JPH02311309A - Production of fibrous hydroxyapatite - Google Patents

Production of fibrous hydroxyapatite

Info

Publication number
JPH02311309A
JPH02311309A JP1133490A JP13349089A JPH02311309A JP H02311309 A JPH02311309 A JP H02311309A JP 1133490 A JP1133490 A JP 1133490A JP 13349089 A JP13349089 A JP 13349089A JP H02311309 A JPH02311309 A JP H02311309A
Authority
JP
Japan
Prior art keywords
hap
fibrous
hydrolyzed
production
buffer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1133490A
Other languages
Japanese (ja)
Inventor
Hajime Saito
肇 斎藤
Hideo Nagashima
長島 秀夫
Takehisa Fukui
武久 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S T K CERAMICS KENKYUSHO KK
Coorstek KK
STK Ceramics Laboratory Corp
Original Assignee
S T K CERAMICS KENKYUSHO KK
STK Ceramics Laboratory Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S T K CERAMICS KENKYUSHO KK, STK Ceramics Laboratory Corp, Toshiba Ceramics Co Ltd filed Critical S T K CERAMICS KENKYUSHO KK
Priority to JP1133490A priority Critical patent/JPH02311309A/en
Publication of JPH02311309A publication Critical patent/JPH02311309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject substance having improved strength, toughness and bio-compatibility by hydrolyzing beta-Ca3(PO4)2 in a basic buffer solution. CONSTITUTION:A low temperature-type beta-Ca3(PO4)2 is added to a basic buffer solution (e.g. NaOH-KCl) of pH9 to 4 and hydrolyzed by heating at 40 to 300 deg.C. The hydrolyzed product is filtered, washed with water and dried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維状ヒドロキシアパタイトの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing fibrous hydroxyapatite.

〔従来の技術〕[Conventional technology]

ヒドロキシアパタイト(以下、HApという)は、近年
、人工骨や人工歯根等の生体材料として注1」されるよ
うになっている。
In recent years, hydroxyapatite (hereinafter referred to as HAp) has come to be used as a biomaterial for artificial bones, artificial tooth roots, and the like.

従来、HApの製造方法としては、特公昭62−432
5号公報又は特開昭62−46908号公報記載の方法
が知られている。
Conventionally, the method for producing HAp was
The method described in Publication No. 5 or Japanese Patent Application Laid-Open No. 62-46908 is known.

前者のHApの製造方法は、Ca HP O4(第ニリ
ン酸カルシウム、リン酸水素カルシウム)又はCaHP
O・2H20(第二リン酸カルシウムの2水塩)と水の
スラリー溶液に、反応温度5−100℃でCa/pモル
比1,6まてpHを10以下に保ちなからCa (OH
) 2  (水酸化カルシウム)を添加し反応を行イっ
せ、微粒子針状粉末のHApを得る方法であり、後者の
HApの製造方法は、CaHPO4,CaHPO4”、
2H20又はα型Ca (PO4)2 (第三リン酸カ
ルシウム、リン酸三カルシウム)の難水溶性リン酸カル
シウムを塩基性水溶液中で加水分解させて、Ca/pの
モル比が1.67より小さい非化学量論性のHApとな
し、これに、塩基性水溶液の下でカルシウムイオンを添
加してモル比を1.67までの任意の比まで増加させ、
出発原料の粉末形状を継承した粒状粉末のHApを得る
方法である。
The former method for producing HAp uses CaHP O4 (calcium diphosphate, calcium hydrogen phosphate) or CaHP
Add Ca (OH
) 2 (calcium hydroxide) is added and the reaction is carried out to obtain HAp in the form of fine needle-like powder.
2H20 or α-type Ca (PO4)2 (tertiary calcium phosphate, tricalcium phosphate), which is a poorly water-soluble calcium phosphate, is hydrolyzed in a basic aqueous solution to produce a non-stoichiometric amount with a Ca/p molar ratio of less than 1.67. of HAp, to which calcium ions are added under basic aqueous solution to increase the molar ratio to any ratio up to 1.67;
This is a method for obtaining granular powder HAp that inherits the powder shape of the starting material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の製造方法により得られるHA
pは、微粒子針状粉末又は粒状粉末の形体であるため、
糸、綿布、織布の原料としては不一  9 − 適当である。
However, HA obtained by the above conventional manufacturing method
Since p is in the form of fine needle-like powder or granular powder,
It is suitable as a raw material for yarn, cotton cloth, and woven cloth.

