JPH02311220A - Wire discharge process - Google Patents

Wire discharge process

Info

Publication number
JPH02311220A
JPH02311220A JP13127589A JP13127589A JPH02311220A JP H02311220 A JPH02311220 A JP H02311220A JP 13127589 A JP13127589 A JP 13127589A JP 13127589 A JP13127589 A JP 13127589A JP H02311220 A JPH02311220 A JP H02311220A
Authority
JP
Japan
Prior art keywords
workpiece
work
guide
machining
wire electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13127589A
Other languages
Japanese (ja)
Inventor
Takahiko Yamashita
孝彦 山下
Akira Busujima
明 毒島
Toshiyuki Makino
牧野 敏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP13127589A priority Critical patent/JPH02311220A/en
Publication of JPH02311220A publication Critical patent/JPH02311220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To process a work in a desired form at a good precision by determining move positions of a wire electrode by giving passage data for specifying the form of an upper and a lower surface of a work, and distances between the upper surface of a work and an upper guide, between the work upper surface and lower surface, and between the work lower surface and a lower guide. CONSTITUTION:Moving positions S, P for a wire electrode 21 in two planes as wire electrode in/out end surfaces of a work by giving passage data for specifying the form of an upper and a lower surface of the work 22, and distances between the work upper surface and an upper guide, between the work upper surface and the lower surface, and between the work lower surface and a lower guide. A desired work formation is obtained by interpolation at the positions. Processing a formation where taper angles change continuously or processing where the forms of the upper surface and the lower surface of the work are different from each other can thus be achieved easily, and a process precision can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、テーバ角度が連続的に変化するような形状の
加工や、ワーク上面と下面における形状が異なる場合の
加工を行うワイヤ放電加工方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a wire electrical discharge machining method for machining a shape in which the Taber angle changes continuously or for machining a workpiece whose top and bottom surfaces have different shapes. It is related to.

〔従来の技術〕[Conventional technology]

テーバ角度が連続的に変化するような加工、例えば、第
8図に示すようにワーク上面と下面における円弧(加工
形状)が偏心していたり、第9図に示すようにワーク上
面と下面における矩形(加工形状)位置が捩られている
場合など、その他、ワーク上面と下面における加工形状
が異なる場合のワイヤ放電加工方法として:よ、従来、
特開昭60−56824号に記載の方法があった。
Machining in which the Taber angle changes continuously, for example, the circular arcs (machined shape) on the top and bottom surfaces of the workpiece are eccentric as shown in Figure 8, or the rectangular (machined shape) on the top and bottom surfaces of the workpiece as shown in Figure 9. As a wire electrical discharge machining method when the machining shape) is twisted or when the machining shape on the top and bottom surfaces of the workpiece is different:
There was a method described in JP-A-60-56824.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、ワイヤガイ1′位置で補間を行うも
ので、ワーク上面と下面におりる形状を微少な線分に分
解して円弧、直線を近似し、加工を実現するものである
ため、装置や処理内容(加ニブログラムなど)が複雑に
なり、また加工精度も低いという問題点があった。
In the above conventional technology, interpolation is performed at the wire guy 1' position, and the shape that falls on the top and bottom surfaces of the workpiece is decomposed into minute line segments to approximate circular arcs and straight lines to realize machining. There were problems in that the processing contents (such as Kani program) were complicated and the processing accuracy was low.

