JPH02310975A - Superilluminescent diode - Google Patents

Superilluminescent diode

Info

Publication number
JPH02310975A
JPH02310975A JP1131421A JP13142189A JPH02310975A JP H02310975 A JPH02310975 A JP H02310975A JP 1131421 A JP1131421 A JP 1131421A JP 13142189 A JP13142189 A JP 13142189A JP H02310975 A JPH02310975 A JP H02310975A
Authority
JP
Japan
Prior art keywords
active layer
light
guide
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1131421A
Other languages
Japanese (ja)
Other versions
JP2778985B2 (en
Inventor
Etsuo Noguchi
野口 悦男
Hiroshi Yasaka
洋 八坂
Katsuaki Kiyoku
克明 曲
Haruo Nagai
治男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13142189A priority Critical patent/JP2778985B2/en
Publication of JPH02310975A publication Critical patent/JPH02310975A/en
Application granted granted Critical
Publication of JP2778985B2 publication Critical patent/JP2778985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To fully prevent light from returning from an edge side to a light emission section and to fully restrain FP mode oscillation by forming a bending guide active layer which guides light following a linear active layer to a direction which is different from that on an extension axis of the active layer. CONSTITUTION:A linear active layer 14 is formed vertically to a cleavage edge side 21 which becomes a take-out surface of light, and bent at an active layer 15 of a bending guide following the active layer 14 at a radius of curvature R which allows to guide most of light emitted at the linear active layer 14. In a part wherein light is absorbed while being guided, the longer the bending guide active layer 15 is, the more it effects in a state that non-excitation or reverse-bias is applied. In this case, bending loss is extremely little at the radius of curvature R of 3mm or more, and most light is guided and escaped. Effect to restrain FP mode oscillation becomes larger by forming an AR film to the edge side 21 for taking out of light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光7アイパジヤイロ、光ディスク等の光源とし
て有用な、インコヒーレント光t−大きな強度と小さな
放射角で放射できるスーパールミネッセントダイオード
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superluminescent diode capable of emitting incoherent light with large intensity and small radiation angle, which is useful as a light source for optical discs, optical disks, etc. It is.

〔従来の技術〕[Conventional technology]

一般に、活性層端面から大出力のインコヒーレント光を
取り出そうとする発光素子ではファブリペロ(FP)モ
ードによるレーザ発振を抑圧することが重要であり、そ
の抑圧方法としては端面ARコートとか、非励起領域を
形成するとか、ま九は端面斜めエッチとか、端面埋め込
み等の活性層端面での光の反射率を低下させる方法が実
行されてきた。しかし、ARコートだけではFPモード
発振を充分に抑圧することは困難である。また、端面斜
めエッチとか、端面埋め込み、もしくはこれらの併用に
よるFPモードの抑圧においては、端面での屈折率差が
声外と大きく、反射率は弁開の時と比べ1%位に達する
。特に活性層を厚くするとこの影響が大きくなり、反射
率も増加するため、これらの手段だけではF’Pモード
を抑圧しにくいという欠点があった。
Generally, in a light emitting device that attempts to extract high-output incoherent light from the end face of the active layer, it is important to suppress laser oscillation due to Fabry-Perot (FP) mode. Methods have been implemented to reduce the reflectance of light at the end faces of the active layer, such as forming the active layer, diagonally etching the end faces, and burying the end faces. However, it is difficult to sufficiently suppress FP mode oscillation using only the AR coat. Furthermore, when suppressing the FP mode by obliquely etching the end face, burying the end face, or using a combination of these, the difference in refractive index at the end face is extremely large, and the reflectance reaches about 1% compared to when the valve is open. In particular, as the active layer becomes thicker, this effect becomes greater and the reflectance also increases, so there is a drawback that it is difficult to suppress the F'P mode using these means alone.

第3図に、従来実施されてきた端面埋め込み領域11を
併用する非励起領域10を形成した埋め込み型スーパー
ルミネッセントダイオードの模式図を示す。第3図にお
いて、9は電流注入領域、10は非励起領域、11は端
面埋め込み領域であり、この3つの領域から素子が形成
されている。
FIG. 3 shows a schematic diagram of a buried type superluminescent diode in which a non-excitation region 10 is formed in combination with a conventional end face buried region 11. In FIG. 3, 9 is a current injection region, 10 is a non-excitation region, and 11 is an end face buried region, and an element is formed from these three regions.

