JPH04157395A - Electrode for low-temperature nuclear fusion - Google Patents

Electrode for low-temperature nuclear fusion

Info

Publication number
JPH04157395A
JPH04157395A JP2282124A JP28212490A JPH04157395A JP H04157395 A JPH04157395 A JP H04157395A JP 2282124 A JP2282124 A JP 2282124A JP 28212490 A JP28212490 A JP 28212490A JP H04157395 A JPH04157395 A JP H04157395A
Authority
JP
Japan
Prior art keywords
metal
plate
steel plate
electrode
heavy hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2282124A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
正則 渡辺
Matsuki Baba
末喜 馬場
Tetsuo Ootsuchi
大土 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2282124A priority Critical patent/JPH04157395A/en
Publication of JPH04157395A publication Critical patent/JPH04157395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To enable stable and efficient generation of a nuclear fusion reaction by a simple construction, by constituting a material of a cathode by combining a metal or alloy occluding heavy hydrogen with a metal or alloy being different in the quality therefrom. CONSTITUTION:A Pd metal plate 2 occluding heavy hydrogen and a base plate of a stainless steel plate 1 hardly occluding the heavy hydrogen are laminated on an interface 3 and further the surface of the steel plate 1 is covered with an electrically insulating layer 4. An electrode plate constructed in this way being used as a cathode and a platinum plate as an anode, a current is made to flow through an electrolytic solution of heavy water containing LiOD, for instance, and the Pd metal plate 2, de to occlude the heavy hydrogen sufficiently. Then a calorific value being about one to several times as large as a making power is obtained. In other words, the Pd metal plate 2 expands as it occludes the heavy hydrogen, and since the steel plate 1, the base plate metal, does not expand, a stress occurs between the two metal plates 1 and 2, which facilitates plastic deformation with dislocation. By covering the surface of the steel plate 1 with the insulating later 4, besides, a useless flow of the electrolytic current on the surface of the steel plate 1, the base plate metal, can be prevented and thus a nuclear fusion can be made to occur efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(戴 超高温を必要とせずに核融合反応を起こす
ことが可能な 低温核融合装置の電極に関すム 従来の技術 米国ユタ大学のポンス教授(S、  Pon5)と英国
サラサンプトン大学のフライシュマン教授(’h/L 
 J、  Fleischmann)の共同研究チーム
が、室温で核融合反応を起こすことに成功したと発表し
て以来 世界中の人々の関心を呼んでいも この技術は
 パラジュウム(以下Pdと記す)またはチタン(以下
Tiと記す)金属を陰極とし 陽極に白金電極を用(′
X、重水電解液中に浸漬して電流を通ずると、未知の核
融合反応が起こり、投入電力の1倍から数倍の熱量が発
生すると言うものであム 発明が解決しようとする課題 この発表以来 世界各地の多くの研究機関で確認実験が
試みられた 低温核融合の実現を目指したこれらの多く
の研究機関から得られた結果を見ると、熱量の発生 中
性子の発生およびトリチウムの発生は定常的に起こらず
、その発生は間欠的であり、かつ何時発生するか予測し
難いのが現状であム また 実験条件や電極の形状等に
よって叡 まちまちの実験結果が得られており、低温核
融合そのものが疑問視さえされていも これは低温核融
合の発生メカニズムが未だ解明されておらず、従来の物
理概念では理解し難いことによるものであa 従って、
低温核融合を起こさせる陰極の材礼 形状 大きさなど
についても試行錯誤の状態にあム 本発明は 新しく見いだされた低温核融合の原理に基づ
くもので、安定に かつ効率よく核融合反応を起こさせ
ることができる低温核融合装置の電極を得ることを目的
とすも 課題を解決するための手段 重水素吸蔵金属または合金と、これと材質の異なる金属
または合金とを組み合わせて陰極材料を構成す4 作用 重水素吸蔵金属と、これと材料の異なる金属とを組み合
わせた構造の電極を陰極に使用し 重水電解液中で電気
分解すると、重水素吸蔵金属は重水素ガスを吸収し 重
水素吸蔵金属は膨張すaこの時、前記二種類の金属間に
生じた応力を緩和するため重水素吸蔵金属中には転位が
発生し 重水素吸蔵金属は塑性変形すム 金属結晶中に
転位が発生すると、転位近傍の結晶格子は大きな応力を
受けて結晶格子に歪が生じも 重水素吸蔵金属が面心立
方結晶構造を持つPd金属の場合、スベリ面は(111
)面であって、刃状転位のスベリ方向は[101]方向
であa Pd金属中に刃状転位面が発生すると、結晶格
子の”01サイトにトラップされていた重水素原子りは
刃状転位の移動に伴う応力によって、一つの″t′サイ
トに2〜4個の重水素原子がトラップされも この時、
重水素原子核同士の間隔が0.3Å以下となり、核融合
反応を起こす確率が著しく増大すム 実施例 実施例1 第1図に 本発明による低温核融合装置に使用する電極
構成の一実施例を示も 1は基板となる厚さ2mmのステンレス鋼板であって、
 2は重水素を吸蔵する厚さ0.5mmのPd金属板で
あム 両金属板lと2は界面3で張り合わされてい4 
更く ステンレス鋼板の表面は厚さ0.3μmの電気絶
縁性材料4で被服されていも この様に構成した電極板を陰極とし 白金板を陽極とし
て、0.3モルのLi0Dを含む重水電解液中で0.8
A/am”の電流を流し 重水素吸蔵金属に十分な重水
素を吸蔵させると、投入電力の1倍から数倍の発熱量が
得られtう これは電気分解によって、重水素吸蔵金属に重水素ガス
が充填され 重水素吸蔵金属の膨張に伴う転位の発生 
塑性変形によるものであム自然状態においては金属原子
間に吸蔵された重水素原子抜法 Pd金属内ではPd原
子が作る0、6eVのポテンシャル井戸に捕獲されてお
り、はぼ格子定数である2、8人の距離に保たれていム
Pd金属内に吸蔵された重水素原子核の正電荷は周囲の
金属原子が作る電子の雲によって遮蔽され(スクリーニ
ング効果)、実効的に減少すム しかし パラジウム金
属内に金属原子と同程度の濃度(〜1QtR個/crn
”)に重水素原子が吸蔵されてL 自然の状態では融合
反応を起こす確率は極めて小さく、観測できるほどの熱
量は発生しな(を単位体積当り数ワットから数十ワット
の熱量を発生させるためには 重水素原子核同士が少な
くとL 013Å以下の距離まで接近する必要があム我
々の実験結果で(よ 単体の重水素吸蔵金属に十分な重
水素ガスを吸蔵させても(D/Pd比が0.5以上)、
そのままでは核融合反応は殆どおこらなLs  Lかし
 これに機械的応力を加えると激しく核融合反応が起こ
ることが見いだされ九 すなわ板 機械的応力を加える
ことによって、重水素金属内に転位が発生し 塑性変形
を起こすためであム 前述の如く、Pd金属に応力を加えると刃状転位が発生
し スベリ面である(111)面に沿って刃状転位が移
動すム 刃状転位先端のPd原子列が次の原子列に接近
し −原子列移動する瞬肌結晶格子の″0°サイトにト