本発明の目的は、テーバ角度が連続的に変化するような
形状の加工や、ワーク上面と下面における形状が異なる
場合の加工であっても、簡単な装置、処理内容(加ニブ
ログラムなど)で加工が可能で、加工精度も高めること
ができるワイヤ放電加工方法を提供することにある。
The purpose of the present invention is to process shapes with a continuous change in the taper angle or with different shapes on the top and bottom surfaces of a workpiece using simple equipment and processing details (such as a nitrogram). It is an object of the present invention to provide a wire electric discharge machining method that can improve machining accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ワークの上面及び下面の形状を特定する通
路データと共に、ワーク上面から上方ガイド、ワーク上
面と下面、ワーク下面と下方ガイド相互間の各距離又は
各距離の比を与えることにより、前記ワークのワイヤ電
極入出端面である2つの平面におけるワイヤ電極の移動
位置を演算により求め、この位置で補間を行って所望の
加工形状を得るごとにより達成される。
The above purpose is to provide path data specifying the shapes of the upper and lower surfaces of the workpiece, as well as distances or ratios of distances between the upper guide of the workpiece, the upper and lower surfaces of the workpiece, and the lower surface of the workpiece and the lower guide. This is achieved by calculating the moving position of the wire electrode on two planes, which are the input and output end faces of the wire electrode of the workpiece, and performing interpolation at these positions to obtain the desired machining shape.

〔作用〕[Effect]

本発明では、ワークのワイヤ電極入出端面である2つの
平面におけるワイヤ電極の移動位置を演算により求め、
この位置で補間を行って所望の加工形状を得るので、テ
ーパ角度が連続的に変化するような形状の加工や、ワー
ク上面と下面における形状が異なる場合の加工であって
も簡単な装置。
In the present invention, the moving position of the wire electrode on two planes that are the input and output end surfaces of the wire electrode of the workpiece is calculated,
Interpolation is performed at this position to obtain the desired machining shape, so this device is simple even when machining shapes where the taper angle changes continuously or when machining when the top and bottom surfaces of the workpiece have different shapes.

処理内容(加ニブログラムなど)で加工が可能で、加工
精度も高めることができる。
Processing can be done depending on the processing content (such as Kani program), and processing accuracy can also be improved.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。第1図
は本発明によるワイヤ放電加工方法の一実施例を示すフ
ローチャート、第2図は本発明方法によるワーク加工の
概念図、第3図は第2図をワイヤカッ1−面側から見た
各部位置関係を示す図である。ここでは、第2図に示す
ように、ワーク上面を直線状に、ワーク下面を円弧状に
加工する場合を例に採って説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings. Fig. 1 is a flowchart showing an embodiment of the wire electric discharge machining method according to the present invention, Fig. 2 is a conceptual diagram of workpiece machining according to the method of the present invention, and Fig. 3 shows various parts of Fig. 2 seen from the wire cutter 1 side. It is a figure showing a positional relationship. Here, as shown in FIG. 2, an example will be explained in which the upper surface of the workpiece is processed into a straight line and the lower surface of the workpiece is processed into an arcuate shape.

ワイヤ放電加工機は、構造上の理由から、ワイヤ電極を
支持するガイド(図示せず)とワークを接して配置する
ことは困難である。したがって、テーパ加工中にはワー
ク上面と上ガイドの位置、ワーク下面と下ガイドの位置
は、第3図に示すように異なる。
Due to structural reasons, it is difficult in a wire electric discharge machine to place a workpiece in contact with a guide (not shown) that supports a wire electrode. Therefore, during taper processing, the positions of the upper surface of the workpiece and the upper guide and the positions of the lower surface of the workpiece and the lower guide are different as shown in FIG.

第2図及び第3図において、21はワイヤ電極、22は
ワーク、22Uはワーク上面、22Lはワーク下面、S
はワーク上面22Uにおけるワイヤの位置、Pはワーク
下面22Lにおけるワイヤの位置、Uは上ガイドの位置
、Lは下ガイドの位置、lはワーク上面22Uと下面2
2Lとの距離(ワーク厚さ)、mはワーク下面22Lと
下ガイド位置りとの距離、nはワーク上面22Uと上ガ
イド位置Uとの距離である。ここで、LとUは、P、 
 S、  Il、 m、  nから次式にて求まる。
In FIGS. 2 and 3, 21 is a wire electrode, 22 is a workpiece, 22U is the upper surface of the workpiece, 22L is the lower surface of the workpiece, S
is the position of the wire on the upper surface 22U of the workpiece, P is the position of the wire on the lower surface 22L of the workpiece, U is the position of the upper guide, L is the position of the lower guide, and l is the upper surface 22U of the workpiece and the lower surface 2.
2L (workpiece thickness), m is the distance between the workpiece lower surface 22L and the lower guide position, and n is the distance between the workpiece upper surface 22U and the upper guide position U. Here, L and U are P,
It is determined from S, Il, m, and n using the following formula.