また、この素子の光取シ出し面にはARコート膜13が
形成されている。ここで、非励起領域10の活性li3
の幅は電流注入領域9の活性層3の幅と同じであるため
に光ガイド効果で非励起領域10にもキャリアが励起さ
れ、そのため吸収係数が小さくなってしまうので、FP
奇モード抑圧するために電流注入領域9と同程度以上の
長さが必要であシ、非励起領域10を長くしなければな
らないという欠点があった。なお、第3図中1はn形の
基板、2はn形光ガイド層、4はp形りラッド層、5は
p形電極層、6及びTはそれぞれp形、n形の電流狭゛
り層、8はp形オーミンク電極、12はn形オーミック
電極である。
Further, an AR coating film 13 is formed on the light extraction surface of this element. Here, the active li3 of the non-excited region 10
Since the width of the active layer 3 in the current injection region 9 is the same as that of the active layer 3, carriers are excited in the non-excited region 10 due to the light guide effect, which reduces the absorption coefficient.
In order to suppress the odd mode, it is necessary to have a length equal to or longer than the current injection region 9, and there is a drawback that the non-excitation region 10 must be made long. In Fig. 3, 1 is an n-type substrate, 2 is an n-type light guide layer, 4 is a p-type rad layer, 5 is a p-type electrode layer, and 6 and T are p-type and n-type current constrictors, respectively. 8 is a p-type ohmic electrode, and 12 is an n-type ohmic electrode.

また、第4図に、第3図に示した素子の欠点をある程度
解決した非励起領域を形成した埋め込み型スーパールミ
ネッセントダイオードの平面図を示す。この素子の特長
は、弁開端面と電流注入領域9及び非励起領域10の活
性層の軸方位が垂直からずれておシ、両端面がレーザ発
振における共撮器になシにくい点にある。この時、両端
面に対する活性層の軸方向の垂直からのずれは、大きけ
れば大きい程FPモード発振の抑圧効果は大きくなるが
、インコヒーレント光の取り出しに当って光ファイバと
の結合を考えると、軸ずれが大きくなるために結合効率
が悪くなるという欠点がある。
Further, FIG. 4 shows a plan view of a buried type superluminescent diode in which a non-excited region is formed, which solves the drawbacks of the device shown in FIG. 3 to some extent. The feature of this device is that the valve open end face and the axis directions of the active layers of the current injection region 9 and the non-excitation region 10 are deviated from perpendicular, and both end faces are difficult to become a co-imager in laser oscillation. At this time, the greater the deviation from the perpendicularity of the axial direction of the active layer with respect to both end faces, the greater the effect of suppressing FP mode oscillation, but when considering the coupling with the optical fiber when extracting incoherent light, This has the disadvantage that the coupling efficiency deteriorates due to the large axis misalignment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように上述した従来の構造素子においては、特に第
3図の構造図に示し次ように、光の取シ出し効率を高く
するために活性層3に隣接して光ガイド層2を形成した
場合には非電流注入域の実効的な吸収係数は減少し、F
P奇モードのレーザ発振が生じやすいという問題点があ
った。
In the above-mentioned conventional structural element, the light guide layer 2 is formed adjacent to the active layer 3 in order to increase the light extraction efficiency, especially as shown in the structural diagram of FIG. In this case, the effective absorption coefficient in the non-current injection region decreases and F
There is a problem in that P odd mode laser oscillation is likely to occur.

本発明は以上の点に鑑み、かかる従来素子の問題点を解
決するためになされたもので、その目的は、素子長が短
かくても充分にFPモード発振を抑圧し、合わせて光フ
ァイバとの結合効率を低下させないで、高出力のインコ
ヒーレント光が得られるスーパールミネッセントダイオ
ードを提供することKある。
In view of the above points, the present invention has been made to solve the problems of the conventional elements.The purpose of the present invention is to sufficiently suppress FP mode oscillation even if the element length is short, and to It is an object of the present invention to provide a superluminescent diode that can obtain high-output incoherent light without reducing the coupling efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成する丸めに、本発明によるスーパールミ
ネッセントダイオードは、FP奇モード効果的に抑圧す
るため直線状の活性層に続いてこの活性層の延長軸上と
は異なった方向に光をガイドするよりに活性層を形成し
、電流注入部で発光し次光を光の取シ出し方向と反対方
向に向かった光に対して、端面での全反射の方向を利用
して、端面からの光の取シ出し方向への光の戻シを防ぎ
、FPモード発振を抑圧することを特徴とするものであ
る。
To achieve this objective, the superluminescent diode according to the invention follows a linear active layer and directs light in a direction different from the extension axis of this active layer to effectively suppress the FP odd mode. Rather than guiding, an active layer is formed, and the light that is emitted at the current injection part and then directed in the opposite direction to the light extraction direction is reflected from the end face using the direction of total reflection at the end face. It is characterized by preventing light from returning in the light extraction direction and suppressing FP mode oscillation.