ラップされていた重水素原子は結晶格子の不整合とその
近傍に発生する応力によって”t′サイトにトラップさ
れ易くな&  一つのPd原子のt”サイトに2〜4個
の重水素原子核がトラップされム すなわ板 一つのポ
テンシャル井戸に複数個の重水素原子が入り、重水素原
子核同士の間隔が0.3Å以下となって融合反応が異常
に促進されも 本実施例のように 重水素を吸蔵し難い金属(ステンレ
ス鋼板1)と重水素を吸蔵する金属(Pd金属板2)を
重畳して電極を構成すると、重水素吸蔵金属であるPd
金属板2が重水素を吸蔵するに従って膨張すム一方  
基板金属であるステンレス鋼板lは膨張しないため両金
属板間に応力が生し 転位を伴って塑性変形し易くなム
 また基板金属ステンレス鋼板lの表面を電気的絶縁材
料4で被服することによって、基板金属表面に無駄な電
解電流の流れるのを防止することができ、効率よく核融
合を起こすことができも 第2図に 本発明の他の一実施例を示す。5は櫛の歯状
に形成した重水素原子核[6はこれと材質の異なる金属
で、 5と同様に形成されていも両金属板を第2図に示
すようにお互いに噛み合うように嵌合して陰極を構成し
九 7は電気的絶縁材料であム この様な構成の陰極を
用いると、重水素吸蔵金属が重水素ガスを吸収するにつ
れて膨張する時、両金属板の並行方向への膨張が抑制さ
れ 厚さ方向に膨張するた取 第1図に示す構成よりも
より効果的であっ九 本実施例では 重水素吸蔵金属としてP(]金属を使用
したが、Pd金属に限定されるものではなく、Ti金属
など重水素を吸蔵し易い金属またはこれらの合金を使用
するこもできも また 電気的絶縁材料4には5iOa
、Si*N4などの無機絶縁性材料のは力\ ポリイミ
ド膜など有機絶縁材料を使用することができも 実施例2 第3図および一第4図!−本発明の他の実施例を示机 
8は外径8mm 内径5mmのステンレス鋼のパイプで
あも このパイプ8の表面に肉厚0.6mmのPd金属
バイブ9を焼き填めして陰極を構成した ステンレス鋼
のパイプを使用したのは冷却水を通すためであム 更に 第4図には外側を櫛の歯状に形成したステンレス
鋼のパイプ10と内側を同様に加工したPd金属バイブ
11を嵌合して構成した実施例を示す。
[Detailed Description of the Invention] Industrial Application Fields of the Invention The present invention relates to electrodes for low-temperature nuclear fusion devices capable of causing nuclear fusion reactions without the need for ultra-high temperatures.Prior art Professor Pons of the University of Utah in the United States (S, Pon5) and Professor Fleischmann of the University of Sarathampton, UK ('h/L
This technology has attracted the attention of people all over the world ever since the joint research team of John J. Fleischmann announced that they had succeeded in generating a nuclear fusion reaction at room temperature. A metal (denoted as Ti) is used as the cathode, and a platinum electrode is used as the anode ('
X. When immersed in a heavy water electrolyte and passing an electric current through it, an unknown nuclear fusion reaction occurs, generating heat that is one to several times the input electric power.This is the problem that the invention aims to solve. Since then, many research institutes around the world have attempted confirmation experiments. Looking at the results obtained from these many research institutes aiming to realize low-temperature nuclear fusion, the generation of heat, neutrons, and tritium are steady. At present, it does not occur regularly, its occurrence is intermittent, and it is difficult to predict when it will occur.Furthermore, various experimental results have been obtained depending on the experimental conditions, electrode shape, etc. This is because the mechanism by which cold fusion occurs has not yet been elucidated, and is difficult to understand using conventional physical concepts.
The material, shape, size, etc. of the cathode that causes low-temperature nuclear fusion are still in a state of trial and error. The purpose is to obtain an electrode for a low-temperature nuclear fusion device that can be used in a low-temperature nuclear fusion device. 4 Action When an electrode with a structure that combines a deuterium storage metal and a metal of a different material is used as a cathode and electrolyzed in a heavy water electrolyte, the deuterium storage metal absorbs deuterium gas and the deuterium storage metal expands.At this time, dislocations occur in the deuterium storage metal to relieve the stress generated between the two types of metals, and the deuterium storage metal deforms plastically.When dislocations occur in the metal crystal, The crystal lattice near the dislocation is subjected to large stress and distortion occurs in the crystal lattice. When the deuterium storage metal is Pd metal with a face-centered cubic crystal structure, the slip plane is (111
) plane, and the sliding direction of an edge dislocation is the [101] direction.a When an edge dislocation plane occurs in Pd metal, the deuterium atoms trapped in the “01” site of the crystal lattice become edge-shaped. Although 2 to 4 deuterium atoms are trapped in one ``t'' site due to the stress associated with the movement of dislocations, at this time,
The distance between deuterium nuclei becomes 0.3 Å or less, and the probability of a nuclear fusion reaction increases significantly.Example 1 Figure 1 shows an example of an electrode configuration used in a low temperature fusion device according to the present invention. 1 is a stainless steel plate with a thickness of 2 mm that serves as a substrate,
