JPH02312166A - Structure of solid electrolyte fuel cell - Google Patents

Structure of solid electrolyte fuel cell

Info

Publication number
JPH02312166A
JPH02312166A JP1132037A JP13203789A JPH02312166A JP H02312166 A JPH02312166 A JP H02312166A JP 1132037 A JP1132037 A JP 1132037A JP 13203789 A JP13203789 A JP 13203789A JP H02312166 A JPH02312166 A JP H02312166A
Authority
JP
Japan
Prior art keywords
plate
stack
cell
electrode
single cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1132037A
Other languages
Japanese (ja)
Other versions
JP2843994B2 (en
Inventor
Masakatsu Nagata
雅克 永田
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1132037A priority Critical patent/JP2843994B2/en
Publication of JPH02312166A publication Critical patent/JPH02312166A/en
Application granted granted Critical
Publication of JP2843994B2 publication Critical patent/JP2843994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a high output fuel cell of small inner resistance by providing a conductive supporting body with a function as connecting tools for electrically connecting plural single cells, which supporting body keeps plural single cells being connected in parallel to each other. CONSTITUTION:Each single cell 1 is held while in contact with the inner peripheral face of the tubular portion 8c of a supporting body 8, and a stack comprises five single cells 1 connected in parallel to each other. In each stack, a plate- shaped portion 8a located on the center side of the single cell 1 is integrated with the tubular portion 8c of adjacent other stack, and also the tubular portion 8c surrounding the single cell 1 is integrated with the plate-shaped portion 8a surrounded by the single cell 1 in the other stack, and so plural stacks are connected in series to each other by putting each plate-shaped portion 8a as one electrode and each tubular portion 8c as the other electrode in conduction to each other sequentially. As a result, the supporting body is used as parts with integrated structure serving also as connecting tools for the group of single cells, and besides the cross area where current are caused to flow is wide so that the inner resistance is reduced and the current passage is shortened. High output is thus achieved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は複数の単電池を相互に並列に接続し、その集
合体を更に相互に直列に接続した燃料電池の411造に
関し、特に円筒状の固体電解質の内外面に酸素電極およ
び燃料電極を設けた単電池を主体とする燃料電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a fuel cell structure in which a plurality of single cells are connected in parallel and the aggregates are further connected in series. The present invention relates to a fuel cell mainly consisting of a single cell having an oxygen electrode and a fuel electrode provided on the inner and outer surfaces of an electrolyte.

従来の技術 周知のように固体電解質燃料電池は、イツトリア安定化
ジルコニア(YSZ)などの物質が、1000℃程度の
高温下で酸素イオン導電性を示すことを利用したもので
あり、その基本的な4113mは、YSzなどの固体電
解質を挟んで、ペロブスカイト型ランタン系複合酸化物
などからなる多孔構造の酸素電極と、ニッケルやニッケ
ル合金あるいはNi−2r O2サーメツトなどからな
る多孔構造の燃料電極とを設け、高温状態で酸素電極側
に空気や酸素ガスなどの酸化性ガスを流す一方、燃料電
極側に水素ガスや一酸化炭素ガスなどの燃料ガスを流す
ことによって固体電解質を介した酸化・還元反一応によ
って電力を得るものである。
Conventional Technology As is well known, solid electrolyte fuel cells utilize the fact that materials such as yttria-stabilized zirconia (YSZ) exhibit oxygen ion conductivity at high temperatures of around 1000°C. 4113m has a porous oxygen electrode made of perovskite-type lanthanum-based composite oxide, etc., and a porous fuel electrode made of nickel, nickel alloy, Ni-2rO2 cermet, etc., with a solid electrolyte such as YSz in between. , oxidizing gas such as air or oxygen gas is flowed to the oxygen electrode side under high temperature conditions, while fuel gas such as hydrogen gas or carbon monoxide gas is flowed to the fuel electrode side, thereby causing oxidation/reduction reactions via the solid electrolyte. Electric power is obtained by