〔作用〕[Effect]

したがって、本発明においては、直線状の活性層に続い
て該活性層の延長軸上とは異なつ九方向に光をガイドす
べく活性層を形成することによシ、素子長が短かくても
充分KFPモード発振を抑圧できるとともに、光ファイ
バとの結合効率を低下させることなく、高出力のインコ
ヒーレント光が得られる。
Therefore, in the present invention, the element length can be shortened by forming an active layer following a linear active layer to guide light in nine directions different from the extension axis of the active layer. In addition to being able to sufficiently suppress KFP mode oscillation, high-output incoherent light can be obtained without reducing the coupling efficiency with the optical fiber.

〔実施例〕〔Example〕

以下、本発明を図面を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明素子の原理図を示したものである。第1
図において、直線状の活性層14は光の取シ出し面とな
る弁開端面21に垂直に形成し、この活性層14に続く
曲が9ガイドの活性層15では直線状の活性層14で発
光し次光の大部分をガイドできるような曲率Rで曲げて
形成しである。
FIG. 1 shows a diagram of the principle of the device of the present invention. 1st
In the figure, a linear active layer 14 is formed perpendicularly to the valve open end surface 21 that serves as a light extraction surface, and the active layer 15 with 9 guides has a linear active layer 14 that follows this active layer 14. It is formed by bending it with a curvature R that allows it to emit light and guide most of the subsequent light.

このような構成の素子においては直線状の活性層14で
発光し、曲が9ガイド活性層15へ向かう光は、その活
性層15でのガイドの曲がシに起因してもれる部分■と
、端面221でガイドされてその端面で反射される部分
■と、ガイドされる途中で吸収される部分■とに分けら
れる。
In an element with such a configuration, the linear active layer 14 emits light, and the light that travels toward the curve 9 guide active layer 15 is caused by the curved portion of the guide in the active layer 15. , a portion (2) that is guided by the end face 221 and reflected by the end face, and a portion (2) that is absorbed while being guided.

このとき、部分■でもれる量はガイドの曲率とガイド構
造における活性層と埋め込み層との屈折率差で決シ、曲
率が小さく、屈折率差が大きい程もれる光は少ない。そ
して、もれた光は埋め込み層中で拡がり端面で反射され
るので、直線状の活性層14、つまシミ流産入部へもど
って再び結合する量は少ない。
At this time, the amount of light leaking in the portion (2) is determined by the curvature of the guide and the difference in refractive index between the active layer and the buried layer in the guide structure.The smaller the curvature and the larger the difference in refractive index, the less light leaks. Then, since the leaked light spreads in the buried layer and is reflected at the end face, the amount of light that returns to the linear active layer 14 and the tip of the tab and recombines is small.

また、部分■で端面22までガイドされた光はその端面
で反射し、前記電流注入部とは全く結合しないような方
向に逃がすことができる。この場合、素子を構成する大
体の■−v族系の半導体では、その入射角2反射角をθ
とすると、θ>16度以上なら全反射させられる。
Furthermore, the light guided to the end face 22 at the portion (2) is reflected by the end face and can be emitted in a direction that does not couple with the current injection portion at all. In this case, for most of the ■-v group semiconductors that make up the device, the angle of incidence and the angle of reflection are θ
Then, if θ>16 degrees or more, total reflection will occur.

さらに、部分■で曲がクガイド活性層15が非励起また
は逆バイアスがかけられた状態においては長ければ長い
程効果が大きい。この場合、曲率半径Rは3w以上にお
いて曲シ損失は極めて小さく、殆んどの光をガイドして
逃がすことができる。
Further, in the state where the wave guide active layer 15 is not excited or reverse biased in the part (3), the longer the bending is, the greater the effect is. In this case, when the radius of curvature R is 3w or more, the bending loss is extremely small, and most of the light can be guided and released.

また、光の取9出し端面21にAR膜を形成することに
よシ更にFPモード発見損抑圧する効果が大きくなる。
Further, by forming an AR film on the light extraction end face 21, the effect of suppressing the FP mode detection loss is further increased.

一方、曲がりガイドの活性層15で発光し、直線状の活
性層14及び端面へ向かう光は、その曲がりガイド活性
層15でのガイドの曲がりに起因してもれる部分■′と
、端面までガイドされて端間で反射される部分■′と、
直線状の活性層14に達しその光の取り出し面21から
出力される部分■′とく分けられる。このうち部分■′
はインコヒーレント光出力の増加につながる。
On the other hand, the light emitted by the active layer 15 of the curved guide and directed toward the linear active layer 14 and the end face is guided to the end face by the leaking part ■' in the curved guide active layer 15 due to the bending of the guide. The part ■′ that is reflected between the edges and
The light reaches the linear active layer 14 and is output from the light extraction surface 21. Part of this
leads to an increase in incoherent light output.