2 is a Pd metal plate with a thickness of 0.5 mm that absorbs deuterium. Both metal plates 1 and 2 are pasted together at the interface 3.
Further, the surface of the stainless steel plate is covered with an electrically insulating material 4 having a thickness of 0.3 μm, and the electrode plate configured in this way is used as a cathode, and the platinum plate is used as an anode, and a heavy water electrolyte containing 0.3 mol of Li0D is applied. 0.8 inside
When a sufficient amount of deuterium is stored in the deuterium storage metal by passing a current of "A/am", a calorific value that is one to several times the input power can be obtained. Filled with hydrogen gas, dislocations occur as the deuterium storage metal expands.
This is due to plastic deformation.In the natural state, deuterium atoms are occluded between metal atoms.In Pd metal, Pd atoms are trapped in potential wells of 0.6eV created by Pd atoms, and the lattice constant is 2. However, the positive charge of the deuterium nucleus occluded in the Pd metal is shielded by the cloud of electrons created by the surrounding metal atoms (screening effect) and is effectively reduced. The same concentration as metal atoms (~1QtR atoms/crn
In the natural state, the probability of a fusion reaction occurring is extremely small, and no observable amount of heat is generated. Our experimental results show that deuterium nuclei must approach each other to a distance of at least L013 Å or less (D/Pd ratio is 0.5 or more),
It has been found that if mechanical stress is applied to LsL, a nuclear fusion reaction will hardly occur. As mentioned above, when stress is applied to Pd metal, edge dislocations occur and the edge dislocations move along the (111) plane, which is a sliding surface. As the Pd atomic column approaches the next atomic column, the deuterium atom that was trapped at the ``0° site'' of the flashing surface crystal lattice moves - atomic column due to the mismatch of the crystal lattice and the stress generated in the vicinity. 2 to 4 deuterium nuclei are easily trapped in the t” site of one Pd atom. In other words, multiple deuterium atoms enter one potential well, and the deuterium nuclei Even if the spacing becomes 0.3 Å or less and the fusion reaction is abnormally promoted, as in this example, a metal that is difficult to absorb deuterium (stainless steel plate 1) and a metal that can absorb deuterium (Pd metal plate 2) are overlapped. When the electrode is composed of Pd, which is a deuterium storage metal,
As the metal plate 2 absorbs deuterium, it expands.
Since the stainless steel plate 1, which is the substrate metal, does not expand, stress is generated between the two metal plates, making it less likely to be plastically deformed due to dislocation. Furthermore, by covering the surface of the substrate metal stainless steel plate 1 with an electrically insulating material 4, Another embodiment of the present invention is shown in FIG. 2, which can prevent unnecessary electrolytic current from flowing on the metal surface of the substrate and efficiently cause nuclear fusion. 5 is a deuterium nucleus formed in the shape of a comb tooth [6 is a metal of a different material from this, and although it is formed similarly to 5, both metal plates are fitted so as to mesh with each other as shown in Figure 2. 7 is an electrically insulating material. When a cathode with such a structure is used, when the deuterium storage metal expands as it absorbs deuterium gas, the expansion of both metal plates in the parallel direction In this example, P() metal was used as the deuterium storage metal, but it is limited to Pd metal. It is also possible to use a metal that easily absorbs deuterium, such as Ti metal, or an alloy of these metals.
, the power of inorganic insulating materials such as Si*N4 \ It is also possible to use organic insulating materials such as polyimide films Example 2 Figures 3 and 4! - Demonstrating other embodiments of the invention
8 is a stainless steel pipe with an outer diameter of 8 mm and an inner diameter of 5 mm. A Pd metal vibrator 9 with a wall thickness of 0.6 mm is baked into the surface of the pipe 8 to form a cathode. The stainless steel pipe was used for cooling. Furthermore, FIG. 4 shows an embodiment in which a stainless steel pipe 10 having a comb tooth shape on the outside is fitted with a Pd metal vibrator 11 having a similarly processed inside.

