JPH02312171A - Structure of solid electrolyte fuel cell - Google Patents

Structure of solid electrolyte fuel cell

Info

Publication number
JPH02312171A
JPH02312171A JP1133396A JP13339689A JPH02312171A JP H02312171 A JPH02312171 A JP H02312171A JP 1133396 A JP1133396 A JP 1133396A JP 13339689 A JP13339689 A JP 13339689A JP H02312171 A JPH02312171 A JP H02312171A
Authority
JP
Japan
Prior art keywords
current collector
stack
conductive plate
fuel cell
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1133396A
Other languages
Japanese (ja)
Other versions
JP2816475B2 (en
Inventor
Masakatsu Nagata
雅克 永田
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1133396A priority Critical patent/JP2816475B2/en
Publication of JPH02312171A publication Critical patent/JPH02312171A/en
Application granted granted Critical
Publication of JP2816475B2 publication Critical patent/JP2816475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a high output fuel cell while reducing its current density by connecting stacks in series to each other by means of conductive plates. CONSTITUTION:An electro motive force is generated by passing an oxidizing gas and a fuel gas on both sides of each cell 1 where a solid electrolyte 6 is sandwitched. The plural cells 1 are connected in parallel to each other by means of an inner current collector 8 and an outer current collector 9 to form a stack 2. The conductive plate 11 which is electrically integrated with the inner current collector 8 and which extends between cells to the outer face side of the outer current collector 9 is brought in electric contact with the outer face of adjacent stack 2 so that the stack 2 is connected in series to adjacent stack 2, while a current generated at one stack is transmitted to another stack 2 via the conductive plate 11. The conductive plate 11 is provided along the whole length of the inner current collector 8 so its cross section is broadened and its current density is reduced. A high output fuel cell is thus obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は複数の単電池を相互に並列に接続し、その集
合体を更に相互に直列に接続した燃料電池の構造に関し
、特に円筒状の固体電解質の内外面に酸素電極および燃
料電極を設けた単電池を主体とする燃料電池に関フるも
のである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to the structure of a fuel cell in which a plurality of single cells are connected in parallel to each other and the aggregates are further connected in series, and in particular, the present invention relates to a fuel cell structure in which a plurality of unit cells are connected in parallel to each other, and an assembly of the cells is further connected in series. This relates to a fuel cell that is mainly a single cell that has an oxygen electrode and a fuel electrode provided on its inner and outer surfaces.

従来の技術 周知のように固体電解質燃料電池は、イツトリア安定化
ジルコニア(YSZ)などの物質が、1000℃程度の
高温下で酸素イオン導電性を示すことを利用したもので
あり、その基本的な*造は、YSZなどの固体電解質を
挟んで、ベロアスカイト型ランタン系複合酸化物などか
らなる多孔#l造のI素電極と、ニッケルやニッケル合
金あるいはNi−Zr 02サーメツトなどからなる多
孔構造の燃料電極とを設け、高温状態でB素電極側に空
気や酸素ガスなどの酸化性ガスを流す一方、燃料電極側
に水素ガスや一酸化炭素ガスなどの燃料ガスを流すこと
によって固体電解質を介した酸化・還元反応によって電
力を得るものである。
Conventional Technology As is well known, solid electrolyte fuel cells utilize the fact that materials such as yttria-stabilized zirconia (YSZ) exhibit oxygen ion conductivity at high temperatures of around 1000°C. *The structure consists of a porous I element electrode made of velorskite-type lanthanum-based composite oxide, etc., with a solid electrolyte such as YSZ in between, and a porous structure made of nickel, nickel alloy, Ni-Zr02 cermet, etc. A solid electrolyte is produced by flowing an oxidizing gas such as air or oxygen gas to the B element electrode side in a high temperature state, and flowing a fuel gas such as hydrogen gas or carbon monoxide gas to the fuel electrode side. Electricity is obtained through oxidation and reduction reactions.