すなわち、本発明のスーパールミネッセントダイオード
では、非励起領域にも電流注入を行い活性層が直線状の
電流注入領域で発生した光を非励起領域で吸収損失を与
えないようにした。ま九、従来素子の非励起領域におい
ても電流注入を行うことによシ、見損に達しない範囲で
誘導放出をおこさせ、光出力の増加を助長する素子構造
とした。
That is, in the superluminescent diode of the present invention, current is also injected into the non-excited region so that light generated in the current injection region where the active layer is linear is not absorbed in the non-excited region. (9) By injecting current even in the non-excited region of the conventional device, stimulated emission is caused within a range that is not overlooked, and the device structure is designed to promote an increase in optical output.

し九がって、直線状の活性層以外の領域にも電流注入を
行うことによシ、全体の素子長を短くすることができる
Therefore, by injecting current into regions other than the linear active layer, the overall device length can be shortened.

次に、第2図に沿って本発明の実施例について説明する
。なお、この実施例は1つの例示であって、本発明の精
神を逸脱しない範囲で種々の変更あるいは改良を行いう
ろことは言うまでもない。
Next, an embodiment of the present invention will be described with reference to FIG. It should be noted that this embodiment is merely an illustration, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第2図はInP/Ga1nAsP系材料による本発明の
一実施例である。本発明のスーパールミネッセントダイ
オードを得るには、1回目の成長として液相成長法(L
PE)及び気相成長法(VPE、MO−CVO)または
分子線エピタキシー(MBE)法等によシ、n形InP
基板上1上にa形GaInAsP光ガイド層(λ:1.
1μm組成)2.ノンドープQaInAaP活性層(λ
:1.3μm組成)3.p形InPクラッド層4.P形
QaInAmP電極層(λ:1.1μm組成)5を成長
する。次に、RF2極スパッタまたはCVO法等によシ
5iolもしくはSIN等の薄膜をp形GaInAsP
電極層5の全表間に形成する。その後フォトエツチング
技術によシ活性層を埋め込む丸めに、その直線状活性層
14は直線状に(110)方向に沿ってストライプ状に
幅4〜5μm、長さ400μm、曲がシガイド活性層1
5では曲率R#0.5■とRkq 1.5 鱈について
前記活性層14の軸方向に皺曲が夛ガイド活性層15の
長さがそれぞれ200μmと400μmとなるように電
流注入領域9のストライプ幅と同じ幅で形成し次後、こ
の8101 ストライプ薄膜もしくはSiNストライプ
薄膜をマスクとして利用し、ブロムメタノール4%溶液
によ!75,4,3.2の各層を基板1に達するまでエ
ツチングして逆メサ状の積層体を形成する。
FIG. 2 shows an embodiment of the present invention using InP/Ga1nAsP based materials. In order to obtain the superluminescent diode of the present invention, the liquid phase growth method (L
PE) and vapor phase epitaxy (VPE, MO-CVO) or molecular beam epitaxy (MBE), etc., n-type InP
An a-type GaInAsP light guide layer (λ: 1.
1μm composition)2. Non-doped QaInAaP active layer (λ
:1.3μm composition)3. p-type InP cladding layer 4. A P-type QaInAmP electrode layer (λ: 1.1 μm composition) 5 is grown. Next, a thin film of p-type GaInAsP or SIN is deposited by RF bipolar sputtering or CVO method.
It is formed between the entire surfaces of the electrode layer 5. Thereafter, the active layer is embedded using a photoetching technique, and the linear active layer 14 is formed into stripes along the (110) direction with a width of 4 to 5 μm, a length of 400 μm, and a curved shape.
5, the active layer 14 is wrinkled in the axial direction with curvature R#0.5 and Rkq 1.5, and the current injection region 9 is striped in such a way that the length of the guide active layer 15 is 200 μm and 400 μm, respectively. Then, using this 8101 stripe thin film or SiN stripe thin film as a mask, apply a 4% bromine methanol solution! The layers 75, 4, and 3.2 are etched until they reach the substrate 1 to form an inverted mesa-shaped stack.

次に、2回目の成長としてLPEにより、エツチングに
よシ取シ除いた部分にp形InP層6.及びn形InP
層1の電流狭窄用埋め込み成長を行った。
Next, as a second growth, a p-type InP layer 6. and n-type InP
Buried growth for current confinement of layer 1 was performed.