L=P+□  (P−3)     ・・・(1)! U=S−−一 (P−3)      ・・・(2)! なおこの場合、(1)の−を下ガイド位置算出係数、(
2)の−を上ガイド位置算出係数という。
L=P+□ (P-3) ...(1)! U=S--1 (P-3)...(2)! In this case, - in (1) is the lower guide position calculation coefficient, (
The minus in 2) is called the upper guide position calculation coefficient.

! 加工の例として、第4図に示すようにワーク上面22U
について座標値(35,15)から(55,60’)ま
で直線で加工を行い、ワーク下面22Lについて(20
,10)から(60,26L38.191 )まで、(
50゜10)を中心に時計回りの円弧で加工を行う場合
を述べる。またこの場合の、ガイド位置U、Lワーク上
面22Uと下面22Lとの距離(ワーク厚さ)lの関係
を第5図に示す。ワーク上面22Uと下面22Lとの距
離lは30、ワーク下面22■7と下ガイド位置りとの
距離mは5、ワーク上面22Uと上ガイド位置Uとの距
離nは10とする。なお、各数値の単位は総てmmとす
る。
! As an example of machining, as shown in Fig. 4, the upper surface of the workpiece 22U is
Machining is performed in a straight line from the coordinate value (35, 15) to (55, 60') for the workpiece bottom surface 22L.
,10) to (60,26L38.191), (
A case will be described in which processing is performed in a clockwise circular arc centered at 50°10). Further, in this case, the relationship between the guide position U and the distance (workpiece thickness) l between the upper surface 22U of the L workpiece and the lower surface 22L is shown in FIG. The distance l between the upper surface 22U of the workpiece and the lower surface 22L is 30, the distance m between the lower surface 227 of the workpiece and the lower guide position is 5, and the distance n between the upper surface 22U of the workpiece and the upper guide position U is 10. Note that the unit of each numerical value is mm.

加工の手順として、まずNC装置(図示せず)に、I!
、m、nなどの初期設定を行う(第1図中、ステップ1
01参照)。この設定された各値に基づいて、上、下ガ
イド位置算出係数を求めると、NCデータを1ブロック
読み込む(ステップ102〜103参照)。読み込んだ
データが加工終了の指令(MO2)でないことを確かめ
た後(ステップ104参照)、ワーク上面22Uと下面
221、におけるワイヤ電極21の相対移動量(以下、
単に移動量という)をそれぞれ算出する(ステップ10
5参照)。
As a processing procedure, first, the I!
, m, n, etc. (Step 1 in Figure 1)
01). After calculating the upper and lower guide position calculation coefficients based on the set values, one block of NC data is read (see steps 102 and 103). After confirming that the read data is not a machining end command (MO2) (see step 104), the relative movement amount of the wire electrode 21 between the workpiece top surface 22U and bottom surface 221 (hereinafter referred to as
(simply referred to as the amount of movement) (Step 10)
(see 5).

本例においては、ワーク上面22Uの移動量は、55−
35) 2+ (60−15) 2=49.244  
・・・(3)=6− となる。
In this example, the amount of movement of the work top surface 22U is 55-
35) 2+ (60-15) 2=49.244
...(3)=6-.

またワーク下面22Lの移動量は、まず、半径が、(5
0−20) 2+(10−10) 2=30   ・・
・(4)中心角が、 であるので、 となる。
In addition, the amount of movement of the lower surface 22L of the workpiece is determined by the radius (5
0-20) 2+(10-10) 2=30...
・(4) Since the central angle is , it becomes .

