JPH02310494A - Low-temperature nuclear fusion device - Google Patents

Low-temperature nuclear fusion device

Info

Publication number
JPH02310494A
JPH02310494A JP1133435A JP13343589A JPH02310494A JP H02310494 A JPH02310494 A JP H02310494A JP 1133435 A JP1133435 A JP 1133435A JP 13343589 A JP13343589 A JP 13343589A JP H02310494 A JPH02310494 A JP H02310494A
Authority
JP
Japan
Prior art keywords
electrode plates
deuterium
nuclear fusion
electrode
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1133435A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1133435A priority Critical patent/JPH02310494A/en
Priority to EP19900107807 priority patent/EP0394980A3/en
Publication of JPH02310494A publication Critical patent/JPH02310494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To stably and efficiently induce a nuclear fusion reaction and to obtain clean energy with the simple device by incorporating group Ia elements or IIa elements in periodic table into at least one electrode plate of two sheets of electrodes. CONSTITUTION:The electrode plates 1, 2 contain the group Ia elements or IIa elements in periodic table. These electrode plates 1, 2 are disposed to face each other apart a prescribed spacing maintained therebetween and gaseous deuterium is packed therebetween to form a discharge space 7. The peripheral part of the two electrode plates 1, 2 is sealed via a spacer 3 in such a manner that the gaseous deuterium packed therein does not leak to the outside. The peripheral plates have an introducing port 4 and discharge port 5 for the gaseous deuterium. For example, nickel plates having about 0.5mm thickness doped with lithium metal at a high concn. are used for the electrode plates 1, 2 and the spacing therebetween is specified to about 0.1mm. The gaseous deuterium of atm. is passed in this constitution and after the sufficient gaseous deuterium is occluded in the surfaces of the electrode plates 1, 2, about 200 to 300V AC voltage is impressed between the two electrode plates 1 and 2 to generate a gas discharge therein.

