JPH02310462A - Non-destructive inspecting device - Google Patents

Non-destructive inspecting device

Info

Publication number
JPH02310462A
JPH02310462A JP13161589A JP13161589A JPH02310462A JP H02310462 A JPH02310462 A JP H02310462A JP 13161589 A JP13161589 A JP 13161589A JP 13161589 A JP13161589 A JP 13161589A JP H02310462 A JPH02310462 A JP H02310462A
Authority
JP
Japan
Prior art keywords
signal
barkhausen
sample
current
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13161589A
Other languages
Japanese (ja)
Inventor
Yukio Kagawa
加川 幸雄
Takenori Nakamura
中村 武典
Hidekazu Ando
英一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP13161589A priority Critical patent/JPH02310462A/en
Publication of JPH02310462A publication Critical patent/JPH02310462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To allow the detection of the defect in a ferromagnetic material by using a Barkhausen effect by detecting the Barkhausen signal when current falls. CONSTITUTION:The DC current is applied to an exciting electromagnet 5 by a trapezoidal wave generator 14 and a DC power source device 15 controlled by a computer 13 to generate a magnetic field in the sample 2. The Barkhausen signal by the Barkhausen effect is detected by a signal detector at the time of the rise and fall of the current at this time. The detected signal is amplified in a preamplifier 7, is passed through a high-pass filter 8 and is amplified in a main amplifier 9. Since the Barkhausen signal is an impulsive signal, the number of the pulse signals per unit time is counted by a counter 10 and is converted to an analog signal by a D/A converter 11. The analog signal is taken together with the signal from the device 15 into an A/D converter 12 and is sent to the computer 13 as the information to elucidate the correlativeness between the current change and the time when the signal is generated to the computer 13 where the information is processed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非破壊検査装置、詳しくは、強磁性体に発生
するバルクハウゼン効果を利用した非破壊検査装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-destructive testing device, and more particularly to a non-destructive testing device that utilizes the Barkhausen effect that occurs in ferromagnetic materials.

(従来の技術) 第7図は従来から存在する非破壊検査装置の一つである
磁粉探傷装置の側面図であり、図中2は強磁性体製の試
料であり、この試料2の対向した表裏面には一対の電極
1.1が接触せしめられている。そして、この電極1.
1にはそれぞれ導線3.3を介して図示せざる電源装置
が接続されており、この電源装置から電流を供給するこ
とにより試料2は磁化され、磁束を発生する様になって
いる。
(Prior art) Fig. 7 is a side view of a magnetic particle flaw detection device, which is one of the conventional non-destructive inspection devices. A pair of electrodes 1.1 are brought into contact with the front and back surfaces. And this electrode 1.
A power supply device (not shown) is connected to each of the test specimens 1 through conducting wires 3.3, and by supplying current from the power supply device, the sample 2 is magnetized and generates magnetic flux.

このとき、試料2に磁束を遮る様な欠陥部4があると、
その部分で磁束は漏洩し、この欠陥部4の両側に磁極が
発生し、局部的な磁場が生まれる。
At this time, if there is a defective part 4 in the sample 2 that blocks the magnetic flux,
Magnetic flux leaks at that portion, magnetic poles are generated on both sides of this defective portion 4, and a local magnetic field is generated.

従って、試料2の表面に磁粉を散布すると欠陥部4のこ
の局部磁場により散布した磁粉が磁化され、そこに磁粉
が吸着される。このときできる磁粉模様は欠陥部4の幅
にくらべ数倍から数十倍の大きさになる為、これにより
欠陥部4の存在を容易に視認することができる。
Therefore, when magnetic particles are scattered on the surface of the sample 2, the dispersed magnetic particles are magnetized by this local magnetic field of the defective portion 4, and the magnetic particles are attracted thereto. The magnetic particle pattern created at this time is several to several tens of times larger than the width of the defective portion 4, so that the presence of the defective portion 4 can be easily recognized visually.

(解決すべき課題) しかしながら、この従来の磁粉探傷装置においては、あ
る強さ以上の強力な磁場を作用させないと欠陥部から必
要な強さの漏洩磁束を得ることができなかった。
(Problems to be Solved) However, in this conventional magnetic particle flaw detection device, it was not possible to obtain leakage magnetic flux of the required strength from the defective portion unless a strong magnetic field of a certain strength or more was applied.