この種の1$電池によって得られる電圧は、高々1■程
度に過ぎないので、実用に供するためには多数の単電池
を直並列に接続する必要があり、そのため従来から単電
池を円筒型に形成し、これを直並列に接続する構造や、
インターコネクタとなる導電板の間に多数の単電池を形
成してこれを多数積層する平板型などの種々の構造が開
発・検討されている。これらの構造のうち平板型は全体
をコンパクト化し易い利点があるものの、酸化性ガスと
燃料ガスとの混合を防ぐためのシールが困難であるなど
の問題に加え、製造の容易性に欠ける問題があり、した
がって円筒型のものが実用性に富んでいる。
The voltage obtained by this type of 1 dollar battery is only about 1 cm at most, so in order to put it into practical use, it is necessary to connect many cells in series and parallel.For this reason, cells have traditionally been made into cylindrical shapes. structure that forms and connects them in series and parallel,
Various structures have been developed and studied, such as a flat plate type in which a large number of single cells are formed between conductive plates serving as interconnectors and stacked in large numbers. Among these structures, the flat plate type has the advantage of making the whole structure more compact, but it also has problems such as difficulty in sealing to prevent mixing of oxidizing gas and fuel gas, as well as a lack of ease of manufacture. Therefore, the cylindrical type is highly practical.

円筒型の単電池を使用して必要な起電力を得る構造とし
て、従来、単電池を!U横のマトリックス状に多数配列
し、例えば縦方向では各単電池を直列接続し、横方向に
は各単電池を並列接続する構造が知られている。しかし
ながらこのような構造では、いずれかの単電池に異常を
来たしてその単電池が起電力を生じなくなった場合、そ
の単電池を含む直列接続した単電池群の全体がR能しな
くなり、あるいはその単電池群での内部抵抗が著しく増
大して発電効率が低下する問題が生じる。このような問
題を解消することのできる構造を本出願人は既に提案し
ており、その基本的な構造は、導電性の内部集電子の外
周に多数の円筒型単電池を配置するとともに、各111
電池の内周側の電極をインターコネクタによって内部集
電子に導通させ、また内部集電子とほぼ同心状に設けた
筒状の外部集電子によって単電池の全体を包囲するとと
もに各単電池の外周側の電極を外部集電子に導通させた
ものである。なお、複数の単電池をこのように接続した
@還体はスタックと称されている。
Conventionally, a single cell was used as a structure to obtain the necessary electromotive force using a cylindrical single cell! A structure is known in which a large number of cells are arranged in a U-horizontal matrix, and each cell is connected in series in the vertical direction, and each cell is connected in parallel in the horizontal direction. However, in such a structure, if an abnormality occurs in one of the cells and that cell no longer generates an electromotive force, the entire group of cells connected in series including that cell will no longer be able to perform its R function, or its A problem arises in that the internal resistance of the unit cell group increases significantly and the power generation efficiency decreases. The applicant has already proposed a structure that can solve these problems, and its basic structure consists of arranging a large number of cylindrical cells around the outer periphery of a conductive internal current collector. 111
The electrode on the inner circumference of the battery is connected to the internal current collector through an interconnector, and the entire cell is surrounded by a cylindrical external current collector provided almost concentrically with the internal current collector, and the outer circumferential side of each cell is The electrode is electrically connected to an external current collector. It should be noted that an @reduction body in which a plurality of single cells are connected in this way is called a stack.

発明が解決しようとする課題 上述したスタックは、更にその複数本を直並列に接続し
て燃料電池として組立てられるが、その場合、各スタッ
クは内部集電子を一方の電極とし、かつ外部集電子を他
方の電極とした独立した発電要素と考えられるから、こ
れを直列に接続する構造としては、内部集電子が外部集
電子に包囲されている@造となっていることにより、少
なくとも内部集電子の一端部をその軸線方向に突出させ
、その突出部分から半径方向に延びた導電性接続具を他
のスタックの外部集電子の外面にニッケルフェルトなど
のクッション性のある1j電材料を介在させて当接させ
るIf4造が考えられる。しかしながらこのような構造
では、各スタックで生じた電流がその一端部に設けられ
ている接続具に集中して流れるので接続具での電流密度
が高くなり、その結果、その接続具の部分での損失が−
大きくなり、また電流流路が長くなって燃料電池の全゛
体としての発電効率が低下するなどの問題がある。
Problems to be Solved by the Invention The above-mentioned stack can be assembled into a fuel cell by connecting a plurality of stacks in series and parallel, but in that case, each stack has an internal current collector as one electrode and an external current collector as one electrode. Since it is considered to be an independent power generation element with the other electrode, the structure in which they are connected in series is a structure in which the internal current collector is surrounded by the external current collector, so that at least the internal current collector is One end is made to protrude in the axial direction, and a conductive connector extending radially from the protruding part is applied to the outer surface of the external current collector of the other stack by interposing a cushioning 1j electrical material such as nickel felt. An If4 construction where the two are in contact with each other is conceivable. However, in such a structure, the current generated in each stack is concentrated in the connector provided at one end, resulting in a high current density at the connector, and as a result, the current density at the connector is high. The loss is-
There are problems such as the increase in size and the length of the current flow path, which reduces the power generation efficiency of the fuel cell as a whole.

