silicon film and converting it into N-type by phosphorus diffusion immediately after forming a polycrystalline silicon oxide film, The polycrystalline silicon oxide film is made into an N-type by ion implantation of type impurities. In a nonvolatile memory with a floating gate made of polycrystalline silicon, the thickness of the oxide film on the floating gate is stable, so the capacitance between the floating gate and the control gate is also stable, resulting in a highly desirable nonvolatile memory. [Example] The present invention will be described below based on an example.
1~(C1 is a cross-sectional view showing the order of steps for forming a polycrystalline silicon insulating film of the present invention. Using a 6-inch P-type silicon substrate 1, a silicon oxide film 2
11,000 polycrystalline silicon films 3 are formed (FIG. 1(a)). After this, polycrystalline silicon thermal oxidation 1124 is formed (FIG. 1+bl), and then phosphorus ion implantation is performed through the polycrystalline silicon oxide film 4 to convert the polycrystalline silicon film 3 into an N-type. (Figure 1 (C)
)). The uniformity of the oxide film thickness within the wafer surface according to the method of forming a polycrystalline silicon oxide film of the present invention is shown by a solid line in FIG. Third
As is clear from the figure, the film thickness uniformity of the polycrystalline silicon oxide film of the present invention is much better than that of the conventional polycrystalline silicon oxide film.

【発明の効果】【Effect of the invention】

本発明の多結晶シリコン酸化膜は、ウェハー内で均一に
酸化膜厚が形成される。多結晶シリコン膜からなる浮遊
ゲートを有する不揮発性メモリにおいて、浮遊ゲート上
の酸化膜厚が安定するので、浮遊ゲート−制御ゲート間
の容量も安定し、信幀性の高い不揮発性メモリを提供で
きる。
The polycrystalline silicon oxide film of the present invention has a uniform oxide thickness within the wafer. In a nonvolatile memory that has a floating gate made of polycrystalline silicon, the thickness of the oxide film on the floating gate is stable, so the capacitance between the floating gate and the control gate is also stable, making it possible to provide a highly reliable nonvolatile memory. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fat〜(C1は本発明の多結晶シリコン酸化膜
の形成工程順を示す断面図、第2図fal〜(C1は従
来の多結晶シリコン酸化膜の形成工程順を示す断面図、
第3図は従来の多結晶のシリコン酸化膜と本発明の多結
晶シリコン酸化膜の膜厚均一性を示す特性図である。 ■・・・P型シリコン基板 2・・・シリコン酸化膜 3・・・多結晶シリコン膜 4・・・多結晶シリコン酸化膜 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 −一〜l P型シリコン基4反 m−−1 多結晶シリコン酸化膜の形爪方法’ram面図不1 図 へ11 Th l + −++ 従来のう粘品ソリコ″/酸化履の形及工程16飲面旧第
2図
Figure 1 fat~ (C1 is a sectional view showing the order of forming steps for a polycrystalline silicon oxide film of the present invention, Figure 2 fal~ (C1 is a sectional view showing the order of steps for forming a conventional polycrystalline silicon oxide film,
FIG. 3 is a characteristic diagram showing the film thickness uniformity of a conventional polycrystalline silicon oxide film and a polycrystalline silicon oxide film of the present invention. ■...P-type silicon substrate 2...Silicon oxide film 3...Polycrystalline silicon film 4...Polycrystalline silicon oxide film Applicant Seiko Electronics Co., Ltd. Agent Patent attorney Keisuke Hayashi-ichi ~l P-type silicon group 4 anti-m--1 Shape and process of polycrystalline silicon oxide film 'RAM surface diagram not shown 1 Figure 11 Drinking surface old figure 2

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコン膜を形成する工程と、前記多結晶シリコ
ン膜上に熱酸化膜を形成する工程と、前記熱酸化膜を介
してN^+型不純物をイオン注入する工程とからなる多
結晶シリコン膜上の絶縁膜の形成方法。
A polycrystalline silicon film comprising the steps of forming a polycrystalline silicon film, forming a thermal oxide film on the polycrystalline silicon film, and ion-implanting N^+ type impurities through the thermal oxide film. How to form the upper insulating film.
JP13433589A 1989-05-26 1989-05-26 Formation of insulating film on polycrystalline silicon film Pending JPH02312283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13433589A JPH02312283A (en) 1989-05-26 1989-05-26 Formation of insulating film on polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13433589A JPH02312283A (en) 1989-05-26 1989-05-26 Formation of insulating film on polycrystalline silicon film

Publications (1)

Publication Number Publication Date
JPH02312283A true JPH02312283A (en) 1990-12-27

Family

ID=15125938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13433589A Pending JPH02312283A (en) 1989-05-26 1989-05-26 Formation of insulating film on polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JPH02312283A (en)

Similar Documents

Publication Publication Date Title
JPH0640582B2 (en) Method for manufacturing insulating gate field effect transistor
IE55653B1 (en) Method of manufacturing a semiconductor device and semiconductor device manufactured by means of the method
JPH02312283A (en) Formation of insulating film on polycrystalline silicon film
JPS60138974A (en) Manufacture of insulated gate type field effect transistor
JPS63133678A (en) Manufacture of vertical field effect transistor
JPS5649554A (en) Manufacture of semiconductor memory
JPS6333868A (en) Manufacture of mis field-effect transistor
JPS5825265A (en) Manufacture of mosfet
JPH0230147A (en) Manufacture of thin film transistor
JPS61166074A (en) Insulated gate type transistor and manufacture thereof
KR960015929B1 (en) Method for manufacturing bipolar transistor
JPS63229744A (en) Semiconductor device
JPS6294926A (en) Manufacture of semiconductor device
JPS59107572A (en) Manufacture of semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS6455853A (en) Semiconductor device and manufacture thereof
JPH04254379A (en) Manufacture of solid-state image pickup device
JPS5852340B2 (en) Manufacturing method of semiconductor device
JPH02292834A (en) Manufacture of charge-coupled device
JPS61137346A (en) Manufacture of semiconductor device
JPH04162420A (en) Manufacture of semiconductor device
JPH07114208B2 (en) Transistor manufacturing method
JPS6185839A (en) Manufacture of semiconductor integrated circuit
JPS62128117A (en) Manufacture of semiconductor device
JPS62194617A (en) Manufacture of semiconductor device