又、HAp構造中のOH基が生体との適合性に深く関与
していると言われているが、粒状粉末では結晶成長の方
向性がな(、結晶表面のOH基が少なくなってしまう問
題がある。
In addition, it is said that the OH groups in the HAp structure are deeply involved in compatibility with living organisms, but in granular powder, the crystal growth is not directional (there is a problem that the number of OH groups on the crystal surface decreases). There is.

更に、従来、HAp焼結体は、骨、歯等に利用するには
、強度、靭性が不足している。
Furthermore, conventional HAp sintered bodies lack strength and toughness to be used for bones, teeth, and the like.

このため、HApを繊維状とし、糸、綿布、織布の原料
としたり、HAp緻密体の強化剤として強度の向上を図
ること、成長方向の結晶表面にOH基を多くして生体適
合性を増すことが望まれている。
For this reason, it is possible to make HAp into a fibrous form and use it as a raw material for yarn, cotton cloth, or woven fabric, or to improve its strength by using it as a reinforcing agent for HAp dense bodies, and to improve its biocompatibility by increasing the number of OH groups on the crystal surface in the growth direction. It is hoped that this will increase.

そこで、本発明は、上記要望を可能とする繊維状HAp
の製造方法の提供を目的とする。
Therefore, the present invention provides fibrous HAp that can meet the above requirements.
The purpose is to provide a manufacturing method for.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、本発明は、β型Ca (PO
4)2を塩基性緩衝液中で加水分解する方法である。
In order to solve the above problems, the present invention provides β-type Ca (PO
4) A method in which 2 is hydrolyzed in a basic buffer.

〔作  用〕[For production]

上記手段においては、低温型のβ型Ca5(PO4)2
(以下、TCPという)は、三方晶系で、単斜晶系の高
温型のα型TCPより構造的にHApj六方品系)との
類似性が低く、α型TCPより反応性が低い。このため
、構造変化(分子の再配列)を伴い、次の反応式に示す
ようにHApへ加水分解される。
In the above means, low-temperature β-type Ca5(PO4)2
(hereinafter referred to as TCP) is a trigonal system, has a lower structural similarity to HApj (hexagonal system) than the monoclinic high-temperature type α-TCP, and has lower reactivity than α-TCP. Therefore, it undergoes a structural change (molecular rearrangement) and is hydrolyzed to HAp as shown in the following reaction formula.

(10−x) Ca (PO) + f3(2−x) 
+3nl H2O→3 Ca to−x(HP 04)
x(PO4)6−x(OH)2−x−n H20十2 
(]−x) Ha P 04 そして、上記構造変化の際に、形体の変化、すなわち繊
維長の伸びを伴って結晶成長が起こる。
(10-x) Ca (PO) + f3(2-x)
+3nl H2O→3 Ca to-x (HP 04)
x(PO4)6-x(OH)2-x-n H2012
(]-x) Ha P 04 Then, during the above structural change, crystal growth occurs accompanied by a change in shape, that is, an elongation of the fiber length.

緩衝液は、pl(9〜14が好ましく、特にpH12以
上であることが好ましい。pH9未満であると、HAp
への加水分解反応の進行が著しく遅(なる。
The buffer solution has a pH of pl (preferably 9 to 14, particularly preferably 12 or more. If the pH is less than 9, HAp
The progress of the hydrolysis reaction to is extremely slow.

又、緩衝液としては、N a OH−K Ca (1)
1112〜13) 、Na  HPO4−NaOH(p
l(11〜12)又はN a HCOa  N a O
H(pl(9,e〜If)が用いられる。
In addition, as a buffer solution, N a OH-K Ca (1)
1112-13), Na HPO4-NaOH (p
l(11-12) or N a HCOa N a O
H(pl(9,e~If) is used.

反応温度は、40〜300℃、特に60〜150℃とす
ることか好ましく、更に、110〜140℃がより好ま
しい。40℃未満であると加水分解反応が進みにくく、
150℃を超えると合成装置が高価で複雑となり、又、
操作も複雑となる。
The reaction temperature is preferably 40 to 300°C, particularly 60 to 150°C, and more preferably 110 to 140°C. If the temperature is below 40°C, the hydrolysis reaction will not proceed easily;
If the temperature exceeds 150°C, the synthesis equipment becomes expensive and complicated, and
Operation is also complicated.