この発明は上記の事情を背景としてなされたもので、ス
タックを接続することに伴う抵抗や損失を低減させて高
出力の燃料電池を提供することを目的とするものである
This invention was made against the background of the above-mentioned circumstances, and aims to provide a high-output fuel cell by reducing the resistance and loss associated with connecting stacks.

課題を解決するための手段 この発明は、上記の目的を達成するために、酸素電極と
燃料電極とを筒状の固体電解質の内外周面に形成してな
る複数の単電池を、互いにほぼ同心状に配置した内部集
電子と筒状の外部集電子との間に、一方の電極を内部集
電子に導通させかつ他方の電極を外部集電子に導通させ
た状態で配列するとともに、一側端が内部集電子に電気
的に接触しかつ他側端が外部集電子を絶縁状態で貫通し
た導電板を内部集電子の外周でかついずれかの単電池の
間に配置してスタックが構成され、互いに隣接して配置
きれたスタックがその導電板の他側端を他のスタックの
外部集電子の外面に電気的に接触させて接続されている
ことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention has a plurality of unit cells each having an oxygen electrode and a fuel electrode formed on the inner and outer peripheral surfaces of a cylindrical solid electrolyte, which are arranged approximately concentrically with each other. Between the internal current collector and the cylindrical external current collector arranged in a shape, one electrode is connected to the internal current collector and the other electrode is connected to the external current collector. A stack is constructed by arranging a conductive plate, which is in electrical contact with the internal current collector and whose other end passes through the external current collector in an insulating state, at the outer periphery of the internal current collector and between any of the cells, The stacks arranged adjacent to each other are connected by electrically contacting the other end of the conductive plate with the outer surface of the external current collector of the other stack.

作     用 この発明に係る構造の燃料電池においても各単電池の固
体電解質を挟んだ両側に酸化性ガスと燃料ガスとを流す
ことにより起電力が生じる。それら複数の単電池は、内
部集電子と外部集電子とによって互いに並列に接続され
てスタックを構成しており、そのスタックは内部集電子
と電気的に一体化されかついずれかの単電池同士の間を
通って外部集電子の外面側に延出した導電板を、隣接す
る他のスタックの外面に電気的に接触させることにより
直列に接続され、一方のスタックで生じた電流はその導
電板を介して他のスタックに送られる。そしてその導電
板は内部集電子のほぼ全長に亘って設けられるから、そ
の断面積が広くなって電流密度が低くなり、またスタッ
ク同土間の電流流路が短くなり、その結果、内部抵抗の
増大要因や損失の増大要因が少なくなるので高出力の燃
料電池とされる。
Function: Even in the fuel cell having the structure according to the present invention, an electromotive force is generated by flowing the oxidizing gas and the fuel gas on both sides of the solid electrolyte of each unit cell. These plurality of cells are connected in parallel to each other by an internal current collector and an external current collector to form a stack, and the stack is electrically integrated with the internal current collector, and any of the cells are connected in parallel to each other. They are connected in series by electrically contacting the outer surface of the other adjacent stack with a conductive plate that extends through the gap to the outer surface of the external current collector, and the current generated in one stack passes through that conductive plate. sent to other stacks via Since the conductive plate is provided over almost the entire length of the internal current collector, its cross-sectional area becomes wider, lowering the current density, and the current flow path between the stacks becomes shorter, resulting in an increase in internal resistance. It is considered a high-output fuel cell because there are fewer factors that increase loss.

実  施  例 つぎにこの発明の実施例を図面を参照して説明する。Example Next, embodiments of the invention will be described with reference to the drawings.