Description

【発明の詳細な説明】 産業上の利用分野 本発明&よ 超高温を必要とせずに核融合反応を起こす
ことが可能な 低温核融合装置に関すム従来の技術 重水素原子核(D)と重水素原子核(D)が核融合を起
こすと(以下D−D核反応と呼ぶ)、大きなエネルギー
を放出する力<、D−D核反応を起こすために(よ 重
水素原子核の持つ正電荷によるクーロン障壁を越えるだ
けのエネルギーを重水素原子核に持たせる必要があa 
そのたべ 従来超高江 超高密度の重水素プラズマを発
生させ、磁場中に締じ込める方広 重水の粒子に高二ネ
ルギーのレーザー光を照射する方法などが研究されてい
も ところが最近 米国ユダ大学のポンス教授と英国サラサ
ンプトン大学のフライシュマン教授の共同研究チーム(
よ 室温で核融合反応を起こすことに成功したと発表し
 世界中に大きな反響を呼んでいも この技術ζよ パ
ラジュウムまたはチタン金属を陰極とし 陽極に白金電
極を用(\ 重水電解液中に浸漬して電流を通ずると、
D−D核融合反応が起こり、投入電力の4〜5倍の熱量
が発生すると言うものであム 発明が解決しようとする課題 この発表以来 世界各地の多くの研究機関で確認実験が
試みられたにもかかわらf、D−D核反応に共なう中性
子の発生量が予想よりはるかに少なく、従来の概念では
理解し難く、未だに確証を得るに至っていな(〜 本発明(よ 新しい原理に基づいて、安定にかつ効率よ
く核融合反応を起こさせ、極めて超高温を用いることな
くエネルギーを取り出す、低温核融合装置を得ることを
目的とすム 課題を解決するための手段 2板の電極板を対向させ、前記両電極板間に重水素ガス
を充満するとともに、 前記両電極板間に直流または交
流電圧を印加し ガス放電を誘起して核融合反応を促進
する低温核融合装置において、少なくとも一方の電極板
に周期律表中のIa族元素またはIIa族元素を含有さ
せも 作用 金属原子間に吸蔵された重水素原子核の電荷は周囲の金
属原子が作る電子の雲によって遮蔽され(スクリーニン
グ効果)、実効的に減少すも 金属原子と同程度の濃度
(〜lO°個/am’)の重水素原子が吸蔵されると、
 トンネル効果が激的に増大り、、D−D核融合反応が
起こり易くなも特に 電気陰性度の強い周期律表中のI
a、IIa族などの金属に吸蔵された重水素原子はHe
原子と同様のIs”構造をとり、D−イオンとなる。ア
ルカリ金属の重水素化物は食塩型結晶構造であり、アル
カリ土類金属の重水素化物は金属イオンがほぼ六方最密
バッキング構造であって、この隙間にD−イオンが入る
構造となも 従って、他の金属重水素化物に比べてスク
リーニング効果が大きく、核融合反応が起こる確率が著
しく大きくなもまた 金属原子間に吸蔵された重水素原
子核(よ室温においてもleV程度のエネルギーを持っ
て調和振動していると考えられる力交 両電極板間に重
水素ガス放電を発生させると、D゛イオン及びD2゛イ
オンが電極表面に衝突し これらの重水素イオン(友 
電極表面の重水素原子の濃度を著しく高へ また吸蔵さ
れた重水素原子核の振動エネルギーを高める効果を与え
も それにより、超高温を必要とせずにD−D核融合反応が
起こるものと考えられも 実施例 実施例1 第1図く 本発明による低温核融合を起こさせるための
装置の一実施例を示す。
[Detailed Description of the Invention] Industrial Fields of Application The present invention &amp; When a hydrogen nucleus (D) undergoes nuclear fusion (hereinafter referred to as the D-D nuclear reaction), a large amount of energy is released by the force <, in order to cause the D-D nuclear reaction (Coulomb due to the positive charge possessed by the deuterium nucleus). It is necessary to make the deuterium nucleus have enough energy to cross the barrier.
Until now, researchers have been researching ways to generate ultra-high-density deuterium plasma and confine it in a magnetic field.However, research has recently begun on methods such as irradiating heavy water particles with high-energy laser light. A joint research team of Professor Pons and Professor Fleischmann of the University of Sarathampton in the UK (
They announced that they had succeeded in causing a nuclear fusion reaction at room temperature, and it caused a huge sensation around the world. When a current is passed through the
The D-D fusion reaction occurs and generates heat 4 to 5 times the amount of electric power input.The problem that the invention aims to solve.Since this announcement, many research institutes around the world have attempted confirmation experiments. Despite this, the amount of neutrons generated in the D-D nuclear reaction is much smaller than expected, and it is difficult to understand using conventional concepts, and confirmation has not yet been obtained. The aim is to obtain a low-temperature nuclear fusion device that allows nuclear fusion reactions to occur stably and efficiently and extracts energy without using extremely high temperatures.Means for solving the problem Two electrode plates A low-temperature nuclear fusion device that promotes a nuclear fusion reaction by inducing gas discharge by filling deuterium gas between the two electrode plates and applying a DC or AC voltage between the two electrode plates, at least Even if one electrode plate contains a group Ia element or a group IIa element in the periodic table, the charge of the deuterium nucleus occluded between the working metal atoms is shielded by the cloud of electrons created by the surrounding metal atoms (screening effect). ), effectively decreases. When deuterium atoms are occluded at a concentration similar to that of metal atoms (~lO°/am'),
The tunneling effect increases dramatically, and the D-D fusion reaction is particularly likely to occur, especially when I in the periodic table has strong electronegativity
Deuterium atoms occluded in metals such as group a and group IIa are He
It takes the same Is" structure as an atom and becomes a D-ion. Deuterides of alkali metals have a salt-type crystal structure, and deuterides of alkaline earth metals have metal ions in an almost hexagonal close-packed backing structure. Therefore, compared to other metal deuterides, the screening effect is greater and the probability of nuclear fusion reactions occurring is significantly greater. Hydrogen nuclei (force exchange that is thought to be harmonically oscillating with an energy of about leV even at room temperature) When a deuterium gas discharge is generated between the two electrode plates, D' ions and D2' ions collide with the electrode surface. These deuterium ions (friends)
It is believed that by significantly increasing the concentration of deuterium atoms on the electrode surface and increasing the vibrational energy of occluded deuterium nuclei, the D-D fusion reaction occurs without the need for ultra-high temperatures. Embodiments Embodiment 1 Figure 1 shows an embodiment of an apparatus for causing low-temperature nuclear fusion according to the present invention.