Pd金属で覆われていないステンレス鋼バイブの表面は
実施例1と同様に電気的絶縁性材料(図示せず)で被覆
した このように構成した陰極を用いて実施例1と同様
な運転を行うと、さらに効率よく発熱が起こることが確
認された 本実施例では 基本となる金属材料としてステンレス鋼
を使用したが、ステンレス鋼に限定されるものではなt
、%  望ましく(′L 焼き填め等によって重水素吸
蔵金属とより強固に嵌合させるためには 重水素吸蔵金
属の熱膨張係数より小さい金属材料を使用する方がよt
〜 更く 重水素吸蔵金属より硬度の大きt、%  か
つ塑性変形し難い金属材料が効果的であム 発明の効果 本発明によれば 簡単な電極構成によって安定く かつ
効率よく核融合反応を起こすことができも また 放射
線の発生の少ないクリーンなエネルギーを容易に取り出
すことができも
The surface of the stainless steel vibrator not covered with Pd metal was covered with an electrically insulating material (not shown) in the same manner as in Example 1. Using the cathode constructed in this way, the same operation as in Example 1 was carried out. In this example, it was confirmed that heat generation occurred more efficiently. Although stainless steel was used as the basic metal material, it is not limited to stainless steel.
, % Desirably ('L) In order to fit more firmly with the deuterium storage metal by shrink-fitting etc., it is better to use a metal material with a coefficient of thermal expansion smaller than that of the deuterium storage metal.
〜Further Metal materials with hardness greater than deuterium storage metals and less susceptible to plastic deformation are effective. Effects of the Invention According to the present invention, fusion reactions can occur stably and efficiently with a simple electrode configuration. It is also possible to easily extract clean energy that generates little radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における低温核融合用電極の
概略を示す断面図 第2図は本発明による他の実施例を
示す断面@ 第3図は本発明の他の実施例において用い
る電極の構造を示す断面1第4図は本発明による櫛状電
極構造を示す断面図であム ト・・・ステンレス!Ili  2・・・・Pd金属楓
 3・・・・鼻血 4・・・・電気絶縁凰 5・・・・
Pd金属6・・・・ステンレスlI[7・・・・電気絶
練凰 8・・・・ステンレス鋼バイブ、 9・・・・P
d金属バイスlO・・・・外側を櫛の歯状に形成したス
テンレス鋼パイプ、 11・・・・内側を櫛の歯状に形
成したPd金属バイス
Fig. 1 is a cross-sectional view showing an outline of a low temperature fusion electrode according to one embodiment of the present invention Fig. 2 is a cross-sectional view showing another embodiment according to the present invention @ Fig. 3 is used in another embodiment of the present invention Cross-section 1 showing the structure of the electrode Figure 4 is a cross-sectional view showing the comb-shaped electrode structure according to the present invention. Ili 2... Pd metal maple 3... Nosebleed 4... Electrical insulation 5...
Pd metal 6...Stainless steel lI [7...Denki Zerenho 8...Stainless steel vibrator, 9...P
d Metal vise lO...Stainless steel pipe with a comb tooth shape on the outside, 11...Pd metal vise with a comb tooth shape on the inside