第1図はこの発明に係る燃料電池の一部を模式的に示す
破断斜視図であって、複数本(図では5本)の単電池1
を1つのスタック2とし、これを直列に接続したもので
ある。すなわも各単電池1は所謂円筒型のものであって
、その−例を第2図に模式的に示してあり、アルミナ<
AQ203)などで多孔M4造に形成したセラミック製
支持管3の外周に、ベロアスカイト型ランタン系複合酸
化物などを素材とした酸素電極4が形成されるとともに
、その外面の一部に、ニッケル合金などを素材としたイ
ンターコネクタ5が突設されており、さらにそのMl素
電極4の外周に、イツトリア安定化ジルコニア(YSZ
)などを素材とした固体電解質6が形成されている。さ
らにニッケル合金やニッケルとジルコニアとのサーメッ
トなどを素材とした燃料電極7が前記インターコネクタ
5に非導通状態となるよう固体電解質6の外周に形成さ
れている。したがって単電池1は、その内周側に空気な
どの酸化性ガスを流す一方、外周側に水素ガスなどの燃
料ガスを流すことにより固体電解質6の内外周側での酸
素濃度の差に起因する電気化学的な反応によって起電力
を生じるようになっている。
FIG. 1 is a cutaway perspective view schematically showing a part of the fuel cell according to the present invention, in which a plurality of (five in the figure) single cells 1
is one stack 2, which is connected in series. In other words, each unit cell 1 is of a so-called cylindrical type, an example of which is schematically shown in FIG.
An oxygen electrode 4 made of velorskite-type lanthanum-based composite oxide or the like is formed on the outer periphery of a ceramic support tube 3 formed with a porous M4 structure using AQ203), etc., and a part of its outer surface is coated with nickel. An interconnector 5 made of an alloy or the like is protruded, and the outer periphery of the Ml element electrode 4 is made of ittria-stabilized zirconia (YSZ).
), etc., is formed as a solid electrolyte 6. Furthermore, a fuel electrode 7 made of a nickel alloy, a cermet of nickel and zirconia, or the like is formed on the outer periphery of the solid electrolyte 6 so as to be non-conductive to the interconnector 5. Therefore, in the cell 1, an oxidizing gas such as air is allowed to flow on the inner circumferential side, while a fuel gas such as hydrogen gas is allowed to flow on the outer circumferential side. Electromotive force is generated through an electrochemical reaction.

またスタック2は、内部集電子8とその内部集電子8に
対してほぼ同心状に配置した外部集電子9の間に上記の
ip零池1を複数本配置して構成されている。その内部
集電子8および外部集電子9は耐熱性や耐水素脆性に富
む材料例えばニッケルやニッケル合金によって形成され
た管状の部材であって、内部集電子8の外周には導電性
の緩衝材例えばニッケルフェルト10が密着状態で配置
され、各113 i池1はそれぞれのインターコネクタ
5をそのニッケルフェルト10に当接させることにより
一方の電極である酸素電極4を内部集電子8に導通させ
た状態で内部集電子8の外周に配列されている。また内
部集電子8の外周には、導電板11が平径方向で外側に
向けて突出した状態に配置されている。この導電板11
は内部集電子8と同一の素材からなるものであって、内
部集電子8もしくはlIi電池1とほぼ等しい長さを有
し、単電池1を配置すべき内部集電子8の外周の一箇所
にあってその一側端を内部集電子8に接触させ、もしく
は回者し、あるいは一体化することにより内部集電子8
に電気的に一体化した状態に配置されており、さらにこ
の導電板11の他方の側端部は、外部We主電子を絶縁
状態で貫通してその外側に延出している。そしてまた外
部集電子9は内部集電子8と同様な素材素材からなる筒
状の部材であって、その内周面に添設した導電性緩衝材
例えばニッケルフェルト12に各単電池1の外面すなわ
ち燃料電極7を接触した状態で複数の単電池1を収容し
ている。この外部集電子9の一部には軸線方向に沿って
スリット13が形成され、前記導電板11はそのスリッ
ト13を通って外部集電子9の外側に突出している。
Further, the stack 2 is constructed by arranging a plurality of the above-mentioned IP zero ponds 1 between an internal current collector 8 and an external current collector 9 arranged substantially concentrically with respect to the internal current collector 8. The internal current collector 8 and the external current collector 9 are tubular members made of a material having high heat resistance and hydrogen embrittlement resistance, such as nickel or a nickel alloy. The nickel felts 10 are arranged in close contact with each other, and each 113 i-cell 1 has its interconnector 5 in contact with the nickel felt 10, so that one electrode, the oxygen electrode 4, is electrically connected to the internal current collector 8. They are arranged around the outer periphery of the internal current collector 8. Further, on the outer periphery of the internal current collector 8, a conductive plate 11 is arranged so as to protrude outward in the flat diameter direction. This conductive plate 11
is made of the same material as the internal current collector 8, has approximately the same length as the internal current collector 8 or the IIi battery 1, and is located at one location on the outer periphery of the internal current collector 8 where the unit cell 1 is to be placed. The internal current collector 8
Further, the other side end portion of the conductive plate 11 passes through the external We main electron in an insulating state and extends to the outside thereof. The external current collector 9 is a cylindrical member made of the same material as the internal current collector 8, and the outer surface of each unit cell 1 is covered with a conductive cushioning material such as nickel felt 12 attached to its inner peripheral surface. A plurality of single cells 1 are accommodated with fuel electrodes 7 in contact with each other. A slit 13 is formed in a part of the external current collector 9 along the axial direction, and the conductive plate 11 projects to the outside of the external current collector 9 through the slit 13.