こうして得たウェハの上面にはAu−Znを蒸着してp
形オーミック電極8を全面に形成し、ま次基板1側には
全体の厚みが80μm程度になるまで研磨したのちAu
−G・−Niを蒸着し、n形オーミック電極12を全面
に形成した。こうして得九素子の各層の構成は第2図の
状態において次の通シであシ、各結晶層はInPの格子
定数に合致している。
On the upper surface of the wafer obtained in this way, Au-Zn was evaporated and p
A type ohmic electrode 8 is formed on the entire surface, and the Au
-G.-Ni was deposited to form an n-type ohmic electrode 12 on the entire surface. In this way, the structure of each layer of the obtained nine elements is as follows in the state shown in FIG. 2, and each crystal layer matches the lattice constant of InP.

1:8nドープn形InP基板、厚み80μm、キャリ
ア密度3 X 10 ”on−” 、 IPD5X I
 O’ cm−驚2 m n形GaInAsP光ガイド
層、厚み0.2μn。
1:8n doped n-type InP substrate, thickness 80 μm, carrier density 3×10 “on-”, IPD5X I
O' cm - 2 m n-type GaInAsP light guide layer, thickness 0.2 μm.

Snドープ、キャリア密度5X I Q”crn−”3
:n形GaInAsP活性層、厚み0.2〜0.3 μ
m 。
Sn doped, carrier density 5X I Q"crn-"3
: n-type GaInAsP active layer, thickness 0.2-0.3μ
m.

ノンドープ 4:p形InP結晶層、厚み1.5μm、Znドープ。Non-doped 4: P-type InP crystal layer, thickness 1.5 μm, Zn doped.

キャリア密度5x101?crn−” 5:p形GaInAiP電極層、厚み0.7μm、Zn
ドープ、キャリア密度5X 10”の1 6:p形InP電流狭窄層、厚み−1,5μm、Zn 
 ドープ、キャリア密度IXIQl?z−”7:n形I
’nP電流狭窄層、厚み−1,5μm、Snドープ、キ
ャリア密度1x10”m−” この素子を曲率R!=fO,5gの素子は素子長600
μm2曲率R’=、1.6−の素子は素子長800μm
Carrier density 5x101? crn-” 5: p-type GaInAiP electrode layer, thickness 0.7 μm, Zn
Doped, 16:p-type InP current confinement layer with carrier density 5X 10'', thickness -1.5 μm, Zn
Dope, carrier density IXIQl? z-”7: n-type I
'nP current confinement layer, thickness -1.5 μm, Sn-doped, carrier density 1x10"m-" This device has a curvature R! = fO, 5g element has an element length of 600
The element with μm2 curvature R'=, 1.6- has an element length of 800 μm.
.

幅は400μm一定のペレットに分割して、AuSnハ
ンダによυヒートシンク上にマウントし、電流。
Divide the pellets into pellets with a constant width of 400 μm, mount them on a heat sink with AuSn solder, and apply a current.

波長1.3μmの光出力特性を測定し九ところ、25℃
連続動作において電流注入に従って光出力は見損するこ
となく増加し、200mAにおいて3mWのインコヒー
レント光出力を得ることができた。曲率Rの違いによる
特性の差は見られなかった。従来の素子と比較すると、
曲が9ガイド活性層15の形成により、臂開面と壬直な
活性層14の延長軸とは異った方向に光をガイドするこ
とによシ端面での軸ずれを利用して、端面からの発光部
への光のもどシを効率良く防ぐことができたので、全体
の素子長を曲率R鳩0.5 mの素子については従来の
素子よりも1/2程度以下に短くすることが可能となシ
、充分FPモード発振を抑圧することができた。
The optical output characteristics at a wavelength of 1.3 μm were measured at 25°C.
In continuous operation, the optical output increased without loss as the current was injected, and an incoherent optical output of 3 mW at 200 mA could be obtained. No difference in properties due to difference in curvature R was observed. Compared to conventional elements,
By forming the guide active layer 15, the light is guided in a direction different from the extension axis of the active layer 14, which is straight between the arm opening plane, and by utilizing the axis misalignment at the end face, the end face Since we were able to efficiently prevent light from returning to the light emitting part, the overall element length was reduced to about 1/2 or less than the conventional element for an element with a curvature R of 0.5 m. It was possible to sufficiently suppress FP mode oscillation.