Claims (5)

【特許請求の範囲】[Claims] (1)重水素吸蔵金属または合金(以下重水素吸蔵金属
と呼ぶ)と、これと材質の異なる金属または合金(以下
金属と呼ぶ)とを組み合わせて構成したことを特徴とす
る低温核融合用電極。
(1) An electrode for low-temperature fusion that is constructed by combining a deuterium storage metal or alloy (hereinafter referred to as deuterium storage metal) and a metal or alloy of a different material (hereinafter referred to as metal). .
(2)材質の異なる金属の硬度が、重水素吸蔵金属の硬
度より大きいことを特徴とする請求項1に記載の低温核
融合用電極。
(2) The electrode for low temperature fusion according to claim 1, wherein the hardness of the metals of different materials is greater than the hardness of the deuterium storage metal.
(3)材質の異なる金属の熱膨張係数が、重水素吸蔵金
属の熱膨張係数より小さいことを特徴とする請求項1に
記載の低温核融合用電極。
(3) The electrode for low temperature fusion according to claim 1, wherein the thermal expansion coefficient of the different metals is smaller than the thermal expansion coefficient of the deuterium storage metal.
(4)材質の異なる金属のパイプの表面に重水素吸蔵金
属を重畳した構成であることを特徴とする請求項1に記
載の低温核融合用電極。
(4) The electrode for low temperature fusion according to claim 1, characterized in that the deuterium storage metal is superimposed on the surface of a pipe made of different metals.
(5)櫛状重水素吸蔵金属と、これと材質の異なる材質
の櫛状金属とを噛み合わせた構造であることを特徴とす
る低温核融合用電極。
(5) An electrode for low temperature fusion, characterized by having a structure in which a comb-shaped deuterium storage metal and a comb-shaped metal made of different materials are interlocked.
JP2282124A 1990-10-19 1990-10-19 Electrode for low-temperature nuclear fusion Pending JPH04157395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2282124A JPH04157395A (en) 1990-10-19 1990-10-19 Electrode for low-temperature nuclear fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282124A JPH04157395A (en) 1990-10-19 1990-10-19 Electrode for low-temperature nuclear fusion