一方、必要以上の磁場を作用させると欠陥部以外の部分
からも漏洩磁束が発生してしまい、最適な値を得ること
は容易ではなかった。又、欠陥部検出の為磁粉を散布す
るので、試料を汚すことになり、その除去の為の手間も
かかっていた。
On the other hand, when a magnetic field larger than necessary is applied, leakage magnetic flux is generated from parts other than the defective part, so it is not easy to obtain an optimum value. In addition, since magnetic powder is scattered to detect defective parts, the sample is contaminated, and it takes time and effort to remove it.

更に、磁束を発生させるには試料に電流を流さなければ
ならず、その為には一対の電極を試料に接触させる必要
があり、移動中の試料を検査することは機構的に不可能
であった。
Furthermore, to generate magnetic flux, a current must be passed through the sample, which requires a pair of electrodes to be in contact with the sample, making it mechanically impossible to inspect a moving sample. Ta.

この発明は、上記従来の問題点を解決することを目的と
するものであり、強磁性体内の欠陥をバルクハウゼン効
果を用いて検出できる簡便かつ取扱い容易な非破壊検査
装置を提供せんとするものである。
The present invention aims to solve the above conventional problems and provides a simple and easy-to-handle non-destructive inspection device that can detect defects in ferromagnetic bodies using the Barkhausen effect. It is.

(課題を解決する為の手段) この発明は、時間に比例して一定の割合で下降する静磁
界を試料に印加する励磁電磁石と、試料近傍に非接触で
位置し、試料から発生するバルクハウゼン信号を検出す
る検出器と、信号検出器の検出した信号を処理する信号
処理部とから非破壊検査装置を構成することにより上記
課題を解決せんとするものである。
(Means for Solving the Problems) This invention includes an excitation electromagnet that applies a static magnetic field that descends at a constant rate in proportion to time to a sample, and a Barkhausen electromagnet that is located near the sample in a non-contact manner. The present invention attempts to solve the above problem by configuring a non-destructive inspection device from a detector that detects a signal and a signal processing section that processes the signal detected by the signal detector.

(作用) 強磁性体である試料近傍に位置せしめた励磁電磁石に時
間に比例して一定の割合で下降する電流を供給し、試料
に静磁界を発生させる。このとき試料中に欠陥部が存在
しているとバルクハウゼン効果によりバルクハウゼン信
号が発生する為、このバルクハウゼン信号を試料近傍に
非接触で位置せしめられた信号検出器で検出し、信号処
理部で処理し、試料中の欠陥の有無、その形状、位置等
を知るのである。なお、バルクハウゼン効果とは、強磁
性体に作用する磁化力を変化させると、磁化の不連続な
変化が連続して生ずる現象を言う。
(Operation) A current that decreases at a constant rate in proportion to time is supplied to an excitation electromagnet placed near a ferromagnetic sample to generate a static magnetic field in the sample. At this time, if a defect exists in the sample, a Barkhausen signal is generated due to the Barkhausen effect, so this Barkhausen signal is detected by a signal detector placed in a non-contact manner near the sample, and the signal processing section This process is used to determine the presence or absence of defects in the sample, as well as their shape and location. Note that the Barkhausen effect refers to a phenomenon in which discontinuous changes in magnetization occur continuously when the magnetizing force acting on a ferromagnetic material is changed.

(実施例) 第1図はこの発明に係る非破壊検査装置の一実施例のブ
ロックダイアグラムであり、図中2は強磁性体製の試料
、22はこの試料1と一定の間隔を保って位置せしめら
れた検出部である。
(Embodiment) Fig. 1 is a block diagram of an embodiment of the non-destructive testing apparatus according to the present invention, in which 2 is a ferromagnetic sample, and 22 is positioned at a constant distance from the sample 1. This is a special detection section.

第2図は検出部22の詳細図であり、門形をした励磁電
磁石5の一対の脚部端面ばアルミ板21に接しており、
この励磁電磁石5の内側空間内には同じ(門形をした鉄
製ケース19が位置せしめられており、この鉄製ケース
19内には同じく門形をした小型の信号検出器6がその
一対の脚部端面がアルミ板21に接する様に位置せしめ
られている。前記鉄製ケース19は信号検出器6が外部
の雑音にさらされない様にする為のものである。
FIG. 2 is a detailed view of the detection unit 22, in which the end faces of a pair of legs of the gate-shaped excitation electromagnet 5 are in contact with the aluminum plate 21.
A gate-shaped iron case 19 is located within the inner space of the excitation electromagnet 5, and within this iron case 19, a small signal detector 6, which is also gate-shaped, is located at its pair of legs. It is positioned so that the end surface is in contact with the aluminum plate 21.The iron case 19 is provided to prevent the signal detector 6 from being exposed to external noise.

これにより信号検出器6は静電、電磁シールドがなされ
ている。
As a result, the signal detector 6 is electrostatically and electromagnetically shielded.

なお、図中20はアクリル板である。又、アルミ板21
は接地されており、試料2との間は一定のギャップ(こ
の実施例においては2關)が保たれている。
Note that 20 in the figure is an acrylic plate. Also, aluminum plate 21
is grounded, and a constant gap (two gaps in this example) is maintained between it and the sample 2.

又、第1図中7は信号検出器6に接続された前置増幅器
、8はバイパスフィルタ4.9は主増巾器、10はカウ
ンター、11はD/A変換1112はA/D変換器、1
3はコンピュータであり、これらは直列に接続されてお
り、信号検出器6で得られた信号は、これら各回路を通
り、コンピュータ13に送られる様になっている。
In FIG. 1, 7 is a preamplifier connected to the signal detector 6, 8 is a bypass filter 4, 9 is a main amplifier, 10 is a counter, 11 is a D/A converter 1112 is an A/D converter. ,1
3 is a computer, these are connected in series, and the signal obtained by the signal detector 6 is sent to the computer 13 through each of these circuits.

又、図中14はコンピュータ13によって制御される台
形波発生器、15は直流電源装置、16はスライダック
、17は電源プラグ、23は選択スイッチであり、この
選択スイッチ22を切換えることにより、励磁電磁石5
に直流電流又は交流電流が選択的に供給される様になっ
ている。なお、前置増巾器7、バイパスフィルタ8、主
増巾器9、カウンター10、D/A変換器11、A/D
変換器12を信号処理部と総称する。
Further, in the figure, 14 is a trapezoidal wave generator controlled by the computer 13, 15 is a DC power supply, 16 is a slider, 17 is a power plug, and 23 is a selection switch. By switching this selection switch 22, the exciting electromagnet 5
Direct current or alternating current is selectively supplied to. In addition, a preamplifier 7, a bypass filter 8, a main amplifier 9, a counter 10, a D/A converter 11, an A/D
The converter 12 is collectively referred to as a signal processing section.

この非破壊検査装置は、コンピュータ13により制御さ
れる台形波発送器14及び直流電源装置15により時間
に比例して一定の割合で上昇下降する直流電流を励磁電
磁石5に与え、試料2中の欠陥部4に静磁界を発生させ
、この欠陥部4からバルクハウゼン信号を受波して試料
2の欠陥の有無を検査するものである。
This non-destructive inspection device applies a DC current that rises and falls at a constant rate in proportion to time to an exciting electromagnet 5 using a trapezoidal wave transmitter 14 and a DC power supply 15 controlled by a computer 13, and detects defects in a sample 2. A static magnetic field is generated in the section 4, and a Barkhausen signal is received from the defect section 4 to inspect the sample 2 for defects.

この実施例において磁界の強さは、例えば試料2と励磁
電磁石5との間隔を21mとし、4Aの直流電流を流し
た場合、0.42 Tの静磁界の強さとした。
In this example, the strength of the magnetic field was, for example, a static magnetic field strength of 0.42 T when the distance between the sample 2 and the excitation electromagnet 5 was 21 m and a direct current of 4 A was passed.

又、動作を正常に保つ為、試料2、信号検出器6、励磁
電磁石5の残留磁気の消去は、商用電源(100V)よ
り電源プラグ17を通り、スライダック16により適当
な値に設定された交流を選択スイッチ23を切換えるこ
とにより励磁電磁石5に印加することにより行う。
In addition, in order to maintain normal operation, residual magnetism in the sample 2, signal detector 6, and excitation electromagnet 5 can be erased by using an alternating current (AC) from a commercial power source (100V) that passes through the power plug 17 and is set to an appropriate value by the slider 16. is applied to the exciting electromagnet 5 by switching the selection switch 23.

次に、その動作を説明する。コンピュータ13により制
御される台形波発生器14及び直流電源装置15により
第3図に示す様な波形の直流電流を励磁電磁石5に与え
試料2に磁界を発生させる。
Next, its operation will be explained. A trapezoidal wave generator 14 and a DC power supply 15 controlled by a computer 13 apply a DC current having a waveform as shown in FIG. 3 to the exciting electromagnet 5 to generate a magnetic field in the sample 2.

このとき、第3図に示す様に電流の上昇時及び下降時に
バルクハウゼン効果によるバルクハウゼン信号が信号検
出器6によって検出される。検出されたこのバルクハウ
ゼン信号は前置増巾器7で増巾され、バイパスフィルタ
ー8を通り、主増巾器9で増巾される。このバルクハウ
ゼン信号はパルス状の信号である為、カウンタ10で単
位時間当りのパルス信号数を計数し、D/A変換器11
でアナログ信号に変換する。次にA/D変換器12に直
流電源装置15からの信号と共に取り込み、電流変化と
信号の発生時との相関性を解明する情報としてコンピュ
ータ13に送り、ここで処理する。第4図、第5図、第
6図はコンピュータ13により処理された結果を示すも
のである。第4図は電流上昇時の信号の計数値である。
At this time, as shown in FIG. 3, a Barkhausen signal due to the Barkhausen effect is detected by the signal detector 6 when the current rises and falls. This detected Barkhausen signal is amplified by a preamplifier 7, passes through a bypass filter 8, and is amplified by a main amplifier 9. Since this Barkhausen signal is a pulse signal, a counter 10 counts the number of pulse signals per unit time, and a D/A converter 11
Convert to analog signal. Next, the signal is input into the A/D converter 12 together with the signal from the DC power supply device 15, and sent to the computer 13 as information for elucidating the correlation between the current change and the time of signal generation, where it is processed. FIG. 4, FIG. 5, and FIG. 6 show the results processed by the computer 13. FIG. 4 shows the count value of the signal when the current increases.

なお、横軸は欠陥部4付近を移動した位置を示す。第5
図は電流下降時、第6図は欠陥部の形状を変えた時の電
流下降時のものの波形である。
Note that the horizontal axis indicates the position moved near the defective part 4. Fifth
The figure shows the waveform when the current falls, and FIG. 6 shows the waveform when the current falls when the shape of the defective part is changed.

以上の結果より、電流降下降時にバルクハウゼン信号が
顕著に現れることがわかり、又、欠陥部4の形状の判別
も可能であることがわかる。
From the above results, it can be seen that the Barkhausen signal appears prominently when the current drops, and that it is also possible to determine the shape of the defective portion 4.

又、信号検出器6を回転させることによりどの方向に欠
陥部4が続いているか判別することも可能である。
Furthermore, by rotating the signal detector 6, it is also possible to determine in which direction the defective portion 4 continues.

(発明の名称) この発明は上述の通り、電流降下時のバルクハウゼン信
号を検出することにより強磁性体である試料内の欠陥部
の形状位置を非破壊で検出でき、移動する試料の検査も
実施できる効果を有する。
(Name of the Invention) As mentioned above, this invention enables non-destructive detection of the shape position of a defective part in a ferromagnetic sample by detecting the Barkhausen signal when the current drops, and can also be used to inspect moving samples. It has practical effects.

又、磁粉の散布を必要としない為、試料を汚すおそれも
なり、磁粉除去の手間も必要とせず、非破壊検査を簡易
、迅速に行うことができるすぐれた効果を有するもので
ある。
Furthermore, since it does not require scattering of magnetic particles, there is no risk of contaminating the sample, and there is no need for the effort of removing magnetic particles, which has the excellent effect of allowing non-destructive testing to be performed simply and quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る非破壊検査装置の一実施例のブ
ロックダイアグラム、第2図はその要部の正面図、第3
図は、励磁電磁石に供給する直流電流の波形図、第4図
、第5図、及び第6図は測定結果の波形図である。 又、第7図は従来の磁粉探傷装置の正面図である。 2・・・試料、3・・・導線、4・・・欠陥部、5・・
・励磁電磁石、6・・・検出器、7・・・前置増巾器、
8・・・バイパスフィルタ、9・・・主増巾器、10・
・・カウンター、11・・・D/A変換器、12・・・
A/D変換器、13・・・コンピュータ、14・・・台
形波発生器、15・・・直流電源装置、16・・・スラ
イダック、17・・・電源プラグ、19・・・鉄製ケー
ス、20・・・アクリル板、21・・・アルミ板、22
・・・検出部、23・・・選択スイッチ 槃1図 第2図 時  閤  (,58C) 第3図 第4図       第5区
FIG. 1 is a block diagram of an embodiment of the non-destructive testing device according to the present invention, FIG. 2 is a front view of the main parts thereof, and FIG.
The figure is a waveform diagram of the DC current supplied to the exciting electromagnet, and FIGS. 4, 5, and 6 are waveform diagrams of the measurement results. Moreover, FIG. 7 is a front view of a conventional magnetic particle flaw detection device. 2...Sample, 3...Conducting wire, 4...Defect part, 5...
・Exciting electromagnet, 6...detector, 7...preamplifier,
8... Bypass filter, 9... Main amplifier, 10.
...Counter, 11...D/A converter, 12...
A/D converter, 13... Computer, 14... Trapezoidal wave generator, 15... DC power supply device, 16... Slide duck, 17... Power plug, 19... Iron case, 20 ... Acrylic board, 21 ... Aluminum board, 22
...Detection section, 23...Selection switch 1 Figure 2 Time 閤 (,58C) Figure 3 Figure 4 Section 5

Claims (1)

【特許請求の範囲】[Claims] 時間に比例して一定の割合で下降する静磁界を試料に印
加する励磁電磁石と、試料近傍に非接触で位置し、試料
から発生するバルクハウゼン信号を検出する信号検出器
と、信号検出器の検出した信号を処理する信号処理部、
とから構成されたことを特徴とする非破壊検査装置。
An excitation electromagnet that applies a static magnetic field that decreases at a constant rate in proportion to time to the sample, a signal detector that is located near the sample in a non-contact manner and detects the Barkhausen signal generated from the sample, and a signal detector. a signal processing unit that processes the detected signal;
A non-destructive inspection device comprising:
JP13161589A 1989-05-26 1989-05-26 Non-destructive inspecting device Pending JPH02310462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13161589A JPH02310462A (en) 1989-05-26 1989-05-26 Non-destructive inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13161589A JPH02310462A (en) 1989-05-26 1989-05-26 Non-destructive inspecting device

Publications (1)

Publication Number Publication Date
JPH02310462A true JPH02310462A (en) 1990-12-26

Family

ID=15062207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13161589A Pending JPH02310462A (en) 1989-05-26 1989-05-26 Non-destructive inspecting device

Country Status (1)

Country Link
JP (1) JPH02310462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224531A (en) * 2007-03-14 2008-09-25 Tokyo Seiko Co Ltd Simplified rope abnormality detector
CN101887048A (en) * 2010-06-25 2010-11-17 南京航空航天大学 Barkhausen detection system and method under condition of high-speed operations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119756A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Inspecting apparatus for deterioration of metal material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119756A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Inspecting apparatus for deterioration of metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224531A (en) * 2007-03-14 2008-09-25 Tokyo Seiko Co Ltd Simplified rope abnormality detector
CN101887048A (en) * 2010-06-25 2010-11-17 南京航空航天大学 Barkhausen detection system and method under condition of high-speed operations

Similar Documents

Publication Publication Date Title
US3579099A (en) Improved flaw detection apparatus using specially located hall detector elements
JPH01203965A (en) Inspector for material to be inspected made of non-ferromagnetic metal
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
US2764733A (en) Method and means for detecting flaws
JPH02310462A (en) Non-destructive inspecting device
JPS63221239A (en) Leak magnetic flux flaw detecting method
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
RU2133032C1 (en) Process of magnetic field testing and device to implement it
JP5229923B2 (en) Non-destructive inspection device using SQUID magnetic sensor
RU2020466C1 (en) Method for magnetic particle testing
Nadzri et al. Development of ECT probe for back side crack evaluation
RU2653121C1 (en) Magnetic powder fault detector
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
SU1698733A1 (en) Method of non-destructive testing of ferromagnetic materials and products
JP2003294707A (en) Defect inspection device
CA1100186A (en) Needle type non-destructive metal inspection probe
JPH1123536A (en) Fatigue diagnostics for metal material
RU2189583C2 (en) Pyroelectromagnetic method of nondestructive test
STANĚK et al. Experimental Gaussmeter For Circular Magnetization
JP2519501Y2 (en) Magnetic flaw detector
SU151091A1 (en) Method for detecting defects in articles made of ferromagnetic materials
SU954868A1 (en) Method of magnetographic checking of ferromagnetic material articles
JPH01136063A (en) Magnetic powder flaw detection for steel material
JPS61240152A (en) Method for inspecting crack
Kacprzak et al. Simulation of amplitude and phase characteristics during inspection of printed circuit board by eddy-current testing probe