曲率半径Rは2.5■以上で曲が9による損失は無視で
きる大きさで1りす、本発明による実施例の曲率半径R
!=!1.6 vanでは曲が9損失”=、 Q、 l
 dB、R# 0.5 tmでも曲がシ損失−1dB以
下であυ、殆んどの光が曲がυガイドの活性層15で損
失をうけながらガイドをする。また、端面における光の
入射角は端面に達した光が全反射されるようにθ=16
°以上となるように曲が9ガイド活性層15の長さ20
0μm (曲率R”q 0.5 m )と、400μm
(曲率R’= 1.6 ms )を定め実施した。
The radius of curvature R is 2.5 mm or more, and the loss due to the curve 9 is negligible.
! =! 1.6 van has 9 songs lost”=, Q, l
dB, R# 0.5 tm, the loss of the curve is -1 dB or less υ, and most of the light is guided while undergoing loss in the active layer 15 of the curve υ guide. Also, the incident angle of the light at the end face is set at θ=16 so that the light that reaches the end face is totally reflected.
The length of the song 9 guide active layer 15 is equal to or greater than 20°.
0 μm (curvature R”q 0.5 m) and 400 μm
(curvature R' = 1.6 ms) was determined and carried out.

なお、本発明はn形InP基板を用いた例について説明
したが、p形InP基板を使用しても効果は同じであり
、その場合は各構造においてn形領域とp形領域を入れ
替えれば良い。t7’h、本実施例では、BHタイプ埋
め込み形見光ダイオードについて述べ九が、DCPBH
、もしくはvSP等のタイプでも同様の効果を得ること
ができる。
Although the present invention has been described with reference to an example using an n-type InP substrate, the effect is the same even if a p-type InP substrate is used, and in that case, the n-type region and the p-type region may be replaced in each structure. . t7'h, In this example, the BH type buried keepsake photodiode is described.
, or a similar effect can be obtained with a type such as vSP.

また、上記実施例では波長1.3μmのInP −Ga
InAsP系の半導体について説明したが、他の波長域
及びこの例とは異なる半導体(GaAs−GaAt人農
系等)を用いたインコヒーレント発光素子についても本
発明の方法が応用できることは明らかである。
Further, in the above embodiment, InP-Ga with a wavelength of 1.3 μm
Although an InAsP-based semiconductor has been described, it is clear that the method of the present invention can also be applied to incoherent light-emitting elements using other wavelength ranges and semiconductors different from this example (GaAs-GaAt artificial type, etc.).

さらに、埋め込み構造としては■−v族単結晶エピタキ
シャル層で埋め込む方法だけでなく、活性部を含むメサ
構造をポリイミド等の有機物質や低融点ガラス等で埋め
込む構造も有用である。これらの場合には、活性部と埋
め込み部との屈折率差が大きいので、曲がシガイド部の
曲率が大きくても損失が小さく、非励起部分において光
を有効に端面に導き大きな入射角度で全反射させ活性部
へもどらぬように構成することができる。
Furthermore, as the buried structure, not only the method of burying with a ①-V group single crystal epitaxial layer, but also the structure of burying a mesa structure containing an active region with an organic material such as polyimide, a low melting point glass, etc. are also useful. In these cases, the difference in refractive index between the active part and the buried part is large, so even if the curvature of the guide part is large, the loss is small, and the light is effectively guided to the end face in the non-excited part and the light is completely absorbed at a large incident angle. It can be configured so that it is not reflected and returned to the active area.

また、曲がυガイド活性層15の形成においては、本実
施例では曲率が0.5−と1.6 tmの円の弧を利用
したが、弧以外の多角形等でも同様の効果が得られるの
は明らかである。
Further, in the formation of the υ guide active layer 15, arcs of circles with curvatures of 0.5- and 1.6 tm were used in this embodiment, but the same effect can be obtained with polygons other than arcs. It is clear that

ま九、上記実施例では全面電極について述べたが、各直
線状の活性層141曲がυガイド活性層15を分割電極
として、従来素子のように曲がりガイド活性層15を非
励起、もしくは逆バイアスを加えてもインコヒーレント
光は得られるものである。
9. In the above embodiment, the entire surface electrode was described, but each linear active layer 141 uses the υ guide active layer 15 as a divided electrode, and the curved guide active layer 15 is de-excited or reverse biased like in the conventional element. Incoherent light can be obtained even if .

〔発明の効果〕〔Effect of the invention〕

以上述べ次ごとく、本発明によれは、直線状の活性層に
続いて該活性層の延長軸上とは異った方向に光をガイド
する曲がシガイド活性層を形成したことによシ、端面か
らの発光部への光のもど)を充分に防ぐことが可能とな
υ、FPモード発見損充分に抑圧することができた。こ
のFPモード発振の抑圧効果は、曲がりガイド活性層を
非励起とした場合には非電流注入部での光の吸収効果と
光を発光部の延長軸方向と全く異った方向にガイドする
ことの2点を特長とし、効率良(FPモード発振を抑圧
できるため、全体の素子長を短かくすることができた。
As described above, according to the present invention, a linear active layer is formed with a curve that guides light in a direction different from the extension axis of the active layer. It was possible to sufficiently prevent the return of light from the end face to the light emitting part, and it was possible to sufficiently suppress the loss of FP mode detection. This suppressing effect of FP mode oscillation is caused by the light absorption effect in the non-current injection part and the guiding of light in a direction completely different from the extension axis direction of the light emitting part when the bending guide active layer is non-excited. It has two features: high efficiency (FP mode oscillation can be suppressed, so the overall element length can be shortened).