Publications (1)

Publication Number Publication Date
JPH04157395A true JPH04157395A (en) 1992-05-29

Family

ID=17648436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282124A Pending JPH04157395A (en) 1990-10-19 1990-10-19 Electrode for low-temperature nuclear fusion

Country Status (1)

Country Link
JP (1) JPH04157395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049471A1 (en) * 1998-03-20 1999-09-30 Araki, Masao Reactor for producing energy and neutrons by electrolytic reaction in light- or heavy-water solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049471A1 (en) * 1998-03-20 1999-09-30 Araki, Masao Reactor for producing energy and neutrons by electrolytic reaction in light- or heavy-water solution

Similar Documents

Publication Publication Date Title
US20220021290A1 (en) Magnetohydrodynamic hydrogen electrical power generator
JP2023512790A (en) Magnetohydrodynamic hydrogen generator
US20030159922A1 (en) Electrical cells, components and methods
Majeski Liquid metal walls, lithium, and low recycling boundary conditions in tokamaks
Causey et al. Plasma-driven permeation of deuterium in nickel
EP0394980A2 (en) Cold nuclear fusion apparatus
JPH04157395A (en) Electrode for low-temperature nuclear fusion
Xu et al. Comparison of active impurity control between lithium and boron powder real-time injection in EAST
Balluffi et al. Simple structural unit model for core-dependent properties of symmetrical tilt boundaries
You et al. Retention of hydrogen in W-Ti-C, W-Ta-C and W-Zr-C alloys: ab initio study
Zhang et al. Stability of concentration-related self-interstitial atoms in fusion material tungsten
Zhang et al. Effects of Zr and V additions on the stability and migration of He in bcc W: A first-principles study
CN112930018A (en) Magnesium-containing neutron target based on multi-principal-element design and preparation method thereof
JPH03274488A (en) Low-temperature nuclear fusion reactor
JP2020527706A (en) How to generate energy from dense hydrogen clusters
JPH02287192A (en) Low-temperature nuclear fusion method
Fthenakis et al. Temperature evolution of structural and magnetic properties of transition metal clusters
Lu et al. Ab initio electronic structure calculations of the {Sigma} 5 (210)[001] tilt grain boundary in Ni {sub 3} Al
Zhao et al. Accurate heat of formation for fully hydrided LaNi5 via the all-electron full-potential linearized augmented plane wave approach
He et al. Accumulation of beryllium and its effects on hydrogen retention in tungsten divertor
Lin-Vines High Entropy Alloys and Their Desirability for Novel First Wall Materials in Fusion Applications
Lee et al. Charged-Particle-Irradiated Tin Oxyhydroxide Nanoparticle Anodes for Lithium-Ion Batteries
JPH03107791A (en) Low-temperature nuclear fusion reactor
Kautz et al. Cathode Electrolyte Interface Stabilization and Transition Metal Dissolution Mitigation Via Sodium Boron Salt Utilization
Arman et al. Layered Coaxial Nanowires Electrode (LCANE) for High Performance with Low Loading in Polymer Electrolyte Membrane Water Electrolyzer (PEMWE)