この種の単電池によって得られる電圧は、高々1■程度
に過ぎないので、実用に供するためには多数のltl電
池を直並列に接続する必要があり、そのため従来から1
11電池を円筒型に形成し、これを直並列に接続する4
113Thや、インターコネクタとなる導電板の間に多
数の単電池を形成してこれを多数積層する平板型などの
種々の構造が開発・検討されている。これらの構造のう
ち平板型は全体をコンパクト化し易い利点があるものの
、酸化性ガスと燃料ガスとの混合を防ぐためのシールが
困難であるなどの問題に加え、製造の容易性に欠ける問
題があり、したがって円筒型のものが実用性に富んでい
る。
The voltage obtained by this type of single cell is only about 1μ at most, so for practical use it is necessary to connect a large number of LTL batteries in series and parallel.
Forming 11 batteries into a cylindrical shape and connecting them in series and parallel 4
Various structures such as 113Th and a flat plate type in which a large number of single cells are formed between conductive plates serving as interconnectors and stacked in large numbers have been developed and studied. Among these structures, the flat plate type has the advantage of making the whole structure more compact, but it also has problems such as difficulty in sealing to prevent mixing of oxidizing gas and fuel gas, as well as a lack of ease of manufacture. Therefore, the cylindrical type is highly practical.

円筒型の単電池を使用して必要な起電力を得る構造とし
て、従来、単電池を縦横のマトリックス状に多数配列し
、例えば縦方向では各単電池を直列接続し、横方向には
各III電池を並列接続する構造が知られている。しか
しながらこのような構造では、いずれかのQi 電池に
異常を来たしてその単電池が起電力を生じなくなった場
合、その単電池を含む直列接続した単電池群の全体が礪
能しなくなり、あるいはその単電池群での内部抵抗が著
しく増大して発電効率が低下する問題が生じる。このよ
うな問題を解潤することのできる構造を本出願人は既に
提案しており、その基本的な@造は、導電性の内部集電
子の外周に多数の円筒型単電池を配置するとともに、各
単電池の内周側の電極をインターコネクタによって内部
集電子に導通させ、また内部集電子とほぼ同心状に設け
た筒状の外部集電子によってIIS電池の全体を包囲す
るとともに各単電池の外周側の電極を外部集電子に導通
させたものである。なお、複数の単電池をこのように接
続した構造体はスタックと称されている。
Conventionally, as a structure for obtaining the necessary electromotive force using cylindrical cells, a large number of cells are arranged in a vertical and horizontal matrix. For example, each cell is connected in series in the vertical direction, and each cell is connected in series in the horizontal direction. A structure in which batteries are connected in parallel is known. However, in such a structure, if an abnormality occurs in one of the Qi cells and that cell no longer generates an electromotive force, the entire group of cells connected in series including that cell will become inoperable or A problem arises in that the internal resistance of the unit cell group increases significantly and the power generation efficiency decreases. The applicant has already proposed a structure that can solve these problems, and its basic structure consists of arranging a large number of cylindrical cells around the outer periphery of a conductive internal current collector. , the electrode on the inner circumferential side of each unit cell is connected to the internal current collector by an interconnector, and the entire IIS battery is surrounded by a cylindrical external current collector provided approximately concentrically with the internal current collector, and each unit cell is The electrode on the outer circumferential side is electrically connected to an external current collector. Note that a structure in which a plurality of unit cells are connected in this manner is called a stack.