lおよび2は周期律表中のIa族またはIIa族の元素
を含有する電極板であり、両電極板l、 2は所定の間
隔を保って対向させられ その間に重水素ガスが充填さ
れて放電空間7を形成すも 両電極板1.2の周辺部(
友 内部に充満される重水素ガスが漏れないようへ ス
ペーサ3を介して封着されていも 4および5は各々、
重水素ガスの導入口および排出口であa 電極板1及び2には対向面側からりチュウム(Li)金
属を高濃度にドープした厚さ0.5mmのニッケル金属
板を使用L その間隔は0゜1mmとじ九1気圧の重水
素ガスを流し 前記電極板表面に十分な重水素ガスを吸
蔵させた後、電源6によって両電極板間に200〜30
0vの交流電圧を印加して内部にガス放電を発生させ九 放電電流を、 10 m A / c m 2から10
0mA/Cm”まで変化させると、放電条件によって投
入電力の1倍から約3倍の熱が発生した 第2図に示すようへ 重水素原子核同志が核融合反応を
起こす確率(瓜 理論計算によると重水素原子核の調和
振動エネルギーが2〜4eVで著しく増大することが知
られていも 両電極板間に重水素ガス放電が発生すると、平均エネル
ギーが数eVから数+eVのD′″イオン及びD 2”
イオンが電極表面に毎秒IQ+7〜IQI@個/cm’
程度衝突すも これらの重水素イオン(よ電極表面の重
水素原子の濃度を著しく高める効果とともへ 吸蔵され
た重水素原子核の振動エネルギーを高める効果があも また 周期律表中のIa族に属するLi原子は電気陰性
度が強く、Li金属に吸蔵された重水素原子はHe原子
のls2構造をとり、D−イオンとなる。従って、他の
金属重水素化物に比べて重水素原子核の正電荷を実効的
に遮蔽するスクリーニング効果が大きく、核融合反応が
起こる確率が著しく犬きくなa 本発明による低温核融合装置においてi表Li金属だけ
でなく、他のアルカリ金属および周期律表中のIIa族
に属するアルカリ土類今風 更艮これらの合金など塩類
偏重水素化物を形成する金属であれば 特に限定せずに
用いることができも実施例2 第3図番へ  本発明による低温核融合装置に用いる電
極板の他の実施例を示す。
1 and 2 are electrode plates containing elements of group Ia or group IIa in the periodic table, and both electrode plates 1 and 2 are placed facing each other with a predetermined distance between them, and deuterium gas is filled between them to discharge the discharge. The space 7 is formed around both electrode plates 1.2 (
To prevent the deuterium gas filled inside from leaking, even though they are sealed through spacer 3, 4 and 5 are each
Deuterium gas inlet and outlet a. Electrode plates 1 and 2 are made of 0.5 mm thick nickel metal plates doped with lithium (Li) metal at a high concentration from the opposing surfaces. After flowing deuterium gas at 91 atm with a pitch of 0.1 mm and absorbing sufficient deuterium gas on the surface of the electrode plate, the power supply 6 causes a pressure of 200 to 300 m
Applying an AC voltage of 0 V to generate a gas discharge inside, the discharge current is 10 mA/cm2 to 10
When the voltage is changed to 0 mA/Cm, heat from 1 to 3 times the input power is generated depending on the discharge conditions, as shown in Figure 2. Although it is known that the harmonic vibrational energy of deuterium nuclei increases significantly at 2 to 4 eV, when deuterium gas discharge occurs between the two electrode plates, D'''' ions and D2 with an average energy of several eV to several + eV are generated. ”
Ions reach the electrode surface every second from IQ+7 to IQI/cm'
These deuterium ions have the effect of significantly increasing the concentration of deuterium atoms on the surface of the electrode, and they also have the effect of increasing the vibrational energy of the occluded deuterium nuclei in Group Ia of the periodic table. The Li atom to which it belongs has strong electronegativity, and the deuterium atom occluded in Li metal takes the ls2 structure of a He atom and becomes a D- ion.Therefore, compared to other metal deuterides, the deuterium nucleus has a The screening effect of effectively shielding charges is large, and the probability of nuclear fusion reaction occurring is extremely low.A In the low temperature fusion device according to the present invention, not only the i-list Li metal but also other alkali metals and other alkali metals in the periodic table are used. Alkaline earth metals belonging to Group IIa, alloys of these metals, and other metals that form salt-biased deuterides can be used without particular limitation. Another example of the electrode plate used for this is shown below.