以上のように@成された複数のスタック2が直並列に接
続されて燃料電池を構成しており、その直列状態は第1
図に示すとおりであり、互いに隣接する一対のスタック
2のうち一方のスタック2の導電板11の端部が他方の
スタック2の外部集電子9の外面に導電性MWI材例え
ばニッケルフェルト14を介在させて電気的に接触し、
これによりスタック2同士が直列に接続されている。
A plurality of stacks 2 formed as described above are connected in series and parallel to form a fuel cell, and the series state is
As shown in the figure, the end of the conductive plate 11 of one stack 2 of a pair of stacks 2 adjacent to each other is interposed with a conductive MWI material, for example, nickel felt 14, on the outer surface of the external current collector 9 of the other stack 2. to make electrical contact,
Thereby, the stacks 2 are connected in series.

各スタック2においては、それぞれの単電池1の内周側
に空気や酸素ガスなどの酸化性ガスを流し、また外周側
に水素ガスなどの燃料ガスを流すことにより発電がおこ
なわれ、その酸素電極4が内部集電子8に導通し、かつ
燃料電極7が外部集電子9に導通しているので、内部集
電子8が隣接で外部集電子9がll!極となる。そして
各スタック2は内部集電子8もしくは単電池1の長さ程
度の長さを有する前記導電板11によって直列に接続さ
れていることによりそれぞれのスタック2で生じた電流
を含めた1m電流がその導電板11を通って他のスタッ
ク2に流れる。したがって導電板11での断面積が広い
ためにこの部分での抵抗が小さくなり、また各スタック
2から他のスタック2への電流は、それぞれの内部集電
子8の一端部側を経由せずに軸線方向でのいずれの箇所
からも導電板11を介して直接流れるので電流流路が短
くなる。したがってスタック2を接続することに伴う抵
抗が特には大きくならず、高出力の燃料電池となる。
In each stack 2, electricity is generated by flowing an oxidizing gas such as air or oxygen gas to the inner circumference of each cell 1, and flowing a fuel gas such as hydrogen gas to the outer circumference, and the oxygen electrode 4 is electrically connected to the internal current collector 8, and the fuel electrode 7 is electrically connected to the external current collector 9, so that the internal current collector 8 is adjacent and the external current collector 9 is ll! Become the pole. Each stack 2 is connected in series by the conductive plate 11 having a length approximately equal to the length of the internal current collector 8 or the single cell 1, so that a 1 m current including the current generated in each stack 2 is transmitted to the stack 2. It flows through the conductive plate 11 to the other stack 2. Therefore, since the cross-sectional area of the conductive plate 11 is large, the resistance at this part is small, and the current from each stack 2 to the other stack 2 does not pass through one end of each internal current collector 8. Since the current flows directly through the conductive plate 11 from any point in the axial direction, the current flow path becomes short. Therefore, the resistance caused by connecting the stack 2 does not become particularly large, resulting in a high output fuel cell.

なお、この発明では、上記の実施例で述べたようにスタ
ック2を直列に接続するのみならず、上述のように直列
に接続したスタック群を更に並列に接続してもよい。
In addition, in the present invention, the stacks 2 are not only connected in series as described in the above embodiments, but also stack groups connected in series as described above may be further connected in parallel.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池の構
造によれば、スタック同士の間の電路の断面積が広くな
るのでその部分での抵抗が極めて小さくなり、またスタ
ックの接続だめの導電板が内部集電子の軸線方向に沿う
長いものであるから一方のスタックの単電池から他方の
スタックの単電池に至る電路が短くなり、この点でも抵
抗の低減化が図られ、したがってこの光明によれば内部
抵抗が小さく発電効率の高い燃料電池を得ることができ
る。
Effects of the Invention As is clear from the above explanation, according to the structure of the fuel cell of the present invention, the cross-sectional area of the electric circuit between the stacks is widened, so the resistance in that part is extremely small, and the connection between the stacks is Since the conductive plate is long along the axis of the internal current collector, the electrical path from the cells in one stack to the cells in the other stack is shortened, which also reduces resistance. According to the method, a fuel cell with low internal resistance and high power generation efficiency can be obtained.