発明が解決しようとする課題 上述したスタックは、更にその複数本を直並列に接続し
て燃料電池として組立てられるが、その場合、各スタッ
クは内部集電子を一方の電極とし、かつ外部’JTs子
を他方の電極とした独立した発電要素と考えられるから
、これを直列に接続する構造としては、少なくとも内部
集電子の一端部をその軸線方向に突出させ、その突出部
分から半径方向に延びた導電性接続具を他のスタックの
外部集電子の外面にニッケルフェルトなどのクッション
性のある導電材料を介在させて当接させる構造が考えら
れる。しかしながらこのような構造では、各スタックで
生じた電流がその一端部に設けられている接続具に集中
して流れるので接続具での電流密度が高くなり、また接
続具と他のスタックの外部集電子の間の接触抵抗が大き
くなって燃料電池の全体としての発電効率が低下するな
どの問題がある。
Problems to be Solved by the Invention The above-mentioned stack can be assembled into a fuel cell by connecting a plurality of stacks in series and parallel, but in that case, each stack has an internal current collector as one electrode, and an external 'JTs collector. Since it is considered to be an independent power generation element with the other electrode as the other electrode, the structure for connecting them in series is to have at least one end of the internal collector protrude in the axial direction, and a conductive element extending radially from the protrusion. A conceivable structure is that the connector is brought into contact with the outer surface of the external current collector of another stack with a cushioning conductive material such as nickel felt interposed therebetween. However, in such a structure, the current generated in each stack is concentrated in the connector provided at one end of the stack, resulting in a high current density at the connector, and the external concentration of the connector and other stacks is high. There are problems such as an increase in contact resistance between electrons and a decrease in the overall power generation efficiency of the fuel cell.

この発明は上記の事情を背景としてなされたもので、発
電効率が良好で高出力の燃料電池を提供Tることを目的
とするものである。
This invention was made against the background of the above-mentioned circumstances, and aims to provide a fuel cell with good power generation efficiency and high output.

課題を解決するための手段 この発明は、上記の目的を達成するために、軸線方向に
沿うスリットを形成した筒状部と、その筒状部の外面に
半径方向に向けて突設されかつ前記スリットの幅より薄
い板状部とからなる>[性支持体を備え、一方の電極を
前記板状部に導通さぜた複数の1$電池が、その板状部
の先端部を包囲して配置されるとともに、これらの単電
池が他の導電性支持体の筒状部内に収容され、かつ各単
電池の他の電極が筒状部に導通されていることを特徴と
するものである。
Means for Solving the Problems In order to achieve the above object, the present invention includes a cylindrical part in which a slit is formed along the axial direction, and a cylindrical part provided protruding in the radial direction on the outer surface of the cylindrical part. A plurality of 1$ batteries each having a support body and having one electrode electrically connected to the plate-like part surround the tip of the plate-like part. In addition to the arrangement, these unit cells are housed in a cylindrical part of another conductive support, and the other electrode of each unit cell is electrically connected to the cylindrical part.

作     用 この発明に係る構造の燃料電池においても各単電池の固
体電解質を挟んだ両側に酸化性ガスと燃料ガスとを流す
ことにより起電力が生じる。それら複数の単電池は、導
電性支持体の板状部の先端の周囲に一方の電極を該板状
部に導通させた状態で配置され、かつその状態で外周側
を他の導電性支持体における筒状部によって覆われると
ともに該筒状部に他方の電極が導通され、したがって所
定の支持体における筒状部に収容された単電池同士は並
列に接続され、その一群の単電池はこれに隣接する他の
一群の単電池に対して支持体を介して直列に接続される
。その結果、支持体が単電池群の接続具を賄ねる一体構
造の部品であり、しかも電流の流れる部分の断面積が広
いので、単電池群を接続することに伴う抵抗は極めて小
さくなり、また単電池群同士の間の電流流路が短くなる
。そのためこの発明の燃料電池では、内部抵抗の増大要
因や損失の増大要因が少なくなるので高出力化が図られ
る。
Function: Even in the fuel cell having the structure according to the present invention, an electromotive force is generated by flowing the oxidizing gas and the fuel gas on both sides of the solid electrolyte of each unit cell. The plurality of unit cells are arranged around the tip of the plate-like part of the conductive support with one electrode electrically connected to the plate-like part, and in this state, the outer periphery is connected to the other conductive support. The other electrode is electrically connected to the cylindrical part of the support body, and the cells housed in the cylindrical part of the predetermined support are connected in parallel, and the single cells of the group are connected to each other in parallel. It is connected in series to another group of adjacent unit cells via a support. As a result, the support is an integral part that can accommodate the connectors for the cell groups, and the cross-sectional area of the current-flowing part is wide, so the resistance associated with connecting the cell groups is extremely small. The current flow path between the cell groups becomes shorter. Therefore, in the fuel cell of the present invention, the factors that increase the internal resistance and the factors that increase the loss are reduced, so that high output can be achieved.