ニッケル金属板8の表面に真空蒸着法によって厚さ1μ
mのマグネシウム(M g )金属9を形成したもので
あム 更へ 重水素ガス中で約350℃に加熱して、表
面にマグネシウムの重水素化物を形成した この電極板
を実施例1に示す低温核融合装置に用いると、実施例1
と同様に核融合反応が起こることが認められた マグネシウムの重水素化物は重水素の含有量が15%と
大きく、またアルカリ金属と同様に重水素原子はD−イ
オンとして存在すム 従って、スクリーニング効果が大
きく、核融合反応に有効な媒体となるものと思われも 水素吸蔵合金とシテ、Mg2NL Mg2Cu、  M
g−5XNi−5%Y、MgCa、  NaMgなど、
 更?Q  CaMgNi慕LaCaMg系などが知ら
れてい4 本発明による低温核融合装置においてGL 
 これらアルカリ金属およびアルカリ土類金属を主体と
する合金であれ(え 特にに限定することなく用いるこ
とができる。
The surface of the nickel metal plate 8 is coated with a thickness of 1μ by vacuum evaporation.
Further, this electrode plate was heated to about 350°C in deuterium gas to form a magnesium deuteride on the surface.Example 1 shows this electrode plate. When used in a cold fusion device, Example 1
Magnesium deuteride, which has been shown to cause nuclear fusion reactions in the same way as the above, has a high deuterium content of 15%, and like alkali metals, deuterium atoms exist as D-ions. Hydrogen storage alloys and metals, Mg2NL, Mg2Cu, and Mg2Cu, are thought to have a large effect and become effective media for nuclear fusion reactions.
g-5XNi-5%Y, MgCa, NaMg, etc.
Further? Q CaMgNi, LaCaMg, etc. are known.4 In the low temperature fusion device according to the present invention, GL
Alloys mainly composed of these alkali metals and alkaline earth metals can be used without particular limitation.

一方、アルカリ金属およびアルカリ土類金属は化学的に
活性であって、大気中において酸化物あるいは水酸化物
になり易1.%  従って、これらの金属のドーピング
直後、または被覆直後に重水素ガスを吸蔵させ、化学的
に安定化することが望ましt、X。
On the other hand, alkali metals and alkaline earth metals are chemically active and easily convert into oxides or hydroxides in the atmosphere.1. % Therefore, it is desirable to occlude deuterium gas immediately after doping or coating these metals to chemically stabilize t,X.