このためウェハの利用効率が大きくなシ、素子の生産性
が向上した。
As a result, the efficiency of wafer utilization is high, and the productivity of devices is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する丸めの平面図、第2図
(−) 、 (b)および(、)は本発明の一実施例を
示す平面図、光ガイド層のA−A’断面図および発光部
断面図、第3図(a) 、 (b)および(、)は従来
の発光ダイオードの構造例を示す平面図、ストライプ方
向の断面図および発光部断面図、第4図は他の従来例を
示す平面図である。 1・−・・n形InP基板、2・・・・n形GaInA
sP光ガイド層、3@・・・ノンドープG&InAsP
活性層、4@11Sllp形InPクラッド層、5・・
・命p形GaInAsP電極層、6・・・・p形InP
電流狭9層、T・・・・n形InP電流狭・・n形オー
ミック電極、14・噛116直線状の活性層、15・・
・・曲がりガイドの活性層。
Fig. 1 is a rounded plan view explaining the present invention in detail, Fig. 2 (-), (b) and (,) are plan views showing one embodiment of the present invention, A-A' of the light guide layer. 3(a), (b) and (,) are plan views showing structural examples of conventional light emitting diodes, a sectional view in the stripe direction and a sectional view of the light emitting part, and FIG. 4 is a sectional view of the light emitting part. FIG. 7 is a plan view showing another conventional example. 1... n-type InP substrate, 2... n-type GaInA
sP optical guide layer, 3@...non-doped G&InAsP
Active layer, 4@11Sllp type InP cladding layer, 5...
・P-type GaInAsP electrode layer, 6... p-type InP
Current narrow 9 layers, T... n-type InP current narrow... n-type ohmic electrode, 14, 116 linear active layer, 15...
...Active layer of curved guide.

Claims (3)

【特許請求の範囲】[Claims] (1)活性層の上下を該活性層よりもバンドギャップエ
ネルギが大きく、かつ屈折率の小さいp形領域とn形領
域の物質で挾んだ化合物半導体よりなる導波路量スーパ
ールミネッセントダイオードにおいて、直線状の活性層
とこの活性層に続いて該活性層の延長軸上とは異なった
方向に光をガイドするより活性層を形成したことを特徴
とするスーパールミネッセントダイオード。
(1) In a waveguide superluminescent diode made of a compound semiconductor in which an active layer is sandwiched above and below by materials of a p-type region and an n-type region, which have a larger band gap energy and a lower refractive index than the active layer. A superluminescent diode comprising a linear active layer and, following the active layer, an active layer that guides light in a direction different from the axis of extension of the active layer.
(2)請求項1のスーパールミネッセントダイオードに
おいて、電流注入のための電極が全面電極であることを
特徴とするスーパールミネッセントダイオード。
(2) The superluminescent diode according to claim 1, wherein the electrode for current injection is a full-surface electrode.
(3)請求項2のスーパールミネッセントダイオードに
おいて、上記電極が2つ以上に分割されており、それぞ
れの電極に電流注入が行えることを特徴とするスーパー
ルミネッセントダイオード。
(3) The superluminescent diode according to claim 2, wherein the electrode is divided into two or more parts, and current can be injected into each electrode.
JP13142189A 1989-05-26 1989-05-26 Super luminescent diode Expired - Lifetime JP2778985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13142189A JP2778985B2 (en) 1989-05-26 1989-05-26 Super luminescent diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13142189A JP2778985B2 (en) 1989-05-26 1989-05-26 Super luminescent diode

Publications (2)

Publication Number Publication Date
JPH02310975A true JPH02310975A (en) 1990-12-26
JP2778985B2 JP2778985B2 (en) 1998-07-23

Family

ID=15057570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13142189A Expired - Lifetime JP2778985B2 (en) 1989-05-26 1989-05-26 Super luminescent diode

Country Status (1)