実  施  例 つぎにこの発明の実施例を図面を参照して説明する。Example Next, embodiments of the invention will be described with reference to the drawings.

tA1図はこの発明に係る燃料電池の一部を示す断面正
面図であって、複数本(図では5本)の単電池1を1つ
のスタック2とし、これを直列に接続したものである。
Figure tA1 is a cross-sectional front view showing a part of the fuel cell according to the present invention, in which a plurality of (five in the figure) single cells 1 form one stack 2, which are connected in series.

すなわち各単電池1は所謂円筒型のものであって、その
−例を第2図に模式的に示してあり、アルミナ(^1!
203 )などで多孔lit造に形成したセラミック製
支持管3の外周に、ペロブスカイト型ランタン系複合酸
化物などを素材とした酸素電極4が形成されるとともに
、その外面の一部に、ニッケル合金などを素材としたイ
ンターコネクタ5が突設されており、さらにその酸素電
極4の外周に、イツトリア安定化ジルコニア(YSZ)
などを素材とした固体電解質6が形成されている。さら
にニッケル合金やニッケルとジルコニアとのサーメット
などを素材とした燃料電極7が前記インターコネクタ5
に非導通状態となるよう固体電解質6の外周に形成され
ている。
That is, each unit cell 1 is of a so-called cylindrical type, an example of which is schematically shown in FIG. 2, and is made of alumina (^1!).
An oxygen electrode 4 made of a perovskite-type lanthanum-based composite oxide or the like is formed on the outer periphery of a ceramic support tube 3 formed in a porous LIT structure using a method such as 203), and a part of its outer surface is made of a nickel alloy or the like. An interconnector 5 made of a material made of
A solid electrolyte 6 made of materials such as the like is formed. Further, a fuel electrode 7 made of a material such as a nickel alloy or a cermet of nickel and zirconia is connected to the interconnector 5.
The solid electrolyte 6 is formed around the outer periphery of the solid electrolyte 6 so as to be in a non-conductive state.

したがって単電池1は、その内周側に空気などの酸化性
ガスを流す一方、外周側に水素ガスなどの燃料ガスを流
すことにより固体電解質6の内外周側での酸素1度の差
に起因する電気化学的な反応によって起電力を生じるよ
うになっている。
Therefore, in the cell 1, an oxidizing gas such as air is allowed to flow on the inner circumferential side, while a fuel gas such as hydrogen gas is allowed to flow on the outer circumferential side. An electromotive force is generated through an electrochemical reaction.

各スタック2において単電池1を保持する支持体8は第
3図に示す@造となっている。すなわちこの支持体8は
導電性を備えかつ耐水素脆性に富む材料、例えばニッケ
ル合金や3#電性セラミツクなどを素材としたものであ
って、単電池1の長さと同程度もしくはそれ以上の長さ
のほぼ矩形の板状部8aの一側部に、該板状部8aの先
端外周に配置した複数本(例えば5本)の単電池1を包
括する内径を有しかつ板状部8aの板厚より広い軸線方
向に沿うスリット8bを入れた筒状部8Cを形成したも
のである。
The support 8 for holding the cell 1 in each stack 2 has a @ structure as shown in FIG. In other words, the support 8 is made of a material that is conductive and highly resistant to hydrogen embrittlement, such as nickel alloy or 3# conductive ceramic, and has a length that is about the same as or longer than the length of the cell 1. One side of the substantially rectangular plate-like part 8a of the plate-like part 8a has an inner diameter that encloses a plurality of (for example, five) single cells 1 arranged on the outer periphery of the tip of the plate-like part 8a. A cylindrical portion 8C is formed with a slit 8b along the axial direction that is wider than the thickness of the plate.

そして各単電池1は、そのインターコネクタ5を、前記
板状部8aの先端外周面に導電性MIi材例えばニッケ
ルフェルト9を介在させて突き当てた状態でその板状部
8aの外周側に配列されており、これらの単電池1の外
周側は、他の支持体8の筒状部8Cによって包囲されて
いる。その筒状部8Cは上述したとおり内径が5本の単
電池1を包括する程度の寸法でおり、その内周面に導電
性!av!E材例えばニッケルフェルト10を添設し、
これに各q1雷池1の外面すなわち燃料電極7を接触さ
せている。なお、板状部8aは筒状部8Cのスリット8
bを通って筒状部8Cを貫通している。
Each unit cell 1 is arranged on the outer circumferential side of the plate-like part 8a with the interconnector 5 abutted against the outer circumferential surface of the tip of the plate-like part 8a with a conductive MIi material, for example, nickel felt 9 interposed therebetween. The outer periphery of these single cells 1 is surrounded by a cylindrical portion 8C of another support 8. As mentioned above, the cylindrical portion 8C has an inner diameter that is large enough to accommodate five single cells 1, and its inner peripheral surface is conductive! av! Attach E material such as nickel felt 10,
The outer surface of each q1 lightning pond 1, that is, the fuel electrode 7 is brought into contact with this. In addition, the plate-like part 8a is formed by the slit 8 of the cylindrical part 8C.
b and penetrates the cylindrical portion 8C.

したがって各単電池1はそのインターコネクタ5を一方
の支持体8の板状部8aの外周面にニッケルフェルト9
を介して電気的に密着させ、また外周側の燃料電極7を
ニッケルフェルト10を介して他方の支持体8の筒状部
8Cの内周面に接触させた状態で保持されており、この
ようにして5本の単電池1を並列に接続してスタック2
が構成されている。各スタック2は単電池1の中心側に
位置する板状部8aが隣接する他のスタック2の筒状部
8Cと一体となっており、かつ単電池1を包囲する筒状
部8Cが更に他のスタック2における単電池1によって
包囲される板状部8aと一体となっているので、複数の
スタック2が、一方の電極となる板状部8aと他方の電
極となる筒状部8Cとを順次導通させて直列に接続され
ている。
Therefore, each unit cell 1 has its interconnector 5 attached to the outer circumferential surface of the plate-like portion 8a of one of the supports 8 using a nickel felt 9.
The fuel electrode 7 on the outer peripheral side is held in contact with the inner peripheral surface of the cylindrical portion 8C of the other support 8 through the nickel felt 10. Connect five cells 1 in parallel to form a stack 2
is configured. In each stack 2, a plate-like part 8a located on the center side of the unit cell 1 is integrated with a cylindrical part 8C of another adjacent stack 2, and a cylindrical part 8C surrounding the unit cell 1 is further integrated with another cylindrical part 8C. Since it is integrated with the plate-like part 8a surrounded by the unit cells 1 in the stack 2, the plurality of stacks 2 have a plate-like part 8a which becomes one electrode and a cylindrical part 8C which becomes the other electrode. They are connected in series with successive conduction.

上記のM4造の燃料電池においては、各単電池1の内周
側に空気などの酸素ガスを含む酸化性ガスを流し、かつ
外周側に水素ガスなどの燃料ガスを流すことにより固体
電解質6を介した酸化・還元反応により起電力が生じ、
そして各スタック2では単電池1の酸素電極4がインタ
ーコネクタ5を介して板状部8aに導通していることに
よりその板状部8aが陽極側で筒状部8Cが陰極側とな
り、さらに隣接するスタック2同士は板状部8aおよび
これと一体の他のスタック2側の筒状部8cによって導
通しているので、電流はその板状部8aを流れる。そし
て始端側のスタック2の筒状部8Cを陰極とし、終端側
のスタック2の板状部8aを陽極として出力される。し
たがって隣接するスタック2同士では支持体8の板状部
8aを介して電流が流れ、その板状部8aは単電池1の
軸長程度の長さで広い断面−を備えているので、この板
状部8aでの電流密度が特に高くなることはなく、また
所定のスタック2から他のスタック2への電流は、各ス
タック2の軸線方向での一端部側を経由せずに、軸線方
向でのいずれの箇所からも板状1g8aを介して直接流
れるのでスタック2間の電流流路が短くなる。したがっ
てスタック2を接続することに伴う抵抗が特には大きく
ならず、高出力の燃料電池となる。
In the M4 fuel cell described above, the solid electrolyte 6 is formed by flowing an oxidizing gas containing oxygen gas such as air into the inner circumference of each cell 1, and flowing a fuel gas such as hydrogen gas into the outer circumference. An electromotive force is generated by the oxidation/reduction reaction,
In each stack 2, the oxygen electrode 4 of the unit cell 1 is electrically connected to the plate part 8a via the interconnector 5, so that the plate part 8a is on the anode side and the cylindrical part 8C is on the cathode side, and further adjacent to each other. Since the stacks 2 are electrically connected to each other by the plate-like portion 8a and the cylindrical portion 8c on the side of the other stack 2 that is integral with this, the current flows through the plate-like portion 8a. The cylindrical portion 8C of the stack 2 on the starting end side is used as a cathode, and the plate portion 8a of the stack 2 on the terminal side is used as an anode. Therefore, current flows between adjacent stacks 2 through the plate-shaped portion 8a of the support 8, and since the plate-shaped portion 8a has a length approximately equal to the axial length of the unit cell 1 and a wide cross section, this plate The current density in the shaped portion 8a does not become particularly high, and the current from a given stack 2 to another stack 2 does not pass through one end of each stack 2 in the axial direction. Since the current flows directly from any location through the plate-shaped plate 1g8a, the current flow path between the stacks 2 becomes short. Therefore, the resistance caused by connecting the stack 2 does not become particularly large, resulting in a high output fuel cell.

なお、この発明では、上記の実施例で述べたようにスタ
ック2を直列に接続するのみならず、上述のように直列
に接続したスタック群同士を互いに並列に接続してもよ
い。
In addition, in the present invention, the stacks 2 are not only connected in series as described in the above embodiments, but also stack groups connected in series as described above may be connected in parallel with each other.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池の4
11造によれば、複数の単電池を並列に接続した状態に
保持する導電性の支持体が、それらの半電池群同士を電
気的に接続する接続具としての機能を兼ね備え、しかも
その電路断面積が広くなり、さらにその電路は軸線方向
での一端部に偏在せずに軸線方向での全体に亘って存在
し、その結果、単電池群同士の間の電路長が短くなり、
したがってこの発明によれば、内部抵抗や内部での損失
の少ない高出力の燃料電池を得ることができる。
Effects of the Invention As is clear from the above explanation, the fuel cell of this invention has four advantages.
According to No. 11, a conductive support that holds a plurality of single cells connected in parallel has the function of a connector that electrically connects the half-cell groups, and also has the function of disconnecting the electrical circuit. The area becomes wider, and the electric path is not located unevenly at one end in the axial direction, but exists throughout the entire axial direction, and as a result, the electric path length between the unit cell groups becomes shorter,
Therefore, according to the present invention, a high output fuel cell with low internal resistance and low internal loss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の一部を示す断面正面図、
第2図は単電池の一つを模式的に示す断面図、第3図は
その支持体を示す一部省略した斜視図である。 1・・・単電池、 2・・・スタック、 4・・・R素
電極、5・・・インターコネクタ、 6・・・固体電解
質、 7・・・燃料電極、 8・・・支持体、 8a・
・・板状部、8b・・・スリット、 8C・・・筒状部
FIG. 1 is a cross-sectional front view showing a part of an embodiment of the present invention;
FIG. 2 is a cross-sectional view schematically showing one of the unit cells, and FIG. 3 is a partially omitted perspective view showing its support. DESCRIPTION OF SYMBOLS 1... Single cell, 2... Stack, 4... R elementary electrode, 5... Interconnector, 6... Solid electrolyte, 7... Fuel electrode, 8... Support, 8a・
... Plate-shaped part, 8b... Slit, 8C... Cylindrical part.