次に、(3)、 (6)式により求められたワーク22
の上面22Uと下面22Lの移動量により、それらの面
22U、22+、における移動速度の比を求める(ステ
ップ106参照)。ワーク下面22Lを基準に考えると
、ワーク下面22Lの移動速度が1のとき、ワーク上面
22Uの移動速度はここでは0.855となる。
Next, the workpiece 22 obtained by equations (3) and (6)
Based on the amount of movement of the upper surface 22U and lower surface 22L, the ratio of the moving speeds of these surfaces 22U, 22+ is determined (see step 106). Considering the workpiece lower surface 22L as a reference, when the moving speed of the workpiece lower surface 22L is 1, the moving speed of the workpiece upper surface 22U is 0.855.

次に、求められた移動速度の比を用いて、ワーク上、下
面22U、 22Lの補間を行い、指令されたワイヤ位
置S、Pを求め(ステップ107参照)、更にこのS、
  Pと前記上、下ガイド位置算出係数を用い、前掲(
1)、 (2)式から、次のように補間開始時(加工開
始時)ガイドの位置U、L(座標)が求められる(ステ
ップ108参照)。
Next, using the obtained moving speed ratio, the upper and lower surfaces 22U and 22L of the workpiece are interpolated to obtain the commanded wire positions S and P (see step 107).
Using P and the above upper and lower guide position calculation coefficients, the above (
From equations 1) and (2), the positions U and L (coordinates) of the guide at the start of interpolation (at the start of machining) are determined as follows (see step 108).

下ガイドのX座標Lx=20+−(20−35)=17
.5下ガイドのy座標Ly=10+−(10−15)=
9.167n U そして、この求められたガイドの位置U、  L(座標
)への移動パルスが出力されて移動が、換言すれば加工
が、行われる(ステップ109〜110参照)。
Lower guide X coordinate Lx=20+-(20-35)=17
.. 5 Lower guide y-coordinate Ly=10+-(10-15)=
9.167n U Then, movement pulses to the determined positions U and L (coordinates) of the guide are output, and movement, in other words, processing is performed (see steps 109 to 110).

ワーク下面22Lにおいて、デジタルサーボの位置ルー
プサンプリング時間毎の移動量が5胴であるとすれば、
サンプリング1回目のワーク下面りの位置は、(20,
416,14,977) となる。ワーク上面22Uの
位置は、移動量が5の0.055倍であるl− ので、(36,736,18,906)となる。
On the workpiece lower surface 22L, if the digital servo's movement amount per position loop sampling time is 5 cylinders,
The position of the bottom surface of the workpiece for the first sampling is (20,
416,14,977). The position of the upper surface 22U of the workpiece is (36,736,18,906) because the amount of movement is l- which is 0.055 times 5.

サンプリング1回目のガイド位置U、L(座標)は開始
時と同様に求めることができる。下ガイド位置しは(1
7,696,14,322)、上ガイド位置Uは(42
,176、20,216)  となる。
The guide positions U and L (coordinates) for the first sampling can be found in the same way as at the start. The lower guide position is (1
7,696,14,322), the upper guide position U is (42
, 176, 20, 216).

以下、同様にして、サンプリング2回目、3回目・・・
とガイド位置U、L(座標)が求められ、その位置への
移動パルスが出力されて移動(加工)が行われる(ステ
ップ109〜110〜103〜109参照)。
Hereafter, in the same manner, the second and third sampling...
The guide positions U and L (coordinates) are determined, and a movement pulse to the position is output to perform movement (processing) (see steps 109 to 110 to 103 to 109).

第6図は、計算結果を表にしたものであり、また第7図
は、同計算結果をグラフに表したものである。
FIG. 6 shows the calculation results in a table, and FIG. 7 shows the calculation results in a graph.