本発明による低温核融合装置において6表 核融合は電
極表面層で起こっているものと考えられ電極板表面に厚
さ数ミクロンの重水素吸蔵層を形成するだけでよし−従
って、金属電極板表面にアルカリ金属またはアルカリ土
類今風 更にはこれらを主体とする合金を真空蒸着法あ
るいはスバタリング法などによって形成することができ
4 更へ 重水素ガス中で加熱処理することによって、
電極基板との接着力を向上すると同時へ 表面層を重水
素化物にすることができ、化学的に安定な電極板を容易
に得ることができも 発明の効果 本発明によれば 簡単な装置を用いて、安定に効率よく
核融合反応を起こすことができ、放射線の発生の少ない
クリーンなエネルギーを取り出すことができる。
In the low-temperature nuclear fusion device according to the present invention, nuclear fusion is thought to occur in the electrode surface layer, and it is sufficient to form a deuterium absorption layer of several microns thick on the electrode plate surface. In addition, alloys mainly composed of alkali metals or alkaline earth metals can be formed by vacuum evaporation or sputtering methods.Further, by heat treatment in deuterium gas,
At the same time, the adhesive strength with the electrode substrate can be improved.The surface layer can be made of deuteride, and a chemically stable electrode plate can be easily obtained. Using this technology, nuclear fusion reactions can occur stably and efficiently, allowing clean energy with little radiation to be extracted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における低温核融合装置の概
略を示す断面皿 第2図は重水素原子核の調和振動エネ
ルギーとD−D核融合反応が起こる確率との関係を示す
グラフ、第3図は本発明の他の実施例において用いる電
極板の構造を示す断面図であム
FIG. 1 is a cross-sectional diagram showing an outline of a low-temperature fusion device according to an embodiment of the present invention. FIG. Figure 3 is a sectional view showing the structure of an electrode plate used in another embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)2板の電極板を対向させ、両電極板間に重水素ガ
スを充満するとともに前記両電極板間に直流または交流
電圧を印加し、ガス放電を誘起して核融合反応を促進す
る低温核融合装置において、少なくとも一方の電極板が
周期律表中の I a族元素または I I a族元素を含有
することを特徴とする低温核融合装置。
(1) Two electrode plates are placed facing each other, and deuterium gas is filled between the two electrode plates, and a DC or AC voltage is applied between the two electrode plates to induce gas discharge and promote the nuclear fusion reaction. 1. A low temperature nuclear fusion device, wherein at least one electrode plate contains a group Ia element or a group IIa element in the periodic table.
(2)電極板が金属板または合金板表面に周期律表中
I a族元素または I I a族元素を高濃度にドープさせ
たものであることを特徴とする請求項1に記載の低温核
融合装置。
(2) The electrode plate is placed on the surface of the metal plate or alloy plate in the periodic table.
2. The low temperature fusion device according to claim 1, wherein the low temperature fusion device is doped with a group Ia element or a group IIa element at a high concentration.
(3)2枚の電極板を対向させ、両電極板間に重水素ガ
スを充填するとともに、前記電極板間に直流または交流
電圧を印加し、ガス放電を誘起して核融合反応を促進す
る低温核融合装置において、対向する少なくとも一方の
電極板がその表面を周期律表中の I a族元素または I
I a族元素を含有する金属または合金の重水素化物で
被覆したものであることを特徴とする低温核融合装置。
(3) Two electrode plates are placed facing each other, and deuterium gas is filled between the two electrode plates, and a DC or AC voltage is applied between the electrode plates to induce gas discharge and promote the nuclear fusion reaction. In a low-temperature nuclear fusion device, at least one of the opposing electrode plates has its surface covered with a group Ia element in the periodic table or an I
A low-temperature nuclear fusion device characterized in that it is coated with a deuteride of a metal or alloy containing a group Ia element.
(4)電極板の表面に重水素ガスを吸蔵させ、化学的に
安定化したものであることを特徴とする請求項1から3
のいずれかに記載の低温核融合装置。
(4) Claims 1 to 3, characterized in that the electrode plate is chemically stabilized by absorbing deuterium gas on its surface.
The cold fusion device according to any one of.
JP1133435A 1989-04-27 1989-05-26 Low-temperature nuclear fusion device Pending JPH02310494A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1133435A JPH02310494A (en) 1989-05-26 1989-05-26 Low-temperature nuclear fusion device
EP19900107807 EP0394980A3 (en) 1989-04-27 1990-04-25 Cold nuclear fusion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133435A JPH02310494A (en) 1989-05-26 1989-05-26 Low-temperature nuclear fusion device