〔実 施 例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

実施例 1〜3 β型TCP粉末(粒径0.2〜0.5t1m、 Ca 
/ pモル比1.50)を出発原料とし、それぞれを緩
衝液であるNa0H−KC,illによりpH13とし
て第1表に示す反応温度と反応時間の下で撹拌しながら
加水分解した後、生成物をろ過、水洗、乾燥したところ
、HApの生成率と反応温度及び時間との関係は第1図
に示すようになり、又、生成物の生成相、形体及びCa
/pモル比は、α型TCPを出発原料とした従来例を併
記する第1表のようになった。
Examples 1-3 β-type TCP powder (particle size 0.2-0.5t1m, Ca
/ p molar ratio 1.50) as starting materials, each was hydrolyzed with stirring at the reaction temperature and reaction time shown in Table 1 at pH 13 using Na0H-KC,ill, which is a buffer solution, and the product was obtained. After filtering, washing with water, and drying, the relationship between the production rate of HAp and the reaction temperature and time is shown in Figure 1, and the formation phase, shape, and Ca
/p molar ratio is as shown in Table 1, which also includes conventional examples using α-type TCP as a starting material.

なお、成長相は、X線回折、IR分析によって評価し、
形体はSEM(走査形電子顕微鏡)によって観察したも
のであり、実施例今によって得られた生成物の電子顕微
鏡写真を第2図に示す。
The growth phase was evaluated by X-ray diffraction and IR analysis.
The shape was observed by SEM (scanning electron microscope), and an electron micrograph of the product obtained in Example 2 is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、β型TCPは、α型TC
Pより反応性が低いため、構造変化を伴ってHApへ加
水分解され、この構造変化の際に、形体の変化、すなわ
ち繊維長の伸びを伴って結晶成長が起こるので、繊維状
のHApを得ることかでき、かつその成長方向によりO
H基か結晶表面にならび、生体適合性を増すことができ
る。
As described above, according to the present invention, β-type TCP is
Since it has lower reactivity than P, it is hydrolyzed to HAp with a structural change, and during this structural change, crystal growth occurs with a change in shape, that is, an elongation of the fiber length, resulting in fibrous HAp. O
H groups can be aligned with the crystal surface to increase biocompatibility.

又、繊維状HApが得られることにより、HAp糸の紡
糸、HAp織布の作製か可能となると共に、HApの多
孔体やフィルターを得ることが可能となる。又、クロマ
トグラフィーの充填剤としても利用でき、かつウィスカ
ーのように繊維状HApを配向させて焼結することによ
ってHAp緻密体の強度、靭性の向上か可能となる。
Furthermore, by obtaining fibrous HAp, it becomes possible to spin HAp yarns and produce HAp woven fabrics, and it also becomes possible to obtain porous bodies and filters of HAp. It can also be used as a filler in chromatography, and by sintering fibrous HAp in a whisker-like orientation, it is possible to improve the strength and toughness of the HAp dense body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHAp生成率と反応時間との関係を示す相関図
、第2図は実施例4によって得られた生成物の形体を示
す電子顕微鏡写真である。 出 願 人  東芝セラミックス株式会社出 願 人 
 株式会社ニス・ティー・ケー・セラミックス研究所 手 続 ネ甫 正 書 (自発) 平成元年7月19日 2.8.。26“”“1“゛”33490’i。 繊維状ヒドロキシアパタイトの製造方法事件との関係 
 特許出願人 住 所   東京都新宿区西新宿1丁目26番地2号東
芝セラミツ゛クス株式会社 (外1名)4、代理人 〒
103 住 所   東京都中央区日本橋本町2丁目5番7号、
・ 日康ビル 電話(241)7268号明細書の発明
の詳細な説明の柵。 6、補正の内容
FIG. 1 is a correlation diagram showing the relationship between HAp production rate and reaction time, and FIG. 2 is an electron micrograph showing the morphology of the product obtained in Example 4. Applicant Toshiba Ceramics Corporation Applicant
Niss TK Ceramics Research Institute Procedures Written by Masaru Neho (self-motivated) July 19, 1989 2.8. . 26"""1"゛"33490'i.Relationship with the fibrous hydroxyapatite manufacturing method incident
Patent applicant address: 1-26-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Toshiba Ceramics Corporation (1 other person) 4, Agent:
103 Address: 2-5-7, Nihonbashi Honmachi, Chuo-ku, Tokyo.
- Nikko Building Telephone (241) 7268 Detailed description of the invention fence. 6. Contents of correction

Claims (1)

【特許請求の範囲】[Claims] (1)β型Ca_3(PO_4)_2を塩基性緩衝液中
で加水分解することを特徴とする繊維状ヒドロキシアパ
タイトの製造方法。
(1) A method for producing fibrous hydroxyapatite, which comprises hydrolyzing β-type Ca_3(PO_4)_2 in a basic buffer.
JP1133490A 1989-05-27 1989-05-27 Production of fibrous hydroxyapatite Pending JPH02311309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133490A JPH02311309A (en) 1989-05-27 1989-05-27 Production of fibrous hydroxyapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133490A JPH02311309A (en) 1989-05-27 1989-05-27 Production of fibrous hydroxyapatite

Publications (1)

Publication Number Publication Date
JPH02311309A true JPH02311309A (en) 1990-12-26

Family

ID=15105988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133490A Pending JPH02311309A (en) 1989-05-27 1989-05-27 Production of fibrous hydroxyapatite

Country Status (1)

Country Link
JP (1) JPH02311309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693716A1 (en) * 1992-07-20 1994-01-21 Toulouse Inst Nat Polytech Process for obtaining phosphocalcic hydroxyapatite, applications for bone or dental filling, or molding of parts, and products used.
WO2001002294A1 (en) * 1999-07-05 2001-01-11 Rhodia Chimie Novel mineral compositions for use as hydroxyapatite precursors, use for reinforcing concrete
GB2433257A (en) * 2005-12-19 2007-06-20 Accentus Plc Preparation of hydroxyapatite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693716A1 (en) * 1992-07-20 1994-01-21 Toulouse Inst Nat Polytech Process for obtaining phosphocalcic hydroxyapatite, applications for bone or dental filling, or molding of parts, and products used.
WO2001002294A1 (en) * 1999-07-05 2001-01-11 Rhodia Chimie Novel mineral compositions for use as hydroxyapatite precursors, use for reinforcing concrete
FR2796061A1 (en) * 1999-07-05 2001-01-12 Bouygues Travaux Publics NOVEL MINERAL COMPOSITIONS AS HYDROXYAPATITE PRECURSORS - CONCRETE REINFORCING APPLICATION
GB2433257A (en) * 2005-12-19 2007-06-20 Accentus Plc Preparation of hydroxyapatite

Similar Documents

Publication Publication Date Title
JP4354012B2 (en) Silicon-substituted hydroxyapatite and process for producing the same
Neira et al. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology
Wei et al. Development of fluorapatite cement for dental enamel defects repair
Fang et al. Thermal stability of synthetic hydroxyapatite
WO2018159417A1 (en) Method of manufacturing composite material shaped article containing acicular hydroxyapatite, and composite material shaped article
CN100543197C (en) The preparation method of hydroxyapatite crystal whisker with high length-diameter ratio
JP3028375B2 (en) Apatite whisker and method for producing the same
US20030235622A1 (en) Method of preparing alpha-and-beta-tricalcium phosphate powders
KR100687892B1 (en) Method for producing hydroxyapatite having spherical particle shape in nanometer to micrometer size
CN103656756B (en) Nano-hydroxyapatite/silk fibroin composite membrane material and preparation method thereof
JPH02311309A (en) Production of fibrous hydroxyapatite
Luo et al. Temperature effect on hydroxyapatite preparation by co-precipitation method under carbamide influence
US6228339B1 (en) Process for producing hydroxyapatite fibers
RU2395450C1 (en) Method of preparing calcium pyrophosphate powder capable of agglomeration
CN106747566A (en) A kind of preparation method of new mg-doped bioceramic porous material
JPS5913443B2 (en) Production method of CaO-P↓2O↓5-based apatite
KR100498759B1 (en) Method for manufacturing hydroxyapatite granule for biomaterials
CN101401951A (en) Calcium phosphate biological active ceramic material containing silicon dioxide and preparation method thereof
Yokoi The development of novel calcium phosphate–polymer composite biomaterials with macro-to nano-level controlled hierarchical structures
JP3262233B2 (en) Method for producing calcium phosphate
Zhang Effect of synthesis temperature on morphology and structural characteristics of hydroxyapatite whiskers
CN114438597A (en) Tissue engineering polyester composite scaffold material with calcium sulfate enhanced in-situ solidification pore-forming function and preparation method and application thereof
Marahat et al. Effect of magnesium ion (Mg2+) substitution and calcination to the properties of biphasic calcium phosphate (BCP)
JPH0477683B2 (en)
Pankaew et al. Crystallization of calcium deficient hydroxyapatite nanocrystals on woven silk fibroin fabric via precipitation process