Country Link
JP (1) JP2778985B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076432A (en) * 2000-08-30 2002-03-15 Stanley Electric Co Ltd Edge-light emitting semiconductor device, its manufacturing method and free-space optical transmitter
JP2003142777A (en) * 2001-11-02 2003-05-16 Mitsubishi Electric Corp Optical semiconductor element
JP2011108741A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Light emitting device and projector
US9293637B2 (en) 2013-08-08 2016-03-22 Sony Corporation Light emitting element and display device including a light-emitting region having ridge stripe structures
US9966500B2 (en) 2014-04-25 2018-05-08 Sony Corporation Semiconductor optical device and display device
DE112017003372T5 (en) 2016-07-04 2019-03-14 Sony Corporation OPTICAL ELEMENT, ACTIVE LAYER STRUCTURE AND DISPLAY DEVICE
US10490692B2 (en) 2015-03-03 2019-11-26 Sony Corporation Semiconductor light-emitting device and display apparatus
US10672944B2 (en) 2014-12-19 2020-06-02 Sony Corporation Active layer structure, semiconductor light emitting element, and display apparatus
US10691005B2 (en) 2016-12-07 2020-06-23 Sony Corporation Optical element and display apparatus
US11164990B2 (en) 2016-06-13 2021-11-02 Sony Corporation Optical device and display apparatus
US11217721B2 (en) 2015-12-25 2022-01-04 Sony Corporation Light-emitting device and display apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355984A (en) * 1986-08-26 1988-03-10 Nec Corp End face light emitting diode
JPS63143881A (en) * 1986-12-08 1988-06-16 Oki Electric Ind Co Ltd Manufacture of semiconductor end surface device
JPH01129478A (en) * 1987-11-16 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Light-emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355984A (en) * 1986-08-26 1988-03-10 Nec Corp End face light emitting diode
JPS63143881A (en) * 1986-12-08 1988-06-16 Oki Electric Ind Co Ltd Manufacture of semiconductor end surface device
JPH01129478A (en) * 1987-11-16 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Light-emitting diode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076432A (en) * 2000-08-30 2002-03-15 Stanley Electric Co Ltd Edge-light emitting semiconductor device, its manufacturing method and free-space optical transmitter
JP2003142777A (en) * 2001-11-02 2003-05-16 Mitsubishi Electric Corp Optical semiconductor element
JP2011108741A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Light emitting device and projector
US9293637B2 (en) 2013-08-08 2016-03-22 Sony Corporation Light emitting element and display device including a light-emitting region having ridge stripe structures
US9966500B2 (en) 2014-04-25 2018-05-08 Sony Corporation Semiconductor optical device and display device
US10672944B2 (en) 2014-12-19 2020-06-02 Sony Corporation Active layer structure, semiconductor light emitting element, and display apparatus
US10490692B2 (en) 2015-03-03 2019-11-26 Sony Corporation Semiconductor light-emitting device and display apparatus
US11217721B2 (en) 2015-12-25 2022-01-04 Sony Corporation Light-emitting device and display apparatus
US11164990B2 (en) 2016-06-13 2021-11-02 Sony Corporation Optical device and display apparatus
DE112017003372T5 (en) 2016-07-04 2019-03-14 Sony Corporation OPTICAL ELEMENT, ACTIVE LAYER STRUCTURE AND DISPLAY DEVICE
US10691005B2 (en) 2016-12-07 2020-06-23 Sony Corporation Optical element and display apparatus

Also Published As

Publication number Publication date
JP2778985B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US4901123A (en) Superluminescent diode
US6593602B2 (en) Edge emission type semiconductor device for emitting super luminescent light, its manufacture and spatial optical communication device
JPH02310975A (en) Superilluminescent diode
US4280108A (en) Transverse junction array laser
US5574304A (en) Superluminescent diode with offset current injection regions
JPH0194689A (en) Optoelectronic semiconductor element
CN111261756B (en) Semiconductor light emitting device
JP2006515109A (en) Semiconductor laser
JP2022501815A (en) Gain-guided semiconductor laser and its manufacturing method
US4914669A (en) Semiconductor laser array apparatus
JP3712855B2 (en) Super luminescent diode
Saul et al. Light-emitting-diode device design
JP3685925B2 (en) Super luminescent diode
KR100278626B1 (en) Semiconductor laser diode
JP2759275B2 (en) Light emitting diode and method of manufacturing the same
JP2958465B2 (en) Super luminescence diode
JPH03228380A (en) Semiconductor light emitting element
JPH067603B2 (en) Light emitting diode
JPH02205365A (en) Superluminescent diode
JPH0231476A (en) Semiconductor laser element
JPS62106673A (en) Semiconductor light emitting device
JPH0277174A (en) End face radiation type light emitting diode
JPS6338271A (en) Semiconductor surface light emitting element
JP3172558B2 (en) Semiconductor active device
JPS5853879A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12