Publications (1)

Publication Number Publication Date
JPH02310494A true JPH02310494A (en) 1990-12-26

Family

ID=15104708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133435A Pending JPH02310494A (en) 1989-04-27 1989-05-26 Low-temperature nuclear fusion device

Country Status (1)

Country Link
JP (1) JPH02310494A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270372A (en) * 2002-03-12 2003-09-25 Hidetsugu Ikegami Recoilless nonthermal nuclear fusion reaction generation method and recoilless nonthermal nuclear fusion energy generation device
JP2010505385A (en) * 2006-09-26 2010-02-18 ティーティーアイ アソシエイツ エルエルシー Generator
US9540960B2 (en) 2012-03-29 2017-01-10 Lenr Cars Sarl Low energy nuclear thermoelectric system
US10475980B2 (en) 2012-03-29 2019-11-12 Lenr Cars Sa Thermoelectric vehicle system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270372A (en) * 2002-03-12 2003-09-25 Hidetsugu Ikegami Recoilless nonthermal nuclear fusion reaction generation method and recoilless nonthermal nuclear fusion energy generation device
JP2010505385A (en) * 2006-09-26 2010-02-18 ティーティーアイ アソシエイツ エルエルシー Generator
US9540960B2 (en) 2012-03-29 2017-01-10 Lenr Cars Sarl Low energy nuclear thermoelectric system
US10475980B2 (en) 2012-03-29 2019-11-12 Lenr Cars Sa Thermoelectric vehicle system

Similar Documents

Publication Publication Date Title
US10470289B2 (en) Target for neutron-generating device and manufacturing method therefor
Ono et al. Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development
Hu et al. 3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection
Wang et al. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy
Wan et al. Advances in the long-pulse steady-state high beta H-mode scenario with active controls of divertor heat and particle fluxes in EAST
US3755073A (en) Hybrid laser plasma target - neutral beam injection fusion system
JPH02310494A (en) Low-temperature nuclear fusion device
Majeski Liquid metal walls, lithium, and low recycling boundary conditions in tokamaks
EP0394980A2 (en) Cold nuclear fusion apparatus
Ye et al. Compatibility investigation of liquid tin and tungsten-based capillary porous system under high-density plasma environment
Ono Lithium as plasma facing component for magnetic fusion research
US20080159461A1 (en) Apparatus and process for generating nuclear heat
US20080205572A1 (en) Apparatus and process for generating nuclear heat
JPH02287192A (en) Low-temperature nuclear fusion method
JPH03274488A (en) Low-temperature nuclear fusion reactor
Wilkins A unified theoretical description of thermionic converter performance characteristics
WO2023136238A1 (en) Lithium target for bnct, and neutron generation method using lithium target for bnct
JPH04157395A (en) Electrode for low-temperature nuclear fusion
JPH02297094A (en) Hydrogen nuclear fusion method
Hirooka et al. A Review of Recent Studies on Particle Recycling From Liquid Metals With/Without Convection Under Plasma Bombardment
Kautz et al. Cathode Electrolyte Interface Stabilization and Transition Metal Dissolution Mitigation Via Sodium Boron Salt Utilization
US20050105664A1 (en) Process for generating nuclear heat
JPH02276992A (en) Nuclear fusion method
Sudan Accelerators for the fusion program
Lyublinski et al. Main results and prospects of lithium capillary-porous system investigation as tokamak plasma facing material