以上の手順により、第4図、第5図に示した加工を行う
もので、最終的に加工終了指令MO2を受けて加工を終
了する(ステップ104参照)。
Through the above procedure, the machining shown in FIGS. 4 and 5 is performed, and the machining is finally completed upon receiving the machining end command MO2 (see step 104).

一般に、ワーク下面22Lの加工が円弧状である場合、
そこでのワイヤ電極21の軌跡(ワーク下面22Lでの
加工形状)は、 Px=Rcos  (φ+ωt)       ・・・
(8)Py=Rsin  (φ+ωt )      
     −(9)で表される。
Generally, when the workpiece lower surface 22L is machined in an arc shape,
The trajectory of the wire electrode 21 (machined shape on the lower surface 22L of the workpiece) is Px=Rcos (φ+ωt)...
(8) Py=Rsin (φ+ωt)
−(9).

ただしRは半径、φは初期位相、ωは角速度、tは時間
である。
However, R is the radius, φ is the initial phase, ω is the angular velocity, and t is the time.

またワーク上面22Uの加工が、直線状である場合、そ
こでのワイヤ電極21の軌跡(ワーク上面22Uでの加
工形状)は、 5x=I x十Δxt           ・・・θ
0)sy=Iy+Δyt           ・・・
(11)で表される。
Further, when the workpiece top surface 22U is machined in a straight line, the trajectory of the wire electrode 21 there (machining shape on the workpiece top surface 22U) is 5x=I x +Δxt...θ
0) sy=Iy+Δyt...
It is expressed as (11).

ただしIx、Iyは始点の座標値、^χ、Δyは速度、
tは時間である。
However, Ix and Iy are the coordinate values of the starting point, ^χ and Δy are the speed,
t is time.

(8)〜(II)式を前掲(1)式に代入すると、下ガ
イド位置(すなわち下ガイド)の軌跡が得られる。すな
わち、(1)式より、 LX=PX→□(Px −Sx) ! 、’、(14−)Rcos  (φ+ωt)! ・・・03) (12) 、 (1,3)式より、 が求まる。これは、半径が(1→−)Rで、中心が! であり、下ガイドの軌跡はこの方程式で示される円弧と
なる。
By substituting equations (8) to (II) into equation (1) above, the locus of the lower guide position (that is, lower guide) can be obtained. That is, from equation (1), LX=PX→□(Px −Sx)! ,',(14-)Rcos (φ+ωt)! ...03) (12) From equations (1, 3), can be found. This has a radius of (1→-)R and a center of! , and the locus of the lower guide becomes an arc shown by this equation.

一方、(8)〜(11)式を前掲(2)式に代入すると
、上ガイド位置(すなわち上ガイド)の軌跡が得られる
On the other hand, by substituting equations (8) to (11) into equation (2) above, the locus of the upper guide position (that is, the upper guide) can be obtained.

すなわち、(2)式より、 Ux=Sx+ −(Px−3x ) ! ・・・05) 同様にして、 ・・・06) (15) 、 (16)式より、 が求まる。これは、半径が−Rで、中心が(Iy+△y
t) )の円の方程式であり、下ガイドの軌跡はこの方
程式で示される円弧となる。
That is, from equation (2), Ux=Sx+ -(Px-3x)! ...05) Similarly, ...06) can be found from equations (15) and (16). This has a radius of −R and a center of (Iy+△y
t) ) is the equation of the circle, and the locus of the lower guide becomes the arc shown by this equation.

第4図、第5図に示した例での数値は、1  =−30 m−・5 n =−10 I  x=35  y−15 △x =0.855  *20/49.244  = 
 0.347Δy =0.855  *45/49.2
44  =  0.781であるので、これを(14)
 、 (17)式に代入する。
The numerical values in the examples shown in Figures 4 and 5 are: 1 = -30 m-・5 n = -10 I x = 35 y-15 △x = 0.855 *20/49.244 =
0.347Δy =0.855 *45/49.2
44 = 0.781, so convert this to (14)
, Substitute into equation (17).