【図面の簡単な説明】 第1図はこの発明の一実施例の一部を模式的に示す部分
破断斜視図、第2図は単電池の一つを模式的に示す断面
図である。 1・・・単電池、 2・・・スタック、 4・・・i!
[!素電極、5・・・インターコネクタ、 6・・・固
体電解質、 7・・・燃料電極、 8・・・内部集電子
、 9・・・外部集電子、 11・・・導電板、 13
・・・スリット、 14・・・ニッケルフェルト。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view schematically showing a part of an embodiment of the present invention, and FIG. 2 is a sectional view schematically showing one of the unit cells. 1...Single battery, 2...Stack, 4...i!
[! Elementary electrode, 5... Interconnector, 6... Solid electrolyte, 7... Fuel electrode, 8... Internal current collector, 9... External current collector, 11... Conductive plate, 13
...slit, 14...nickel felt.

Claims (1)

【特許請求の範囲】[Claims] 酸素電極と燃料電極とを筒状の固体電解質の内外周面に
形成してなる複数の単電池を、互いにほぼ同心状に配置
した内部集電子と筒状の外部集電子との間に、一方の電
極を内部集電子に導通させかつ他方の電極を外部集電子
に導通させた状態で配列するとともに、一側端が内部集
電子に電気的に一体化されかつ他側端が外部集電子を絶
縁状態で貫通した導電板を内部集電子の外周でかついず
れかの単電池の間に配置してスタックが構成され、互い
に隣接して配置されたスタックがその導電板の他側端を
他のスタックの外部集電子の外面に電気的に接触させて
接続されていることを特徴とする固体電解質燃料電池の
構造。
A plurality of unit cells each having an oxygen electrode and a fuel electrode formed on the inner and outer peripheral surfaces of a cylindrical solid electrolyte are placed between an internal current collector and a cylindrical external current collector, which are arranged approximately concentrically with each other. The electrodes are arranged in such a way that they are electrically connected to the internal current collector and the other electrode is electrically connected to the external current collector, and one end is electrically integrated with the internal current collector and the other end is connected to the external current collector. A stack is constructed by placing a conductive plate that passes through the internal current collector at the outer periphery of the internal current collector and between any of the cells, and stacks that are placed adjacent to each other connect the other end of the conductive plate to the other side. A structure of a solid electrolyte fuel cell characterized in that it is connected in electrical contact with the outer surface of an external current collector of a stack.
JP1133396A 1989-05-26 1989-05-26 Structure of solid oxide fuel cell Expired - Fee Related JP2816475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133396A JP2816475B2 (en) 1989-05-26 1989-05-26 Structure of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133396A JP2816475B2 (en) 1989-05-26 1989-05-26 Structure of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH02312171A true JPH02312171A (en) 1990-12-27
JP2816475B2 JP2816475B2 (en) 1998-10-27

Family

ID=15103772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133396A Expired - Fee Related JP2816475B2 (en) 1989-05-26 1989-05-26 Structure of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2816475B2 (en)

Also Published As

Publication number Publication date
JP2816475B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
JPH0159705B2 (en)
US20050136316A1 (en) Fuel cell and fuel cell stack
JPH03274672A (en) Solid electrolyte type fuel cell
US7670710B2 (en) Fuel cell and fuel cell stack with pressure chambers
US20070243441A1 (en) Fuel Cell and Fuel Cell Stack
US20040247987A1 (en) Fuel cell
JPH0850914A (en) Cylindrical layer-built fuel cell
KR100286779B1 (en) Solid oxide fuel cell generator
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JPH03238760A (en) Fuel cell of solid electrolyte type
JPH07235316A (en) Cylindrical solid electrolyte fuel cell
JP7082954B2 (en) Electrochemical reaction cell stack
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JP2000090956A (en) Solid polymeric fuel cell
JP2793275B2 (en) Fuel cell generator
JPH02312171A (en) Structure of solid electrolyte fuel cell
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP2843995B2 (en) Structure of solid oxide fuel cell
JP2799879B2 (en) Structure of solid oxide fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP2799878B2 (en) Structure of solid oxide fuel cell
JP3200176B2 (en) Solid oxide fuel cell
JP2843994B2 (en) Structure of solid oxide fuel cell
JP2933227B2 (en) Solid oxide fuel cell module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees