JPH0231202B2 - - Google Patents

Info

Publication number
JPH0231202B2
JPH0231202B2 JP59043703A JP4370384A JPH0231202B2 JP H0231202 B2 JPH0231202 B2 JP H0231202B2 JP 59043703 A JP59043703 A JP 59043703A JP 4370384 A JP4370384 A JP 4370384A JP H0231202 B2 JPH0231202 B2 JP H0231202B2
Authority
JP
Japan
Prior art keywords
hot water
steam
accumulator
control valve
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043703A
Other languages
Japanese (ja)
Other versions
JPS60187704A (en
Inventor
Takuji Fujikawa
Fumio Koshio
Itsuo Umagoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4370384A priority Critical patent/JPS60187704A/en
Publication of JPS60187704A publication Critical patent/JPS60187704A/en
Publication of JPH0231202B2 publication Critical patent/JPH0231202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は熱水発電プラント、特に蒸気熱水二相
流体輸送式の熱水発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrothermal power plant, particularly a steam-hot-water two-phase fluid transport type hydrothermal power plant.

第1図は従来の熱水発電プラントを示す図であ
る。図中11は給水ポンプであり、その出口には
熱水発生器12が接続されている。熱水発生器1
2の出口は温度調整弁13を介してアキユムレー
タ14の入口に接続されている。上記温度調整弁
13は熱水発生器12により排出される流体の排
熱量に応じて開度を制御するもので、前記熱水発
生器12の出口側における液体の温度は温度検出
器15で検出されている。前記アキユムレータ1
4の出口は熱水管16により熱水タービン17に
接続され、上記熱水管16には熱水止め弁18お
よび熱水加減弁19が介挿されている。上記熱水
加減弁19は前記アキユムレータ14内の熱水レ
ベルが予じめ定められた設定値となるように制御
するもので、アキユムレータ14内の熱水レベル
は液位検出器20で検出されている。
FIG. 1 is a diagram showing a conventional hydrothermal power generation plant. In the figure, 11 is a water supply pump, and a hot water generator 12 is connected to its outlet. Hot water generator 1
The outlet of No. 2 is connected to the inlet of an accumulator 14 via a temperature control valve 13. The temperature control valve 13 controls the opening degree according to the amount of waste heat of the fluid discharged by the hot water generator 12, and the temperature of the liquid at the outlet side of the hot water generator 12 is detected by the temperature detector 15. has been done. Said accumulator 1
4 is connected to a hot water turbine 17 by a hot water pipe 16, and a hot water stop valve 18 and a hot water control valve 19 are inserted into the hot water pipe 16. The hot water control valve 19 controls the hot water level in the accumulator 14 to a predetermined set value, and the hot water level in the accumulator 14 is detected by the liquid level detector 20. There is.

前記熱水タービン17から送出される液体は気
水分離器21にて蒸気と熱水とに分離され、蒸気
はフラツシユ蒸気タービン入口蒸気止め弁22お
よびインタセフト弁23を介してフラツシユ蒸気
タービン24へ送られ、熱水は多段フラツシヤ2
5へ送られる。多段フラツシヤ25に供給された
熱水はフラツシヤ25内の弁を通過するときに圧
力降下して一部が気化し、前記フラツシユ蒸気タ
ービン24へ送られる。フラツシユ蒸気タービン
24は前記熱水タービン17と共に発電機26を
駆動し、フラツシユ蒸気タービン24を通過した
低温の蒸気は復水器27へ送出される。上記復水
器27にて冷却液化された水は復水ポンプ28を
介して前記給水ポンプ11に供給される。一方、
前記多段フラツシユ25内の水はフラツシヤドレ
ンブースタポンプ29および水位調節弁30を介
して前記給水ポンプ11に供給される。上記水位
調節弁30は前記多段フラツシヤ25内の水位を
制御するもので、多段フラツシヤ25内の水位は
液位検出器31で検出されている。
The liquid sent out from the hot water turbine 17 is separated into steam and hot water in a steam separator 21, and the steam is sent to the flash steam turbine 24 via the flash steam turbine inlet steam stop valve 22 and intertheft valve 23. The hot water is transferred to the multi-stage flusher 2.
Sent to 5. When the hot water supplied to the multi-stage flasher 25 passes through a valve in the flasher 25, the pressure drops and a portion of the hot water is vaporized and sent to the flash steam turbine 24. The flash steam turbine 24 drives a generator 26 together with the hot water turbine 17 , and the low-temperature steam that has passed through the flash steam turbine 24 is sent to a condenser 27 . The water cooled and liquefied in the condenser 27 is supplied to the water supply pump 11 via the condensate pump 28. on the other hand,
Water in the multi-stage flush 25 is supplied to the water supply pump 11 via a flush drain booster pump 29 and a water level control valve 30. The water level control valve 30 controls the water level within the multi-stage flasher 25, and the water level within the multi-stage flasher 25 is detected by a liquid level detector 31.

一般に熱水発電プラントは排熱の温度が中、低
温の場合において、上記排熱を経済的に回収する
のに適している。また上記排熱の温度が高温の場
合には、熱水条件を高めることにより理論的には
効率がよくなる。
In general, hydrothermal power plants are suitable for economically recovering waste heat when the temperature of the waste heat is medium to low. Furthermore, when the temperature of the exhaust heat is high, efficiency can theoretically be improved by increasing the hot water conditions.

しかし、上記熱水条件をむやみに高めると、材
料費が高くつき、また段階効率や翼車の耐エロジ
ヨン性を考慮した熱水タービンの設計が難しくな
る。
However, unnecessarily increasing the above-mentioned hot water conditions increases material costs and makes it difficult to design a hot water turbine that takes stage efficiency and impeller erosion resistance into consideration.

そこでこれらの欠点を補う手段として蒸気熱水
二相流体輸送式の発電プランが先に提案されてい
る(特願昭52−148116号)。これは、排熱の温度
が高い場合に、熱水の圧力は上げず、熱水の一部
を蒸気させて熱水と蒸気との二相流体とすること
により、さらに高位のエネルギーとして回収する
もものである。
Therefore, as a means of compensating for these drawbacks, a steam-hot-water two-phase fluid transport type power generation plan was previously proposed (Japanese Patent Application No. 148,116/1982). When the temperature of the exhaust heat is high, the pressure of the hot water is not increased, and some of the hot water is steamed to form a two-phase fluid of hot water and steam, which is recovered as higher energy. It's a thigh.

しかるにこの種の発電プラントには次のような
問題があつた。すなわち、流体が飽和二相流体で
あるため温度は一定である。したがつて第1図に
示すような従来の熱水発電プラントのように、ア
キユムレータ14の入口側に温度調節弁13を設
け、排熱量に応じて流量を制御するものには使用
できない。
However, this type of power plant had the following problems. That is, since the fluid is a saturated two-phase fluid, the temperature is constant. Therefore, it cannot be used in a conventional hydrothermal power generation plant as shown in FIG. 1, in which the temperature control valve 13 is provided on the inlet side of the accumulator 14 and the flow rate is controlled according to the amount of exhaust heat.

本発明の目的は、蒸気熱水二相流体輸送式の発
電方式を利用した熱水発電プラントに対し、より
広範囲な排熱量の安定した制御を行なえる熱水発
電プラントを提供することになる。
An object of the present invention is to provide a hydrothermal power plant that can stably control the amount of exhaust heat over a wider range, compared to a hydrothermal power plant that uses a steam-hot-water two-phase fluid transport type power generation system.

上記の目的を達成するために、本発明の熱水発
電プラントは、給水ポンプと、給水ポンプから送
出される液体が供給され、熱水または熱水と蒸気
からなる二相流体を発生する熱水・蒸気発生器
と、熱水・蒸気発生器から発生される二相流体を
加圧状態で蓄えるアキユムレータと、アキユムレ
ータに蓄えられた二相流体のうち、蒸気が蒸気入
口から供給されかつ熱水が熱水入口から供給され
る熱水タービンと、給水ポンプの出口側に設けら
れ、熱水・蒸気発生器から発生される二相流体の
温度が設定値以上となるように熱水・蒸気発生器
への液体供給量を制御する給水制御弁と、アキユ
ムレータの蒸気出口側に設けられ、当該アキユム
レータ内の圧力が設定値となるように熱水タービ
ンへの蒸気流出量を制御する蒸気加減弁と、アキ
ユムレータの熱水出口側に設けられ、当該アキユ
ムレータ内の熱水レベルが設定値となるように熱
水タービンへの熱水流出量を制御する熱水加減弁
とを具備して構成している。
In order to achieve the above object, the hot water power generation plant of the present invention includes a water supply pump and a hot water supply system that is supplied with a liquid sent from the water supply pump and generates hot water or a two-phase fluid consisting of hot water and steam.・Steam generator, hot water, and an accumulator that stores the two-phase fluid generated from the steam generator in a pressurized state; The hot water turbine is supplied from the hot water inlet, and the hot water/steam generator is installed at the outlet side of the water supply pump so that the temperature of the two-phase fluid generated from the hot water/steam generator is higher than the set value. a water supply control valve that controls the amount of liquid supplied to the hot water turbine; a steam control valve that is provided on the steam outlet side of the accumulator and controls the amount of steam flowing out to the hot water turbine so that the pressure in the accumulator becomes a set value; The hot water regulating valve is provided on the hot water outlet side of the accumulator and controls the amount of hot water flowing into the hot water turbine so that the hot water level in the accumulator becomes a set value.

従つて、本発明の熱水発電プラントにおいて
は、給水制御弁により、熱水・蒸気発生器から発
生される二相流体の温度が設定値以上となるよう
に制御され、また蒸気加減弁により、アキユムレ
ータ内の圧力が設定値となるように制御されると
共に、熱水加減弁により、アキユムレータ内の熱
水レベルが設定値となるように制御されることに
より、排熱量に応じた量の流体を熱水タービンに
導入することができる。これにより、広範囲な排
熱量の制御を安定に行なうことが可能となる。
Therefore, in the hot water power generation plant of the present invention, the water supply control valve controls the temperature of the two-phase fluid generated from the hot water/steam generator to be equal to or higher than a set value, and the steam control valve The pressure in the accumulator is controlled to be the set value, and the hot water level in the accumulator is controlled by the hot water control valve to be the set value, so that the amount of fluid corresponding to the amount of exhaust heat is controlled. Can be introduced into hot water turbines. This makes it possible to stably control the amount of exhaust heat over a wide range.

第2図は本発明の一実施例を示す熱水発電プラ
ントの系統図である。なお第1図と同一部分には
同一符号を付し説明は省略する。給水ポンプ11
の出口には給水制御弁41を介して熱水・蒸気発
生器42が接続され、熱水・蒸気発生器42の出
口側における流体の温度は温度検出器15にて検
出されている。上記給水制御弁41は熱水・蒸気
発生器42の出口における流体の温度が予め定め
られた設定値A以上となるように制御するもので
ある。すなわち第3図に示すように熱水・蒸気発
生器42の出口側における流体の温度が設定値A
未満のときは上記給水制御弁41は閉方向に動
き、流体の温度が設定値A以上のときは全開状態
となる。
FIG. 2 is a system diagram of a hydrothermal power generation plant showing an embodiment of the present invention. Note that the same parts as in FIG. 1 are given the same reference numerals, and explanations thereof will be omitted. Water supply pump 11
A hot water/steam generator 42 is connected to the outlet of the hot water/steam generator 42 via a water supply control valve 41, and the temperature of the fluid at the outlet side of the hot water/steam generator 42 is detected by a temperature detector 15. The water supply control valve 41 controls the temperature of the fluid at the outlet of the hot water/steam generator 42 to be equal to or higher than a predetermined set value A. That is, as shown in FIG. 3, the temperature of the fluid at the outlet side of the hot water/steam generator 42 is at the set value A.
When the temperature is less than the set value A, the water supply control valve 41 moves in the closing direction, and when the temperature of the fluid is equal to or higher than the set value A, the water supply control valve 41 is fully opened.

前記熱水・蒸気発生器42の出口は二相流体輸
送管43を介してアキユムレータ44の入口に接
続されている。上記アキユムレータ44は上部に
蒸気出口44a、下部に熱水出口44bを有する
ものである。また図中45は熱水タービンで、こ
の熱水タービン45には蒸気入口45aおよび熱
水入口45bが設けられている。そしてアキユム
レータ44の蒸気出口44aと熱水タービン45
の蒸気入口45aとの間は主蒸気管46で接続さ
れ、この主蒸気管46には主蒸気止め弁47およ
び蒸気加減弁48が介挿されている。また前記ア
キユムレータ44の熱水出口44bと熱水タービ
ン45の熱水入口45bとの間は熱水管16で接
続され、この熱水管16には熱水止め弁18およ
び熱水加減弁19が介挿されている。またアキユ
ムレータ44の蒸気出口44a側圧力は圧力検出
器49で検出され、アキユムレータ44内の熱水
レベルは液位検出器20で検出されている。
The outlet of the hot water/steam generator 42 is connected to the inlet of an accumulator 44 via a two-phase fluid transport pipe 43. The accumulator 44 has a steam outlet 44a at the top and a hot water outlet 44b at the bottom. Further, in the figure, 45 is a hot water turbine, and this hot water turbine 45 is provided with a steam inlet 45a and a hot water inlet 45b. The steam outlet 44a of the accumulator 44 and the hot water turbine 45
A main steam pipe 46 is connected to the steam inlet 45a, and a main steam stop valve 47 and a steam control valve 48 are inserted into the main steam pipe 46. A hot water pipe 16 is connected between the hot water outlet 44b of the accumulator 44 and the hot water inlet 45b of the hot water turbine 45, and a hot water stop valve 18 and a hot water control valve 19 are inserted in the hot water pipe 16. has been done. Further, the pressure on the steam outlet 44a side of the accumulator 44 is detected by a pressure detector 49, and the hot water level in the accumulator 44 is detected by a liquid level detector 20.

前記蒸気加減弁48は前記アキユムレータ45
内の圧力が予め定められた設定値Bとなるように
制御するものである。すなわち、第4図に示すよ
うに、アキユムレータ44内の圧力が上がれば蒸
気加減弁48は開方向へ動き、アキユムレータ4
4内の圧力が下がれば閉方向へ動く。
The steam control valve 48 is connected to the accumulator 45.
The internal pressure is controlled to a predetermined set value B. That is, as shown in FIG. 4, when the pressure inside the accumulator 44 increases, the steam control valve 48 moves in the opening direction, and the accumulator 4
When the pressure inside 4 decreases, it moves in the closing direction.

また前記熱水加減弁19は前記アキユムレータ
44内の熱水レベルを予め定められた設定値Cと
なるように制御するものである。すなわち、第5
図に示すようにアキユムレータ44内の熱水レベ
ルが上がれば熱水加減弁19は開方向へ動き、ア
キユムレータ44内の熱水レベルが下がれば閉方
向へ動く。
The hot water adjustment valve 19 controls the hot water level in the accumulator 44 to a predetermined set value C. That is, the fifth
As shown in the figure, when the hot water level in the accumulator 44 rises, the hot water regulating valve 19 moves in the opening direction, and when the hot water level in the accumulator 44 falls, it moves in the closing direction.

熱水タービン45以降の系統は第1図の従来の
プラトンと同様である。
The system after the hot water turbine 45 is the same as the conventional Plato shown in FIG.

このように構成された本装置において、アキユ
ムレータ44内の圧力設定値Bを41〔Kg/cm2abs〕
と設定した場合については例示する。上記設定値
Bに対する飽和温度は250.6℃である。また熱
水・蒸気発生器42の出口における流体の温度設
定値Aは上記飽和温度よりも僅かに低目、たとえ
ば248℃と設定する。
In this device configured in this way, the pressure setting value B in the accumulator 44 is set to 41 [Kg/cm 2 abs].
An example is shown below. The saturation temperature for the above set value B is 250.6°C. Further, the temperature setting value A of the fluid at the outlet of the hot water/steam generator 42 is set to be slightly lower than the saturation temperature, for example, 248°C.

今、排熱量が少なくて流体の温度が248℃より
も低い場合は、給水制御弁41が閉方向へ動き給
水量が減少する。そうすると流体は248℃より少
し低い温度まで加熱される。そこで蒸気加減弁4
8および熱水加減弁19の調整を行なう。つまり
上記状態においては、蒸気加減弁48は全閉さ
れ、アキユムレータ44内の圧力は流体の飽和圧
力すなわち流体温度の設定値248℃の飽和圧力
39.2〔Kg/cm2abs〕以下に保たれる。そして熱水・
蒸気発生器42にて発生した熱水量に応じて熱水
加減弁19が開閉し、熱水を熱水タービン45に
導入する。これは従来の熱水発電プラントと基本
的には同様である。
Now, if the amount of exhaust heat is small and the temperature of the fluid is lower than 248° C., the water supply control valve 41 moves in the closing direction and the amount of water supply decreases. The fluid is then heated to a temperature slightly below 248°C. Therefore, steam control valve 4
8 and the hot water control valve 19 are adjusted. In other words, in the above state, the steam control valve 48 is fully closed, and the pressure inside the accumulator 44 is the saturation pressure of the fluid, that is, the saturation pressure of the fluid temperature set value of 248°C.
Maintained below 39.2 [Kg/cm 2 abs]. And hot water
The hot water control valve 19 opens and closes according to the amount of hot water generated by the steam generator 42, and hot water is introduced into the hot water turbine 45. This is basically the same as a conventional hydrothermal power plant.

次に流体温度が設定値である248℃に達すると、
給水制御弁41は全開となり、最大給水量が流れ
る。
Next, when the fluid temperature reaches the set value of 248℃,
The water supply control valve 41 is fully opened and the maximum amount of water flows.

さらに流体温度が上昇し排熱量が多くなると、
熱水・蒸気発生器42から蒸気が発生し始める。
この蒸気の発生量は前記排熱量にしたがつて増大
し、仮にこのままでいくとすると、結局は給水量
全体が蒸発する状態となる。この状態は飽和蒸気
プラントの場合と同様であるが、このときの排熱
量は以下のように設計点をはかるに越えているの
で、給水量全体が蒸発する状態に陥る可能性はな
い。
Furthermore, as the fluid temperature rises and the amount of waste heat increases,
Steam begins to be generated from the hot water/steam generator 42.
The amount of steam generated increases in accordance with the amount of exhaust heat, and if this continues as it is, the entire amount of water supplied will eventually evaporate. This condition is similar to that of a saturated steam plant, but since the amount of waste heat at this time far exceeds the design point as shown below, there is no possibility that the entire amount of water supply will evaporate.

すなわち第6図は排熱量H〔Kcal/H〕と熱水
発生量Gw〔Kg/H〕および蒸気発生量Gs〔Kg/H〕
との関係を示す図である。上記排熱量Hと熱水発
生量Gw、蒸気発生量Gsの関係は H=Gs(h2−h0)Gw(h1−h0) G=Gs+Gw G:給水量〔Kg/H〕 h0:給水エンタルピ〔Kcal/Kg〕 h1:飽和熱水エンタルピ〔Kacl/Kg〕 h2:乾き飽和蒸気エンタルピ〔Kcal/Kg〕 となる。ここで飽和圧力39.2〔Kg/cm2aba〕、流体
温度は250.6℃の乾き飽和蒸気エンタルピh2は
668.9〔Kcal/Kg〕、で飽和圧力42〔Kg/cm2
abs〕、給水温度80℃の給水エンタルピh0は80.8
〔Kcal/Kg〕である。
In other words, Figure 6 shows the amount of waste heat H [Kcal/H], the amount of hot water generated G w [Kg/H], and the amount of steam generated G s [Kg/H]
FIG. The relationship between the above exhaust heat amount H, hot water generation amount G w , and steam generation amount G s is H = G s (h2 − h0) G w (h1 − h0) G = G s + G w G: Water supply amount [Kg/H ] h0: Water supply enthalpy [Kcal/Kg] h1: Saturated hot water enthalpy [Kacl/Kg] h2: Dry saturated steam enthalpy [Kcal/Kg]. Here, the saturation pressure is 39.2 [Kg/cm 2 aba], the fluid temperature is 250.6°C, and the dry saturated steam enthalpy h2 is
668.9 [Kcal/Kg], saturation pressure 42 [Kg/cm 2
abs], the feed water enthalpy h0 at a feed water temperature of 80℃ is 80.8
[Kcal/Kg].

今、最大給水量を100〔T/H〕、給水温度を80
℃とすると、排熱量Hが0〔Kcal/H〕では熱水
発生量Gwは0〔T/H〕となる。また排熱量Hが
1.76×107〔Kcal/H〕(第6図中D)においては、
流体温度248℃の熱水発生量Gwは100〔T/H〕、
すなわち、 100×103〔Kg/H〕×(257.0−80.0) 〔Kcal/Kg〕=1.76×107〔Kcal/H〕 となり、排熱量Hが5.88×107〔Kcal/H〕(第6
図中E)においては、飽和圧力41〔Kg/cm2
abs〕の飽和蒸気発生量Gwは100〔T/H〕、すな
わち、 100×103〔Kg/H〕×(668.9×80.9) 〔Kcal/Kg〕=5.88×107〔kcal/H〕 となり、排熱量Hが1.76×107〔Kcal/H〕と5.88
×107〔Kcal/H〕との間(第6図中D−E)で
は250.6℃の飽和熱水と41〔Kg/cm2abs〕の飽和蒸
気が合わせて100〔T/H〕発生することになる。
Now, the maximum water supply amount is 100 [T/H] and the water supply temperature is 80.
℃, when the amount of waste heat H is 0 [Kcal/H], the amount of generated hot water G w is 0 [T/H]. Also, the amount of exhaust heat H is
At 1.76×10 7 [Kcal/H] (D in Figure 6),
The amount of hot water generated Gw at a fluid temperature of 248℃ is 100 [T/H],
In other words, 100×10 3 [Kg/H]×(257.0−80.0) [Kcal/Kg]=1.76×10 7 [Kcal/H], and the amount of exhaust heat H is 5.88×10 7 [Kcal/H] (6th
At E) in the figure, the saturation pressure is 41 [Kg/cm 2
The saturated steam generation amount G w of [abs] is 100 [T/H], that is, 100 × 10 3 [Kg/H] × (668.9 × 80.9) [Kcal/Kg] = 5.88 × 10 7 [kcal/H]. , the amount of exhaust heat H is 1.76×10 7 [Kcal/H] and 5.88
×10 7 [Kcal/H] (D-E in Figure 6), a total of 100 [T/H] of saturated hot water of 250.6℃ and saturated steam of 41 [Kg/cm 2 abs] are generated. It turns out.

ここで、通常は蒸気発生量Gsを15%程度に設
定する。すなわち、第6図においては2.4×107
〔Kcal/H〕(第6図中F)付近となる。したが
つて給水量全体が蒸発する状態になることはない
のである。
Here, the steam generation amount Gs is usually set to about 15%. That is, in Figure 6, 2.4×10 7
It will be around [Kcal/H] (F in Figure 6). Therefore, the entire water supply does not evaporate.

このように本実施例によれば、排熱量の変化に
応じて発生する蒸気と熱水の量が変化し、この変
化はアキユムレータ44内の圧力と熱水レベルの
変化に反映される。したがつて蒸気加減弁48と
熱水加減弁19によりアキユムレータ44内の圧
力と熱水レベルとを制御することによつて、蒸気
と熱水の流量を排熱量に応じて制御し、熱水ター
ビンに導入することができる。
As described above, according to this embodiment, the amount of steam and hot water generated changes in accordance with the change in the amount of exhaust heat, and this change is reflected in the change in the pressure and hot water level within the accumulator 44. Therefore, by controlling the pressure and hot water level in the accumulator 44 using the steam control valve 48 and the hot water control valve 19, the flow rates of steam and hot water are controlled according to the amount of exhaust heat, and the hot water turbine can be introduced into

以上説明したように本発明によれば、給水制御
弁により、熱水・蒸気発生器から発生される二相
流体の温度が設定値以上となるように制御し、ま
た蒸気加減弁により、アキユムレータ内の圧力が
設定値となるように制御すると共に、熱水加減弁
により、アキユムレータ内の熱水レベルが設定値
となるように制御するようにしたので、排熱量に
応じた量の流体を熱水タービンに導入することが
でき、もつて広範囲な排熱量の制御を安定に行な
うことが可能な熱水発電プラントが提供できる。
As explained above, according to the present invention, the water supply control valve controls the temperature of the two-phase fluid generated from the hot water/steam generator to be equal to or higher than the set value, and the steam control valve controls the temperature of the two-phase fluid inside the accumulator. The pressure in the accumulator is controlled to be the set value, and the hot water level in the accumulator is controlled to be the set value using the hot water control valve. It is possible to provide a hydrothermal power generation plant that can be introduced into a turbine and can stably control the amount of exhaust heat over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱水発電プラント系統図、第2
図は本発明の一実施例における熱水発電プラント
の系統図、第3図〜第6図は同実施例の作用を示
すもので、第3図は給水制御弁の開度と流体温度
との関係を示す図、第4図は蒸気加減弁の開度と
アキユムレータ内圧力との関係を示す図、第5図
は熱水加減弁の開度とアキユムレータ内熱水レベ
ルとの関係を示す図、第6図は排熱量と熱水およ
び蒸気の発生量との関係を示す図である。 11……給水ポンプ、16……熱水管、19…
…熱水制御弁、41……給水制御弁、42……熱
水・蒸気発生器、44……アキユムレータ、45
……熱水タービン、46……主蒸気管、48……
蒸気制御弁。
Figure 1 is a conventional hydrothermal power generation plant system diagram;
The figure is a system diagram of a hot water power generation plant according to an embodiment of the present invention. Figures 3 to 6 show the operation of the same embodiment. Figure 3 shows the relationship between the opening degree of the water supply control valve and the fluid temperature. Figure 4 is a diagram showing the relationship between the opening degree of the steam control valve and the pressure inside the accumulator, and Figure 5 is a diagram showing the relationship between the opening degree of the hot water control valve and the hot water level in the accumulator. FIG. 6 is a diagram showing the relationship between the amount of exhaust heat and the amount of hot water and steam generated. 11...Water pump, 16...Hot water pipe, 19...
... Hot water control valve, 41 ... Water supply control valve, 42 ... Hot water/steam generator, 44 ... Accumulator, 45
...Hot water turbine, 46...Main steam pipe, 48...
Steam control valve.

Claims (1)

【特許請求の範囲】 1 給水ポンプと、 前記給水ポンプから送出される液体が供給さ
れ、熱水または熱水と蒸気からなる二相流体を発
生する熱水・蒸気発生器と、 前記熱水・蒸気発生器から発生される二相流体
を加圧状態で蓄えるアキユムレータと、 前記アキユムレータに蓄えられた二相流体のう
ち、蒸気が蒸気入口から供給されかつ熱水が熱水
入口から供給される熱水タービンと、 前記給水ポンプの出口側に設けられ、前記熱
水・蒸気発生器から発生される二相流体の温度が
設定値以上となるように前記熱水・蒸気発生器へ
の液体供給量を制御する給水制御弁と、 前記アキユムレータの蒸気出口側に設けられ、
当該アキユムレータ内の圧力が設定値となるよう
に前記熱水タービンへの蒸気流出量を制御する蒸
気加減弁と、 前記アキユムレータの熱水出口側に設けられ、
当該アキユムレータ内の熱水レベルが設定値とな
るように前記熱水タービンへの熱水流出量を制御
する熱水加減弁と、 を具備して成ることを特徴とする熱水発電プラン
ト。
[Scope of Claims] 1. A water supply pump; A hot water/steam generator that is supplied with the liquid sent from the water supply pump and generates hot water or a two-phase fluid consisting of hot water and steam; an accumulator that stores two-phase fluid generated from a steam generator in a pressurized state; and of the two-phase fluid stored in the accumulator, steam is supplied from the steam inlet and hot water is supplied from the hot water inlet. a water turbine, and an amount of liquid supplied to the hot water/steam generator such that the temperature of the two-phase fluid generated from the hot water/steam generator is a set value or higher, and is provided on the outlet side of the water supply pump. a water supply control valve for controlling the water supply, and a water supply control valve provided on the steam outlet side of the accumulator;
a steam control valve that controls the amount of steam flowing out to the hot water turbine so that the pressure in the accumulator reaches a set value; and a steam control valve provided on the hot water outlet side of the accumulator,
A hot water power generation plant comprising: a hot water adjustment valve that controls the amount of hot water flowing into the hot water turbine so that the hot water level in the accumulator becomes a set value.
JP4370384A 1984-03-07 1984-03-07 Hot water power generation plant Granted JPS60187704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4370384A JPS60187704A (en) 1984-03-07 1984-03-07 Hot water power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4370384A JPS60187704A (en) 1984-03-07 1984-03-07 Hot water power generation plant

Publications (2)

Publication Number Publication Date
JPS60187704A JPS60187704A (en) 1985-09-25
JPH0231202B2 true JPH0231202B2 (en) 1990-07-12

Family

ID=12671173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4370384A Granted JPS60187704A (en) 1984-03-07 1984-03-07 Hot water power generation plant

Country Status (1)

Country Link
JP (1) JPS60187704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899370B (en) * 2014-04-29 2015-12-09 苟仲武 A kind of Novel steam power circulating device and method of work

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562414A (en) * 1979-06-21 1981-01-12 Mitsubishi Heavy Ind Ltd Variable pressure driving system for hot water turbine
JPS5732003A (en) * 1980-08-04 1982-02-20 Mitsubishi Heavy Ind Ltd Motive power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562414A (en) * 1979-06-21 1981-01-12 Mitsubishi Heavy Ind Ltd Variable pressure driving system for hot water turbine
JPS5732003A (en) * 1980-08-04 1982-02-20 Mitsubishi Heavy Ind Ltd Motive power plant

Also Published As

Publication number Publication date
JPS60187704A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
US4693086A (en) Steam turbine plant having a turbine bypass system
EP0093724A4 (en) Sliding pressure flash tank.
US5836162A (en) Feedwater heater drain recycle system
JP4393593B2 (en) Heating method and apparatus for valve device
JPH0231202B2 (en)
JPH09112801A (en) Pressured fluidized bed boiler generating system
JP2737884B2 (en) Steam turbine generator
JPS6125887B2 (en)
JPS5814909A (en) Degassing apparatus
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP3010086B2 (en) Cogeneration power plant
JPH01308A (en) How to operate a combined cycle power plant
JPS5572615A (en) Power generating plant
JPS6239661B2 (en)
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPH10197687A (en) Complex reactor power generation equipment
JPH0223929Y2 (en)
JPH0423161B2 (en)
JP2523493B2 (en) Turbin bypass system
JPS6155603B2 (en)
JPS624602B2 (en)
JP3276247B2 (en) Boiler / turbine condensate and water supply equipment
JPS5489145A (en) Steam turbine device combined with water manufacuring plant
JP2002129911A (en) Auxiliary steam attemperator and its operating method