(Lx+(5,833+0.058t)  )  2+
 (Ly+(2,510,13t)l  2−352 
                 ・・・09)(U
x−(46,667+0.423t)l 2+ ([1
y−(20+1.041t)) 2−102     
             ・・・C!0が得られる。
(Lx+(5,833+0.058t)) 2+
(Ly+(2,510,13t)l 2-352
...09) (U
x-(46,667+0.423t)l 2+ ([1
y-(20+1.041t)) 2-102
...C! 0 is obtained.

本発明では、上掲(19) 、 (20)式を求めなく
とも、上ガイド、下ガイドの軌跡が得られる。
In the present invention, the trajectories of the upper guide and the lower guide can be obtained without calculating the above equations (19) and (20).

なお上述実施例では、NC装置(図示せず)に上記1.
m、nを初期設定し、この設定値に基づいて!、m、n
の比(上、下ガイド位置算出係数)を求める場合につい
て述べたが(第1図中、ステップ101〜102参照)
、上記j2. m、  nの比(上、下ガイド位置算出
係数)をNC装置に初期設定するようにしてもよい。
In the above-mentioned embodiment, the above 1. is applied to the NC device (not shown).
Initialize m and n and based on these settings! , m, n
We have described the case of calculating the ratio (upper and lower guide position calculation coefficients) (see steps 101 to 102 in Figure 1).
, above j2. The ratio of m and n (upper and lower guide position calculation coefficients) may be initially set in the NC device.

〔発明の効果] 本発明によれば、ワーク上、下面の加工形状が、例えば
直線と円弧の組合せなどでは、上、下ガイドの軌跡が複
雑な曲線となることがあるが、この軌跡を補間する必要
なしで加工を行える。したがって従来、微少線分に分解
して扱っていたワークでも、本発明ではワーク上、下面
の加工形状を直接入力して加工を行うことができ、テー
バ角度が連続的に変化するような形状の加工や、ワーク
上面と下面における形状が異なる場合の加工であっても
、簡単な装置、処理内容(加ニブログラムなど)で加工
が可能で、加工精度も高めることができるという効果が
ある。
[Effects of the Invention] According to the present invention, when the machining shape of the upper and lower surfaces of the workpiece is, for example, a combination of straight lines and circular arcs, the trajectory of the upper and lower guides may become a complicated curve, but this trajectory can be interpolated. Processing can be performed without the need for Therefore, even for workpieces that have conventionally been handled by breaking them down into minute line segments, the present invention allows machining by directly inputting the machining shape of the top and bottom surfaces of the workpiece. Even when machining or machining in which the top and bottom surfaces of a workpiece have different shapes, it is possible to perform the machining using simple equipment and processing details (such as a nitrogram), and the machining accuracy can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示すフローチャート、
第2図は本発明方法によるワーク加工の概念図、第3図
は第2図をワイヤカット面側から見た各部位置関係を示
す図、第4図〜第7図は本発明方法が適用されたワイヤ
放電加工の具体例を説明するための図、第8図及び第9
図はテーバ角度が連続的に変化するような加工形状の例
を示す図である。 21・・・ワイヤ電極、22・・・ワーク、22U・・
・ワーク上面、22L・・・ワーク下面、S・・・ワー
ク上面でのワイヤ位置、P・・・ワーク下面でのワイヤ
位置、U・・・上ガイド位置、L・・・下ガイド位置。
FIG. 1 is a flowchart showing an embodiment of the method of the present invention;
Fig. 2 is a conceptual diagram of workpiece machining by the method of the present invention, Fig. 3 is a diagram showing the positional relationship of each part when Fig. 2 is viewed from the wire cutting surface side, and Figs. Figures 8 and 9 are diagrams for explaining specific examples of wire electrical discharge machining.
The figure shows an example of a machined shape in which the Taber angle changes continuously. 21...Wire electrode, 22...Work, 22U...
・Workpiece top surface, 22L...Workpiece bottom surface, S...Wire position on the workpiece top surface, P...Wire position on the workpiece bottom surface, U...Upper guide position, L...Lower guide position.

Claims (1)

【特許請求の範囲】[Claims] 1、ワイヤ電極をワークに対し相対的に移動させると共
に、ワイヤ電極とワーク間に放電を生じさせ、ワークに
加工を行うワイヤ放電加工方法において、前記ワークの
上面及び下面の形状を特定する通路データと共に、ワー
ク上面から上方ガイド、ワーク上面と下面、ワーク下面
と下方ガイド相互間の各距離又は各距離の比を与えるこ
とにより、前記ワークのワイヤ電極入出端面である2つ
の平面におけるワイヤ電極の移動位置を演算により求め
、この位置で補間を行って所望の加工形状を得ることを
特徴とするワイヤ放電加工方法。
1. Passage data for specifying the shape of the upper and lower surfaces of the workpiece in a wire electrical discharge machining method in which the wire electrode is moved relative to the workpiece and electric discharge is generated between the wire electrode and the workpiece to machine the workpiece. At the same time, by giving each distance or the ratio of each distance between the upper guide from the upper surface of the workpiece, between the upper surface and lower surface of the workpiece, and between the lower surface of the workpiece and the lower guide, the movement of the wire electrode in the two planes that are the wire electrode input and output end surfaces of the workpiece is determined. A wire electrical discharge machining method characterized in that a position is determined by calculation and interpolation is performed at this position to obtain a desired machining shape.
JP13127589A 1989-05-26 1989-05-26 Wire discharge process Pending JPH02311220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13127589A JPH02311220A (en) 1989-05-26 1989-05-26 Wire discharge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13127589A JPH02311220A (en) 1989-05-26 1989-05-26 Wire discharge process

Publications (1)

Publication Number Publication Date
JPH02311220A true JPH02311220A (en) 1990-12-26

Family

ID=15054129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13127589A Pending JPH02311220A (en) 1989-05-26 1989-05-26 Wire discharge process

Country Status (1)

Country Link
JP (1) JPH02311220A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056824A (en) * 1983-09-06 1985-04-02 Fanuc Ltd Wire electric discharge machining method
JPS63318223A (en) * 1987-06-19 1988-12-27 Fanuc Ltd Wire electric discharge machine for helical machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056824A (en) * 1983-09-06 1985-04-02 Fanuc Ltd Wire electric discharge machining method
JPS63318223A (en) * 1987-06-19 1988-12-27 Fanuc Ltd Wire electric discharge machine for helical machining

Similar Documents

Publication Publication Date Title
JPS6336524B2 (en)
JPH0252282B2 (en)
US7044830B2 (en) Numeric controller
WO1994000272A1 (en) Cylindrically machining apparatus
JPH02199509A (en) Involute interpolating speed control system
JPH02311220A (en) Wire discharge process
JPH0628812B2 (en) Processing method for scroll parts
JPH1128641A (en) Plate machining device
US5200906A (en) Wire-cut electric discharge machining method
JP3690424B2 (en) Numerical control method and apparatus
JPS63206806A (en) Method for compensating precedence accuracy of nc controller
KR0161010B1 (en) Modification method of moving path in accordance with diameteral change of work
JP3166316B2 (en) Teaching and control method of playback type robot
JPH04269120A (en) Taper work in wire discharge process
JPH11194813A (en) Operation command generating method for industrial machine
JPS63120304A (en) Production of involute curve
JPS6238096B2 (en)
JPH02156308A (en) Numerical controller
JP3215541B2 (en) Wire electric discharge machining method
JPS59124561A (en) Cam grinding method
JPH0230468A (en) Control method for chopping
JPS60240374A (en) Method and device for working cylinder
SU642678A1 (en) Method of preparing a program for work-performing member movement
KR960012908B1 (en) Computerized numerical control apparatus
JPS63191518A (en) Automatic programming device for numerical control for wire electric discharge machine