Claims (1)

【特許請求の範囲】[Claims] 軸線方向に沿うスリットを形成した筒状部と、その筒状
部の外面に半径方向に向けて突設されかつ前記スリット
の幅より薄い板状部とからなる導電性支持体を備え、一
方の電極を前記板状部に導通させた複数の単電池が、そ
の板状部の先端部を包囲して配置されるとともに、これ
らの単電池が他の導電性支持体の筒状部内に収容され、
かつ各単電池の他の電極が筒状部に導通されていること
を特徴とする固体電解質燃料電池の構造。
A conductive support body consisting of a cylindrical part in which a slit is formed along the axial direction, and a plate-shaped part that protrudes in the radial direction from the outer surface of the cylindrical part and is thinner than the width of the slit; A plurality of single cells having electrodes electrically connected to the plate-like part are arranged to surround the tip of the plate-like part, and these single cells are housed in a cylindrical part of another conductive support. ,
A structure of a solid electrolyte fuel cell characterized in that the other electrode of each unit cell is electrically connected to the cylindrical part.
JP1132037A 1989-05-25 1989-05-25 Structure of solid oxide fuel cell Expired - Fee Related JP2843994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132037A JP2843994B2 (en) 1989-05-25 1989-05-25 Structure of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132037A JP2843994B2 (en) 1989-05-25 1989-05-25 Structure of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH02312166A true JPH02312166A (en) 1990-12-27
JP2843994B2 JP2843994B2 (en) 1999-01-06

Family

ID=15072029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132037A Expired - Fee Related JP2843994B2 (en) 1989-05-25 1989-05-25 Structure of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2843994B2 (en)

Also Published As

Publication number Publication date
JP2843994B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US5209989A (en) Solid oxide fuel cell
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
US8389180B2 (en) Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof
JPH0159705B2 (en)
JPH03274672A (en) Solid electrolyte type fuel cell
AU2001281220A1 (en) Sealless radial solid electrolyte fuel cell stack design
WO2002017419A2 (en) Sealless radial solid electrolyte fuel cell stack design
US20040247987A1 (en) Fuel cell
JP2790666B2 (en) Fuel cell generator
JPH03238760A (en) Fuel cell of solid electrolyte type
JP2793275B2 (en) Fuel cell generator
US8697307B2 (en) Solid oxide fuel cell stack
JPH02312166A (en) Structure of solid electrolyte fuel cell
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP2799878B2 (en) Structure of solid oxide fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JP2843995B2 (en) Structure of solid oxide fuel cell
US20060068261A1 (en) Fuel cell systems
JP2816478B2 (en) Structure of solid oxide fuel cell
JP2799879B2 (en) Structure of solid oxide fuel cell
JP2933227B2 (en) Solid oxide fuel cell module
JP2816475B2 (en) Structure of solid oxide fuel cell
JP2816477B2 (en) Solid electrolyte fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP6797153B2 (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees