JPH02310026A - Manufacture of molded object of ethylenic resin foamed particle - Google Patents

Manufacture of molded object of ethylenic resin foamed particle

Info

Publication number
JPH02310026A
JPH02310026A JP1131556A JP13155689A JPH02310026A JP H02310026 A JPH02310026 A JP H02310026A JP 1131556 A JP1131556 A JP 1131556A JP 13155689 A JP13155689 A JP 13155689A JP H02310026 A JPH02310026 A JP H02310026A
Authority
JP
Japan
Prior art keywords
particles
mold
pressure
filling
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1131556A
Other languages
Japanese (ja)
Inventor
Yasushi Ueda
康 上田
Akira Katou
加藤 アキラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1131556A priority Critical patent/JPH02310026A/en
Publication of JPH02310026A publication Critical patent/JPH02310026A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To obtain economically the molded object which is excellent in the mutual adhesion and the water-absorbing property of particles and in the quality of appearance and has small permanent compression strain by specifying the molding condition in which the molded object in a mold of ethylene resin foamed particles is obtained by using the expansion property of compressed foamable particles. CONSTITUTION:The compression of prefoamed particle is kept in the range of 55-75% (45-25% in compression density) of original apparent bulk volume. The filling of a mold with compressed particle is carried out under the pressure (gauge pressure) keeping its compressed state. After the filling of the mold, the pressure in the mold is kept in the range of 0.2-0.7kg/mm<2> (gauge pressure) and is reduced to the pressure (gauge pressure) of 70-30% of the filling pressure. While steam is passed to the particles in the mold, the particle in the mold are preheated at the mold temperature in the range of at least 100 deg.C to the temperature lower than the melting point of base resin. Next, the temperature in the mold is raised to the range of the melting point of the base resin plus at least 5 deg.C to at most 14 deg.C by feeding high pressure steam into the mold, whereby the expansion of the foamed particles and the mutual adhesion of the particles are carried out.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明はエチレン系樹脂の予備発泡粒子を圧縮した状態
で型内に充填し之を水蒸気で加熱し、圧縮された発泡粒
子の膨張能を利用して、粒子相互を膨張融着させて成形
体にする処の型内発泡成形方法の改良技術に関する。
Detailed Description of the Invention "Industrial Field of Application" The present invention involves filling pre-expanded particles of ethylene resin into a mold in a compressed state, heating them with steam, and increasing the expansion ability of the compressed foam particles. This invention relates to an improved technique for an in-mold foam molding method in which particles are expanded and fused together to form a molded object.

[従来技術] エチレン系樹脂の予備発泡粒子を圧縮した状態で型内に
充填し、之を水蒸気で加熱し、圧縮された発泡粒子の膨
張能を利用して粒子相互を膨張融着せしめて成形体にす
る処の型内発泡成形方法は、例えば■特公昭53−33
996号公報、■英国特許第1560630号公告明細
書、■特開昭62−198444号公報、■特開昭62
−212131は公報等に記載されていて公知である。
[Prior art] Pre-expanded particles of ethylene resin are filled into a mold in a compressed state, heated with steam, and the expansion ability of the compressed expanded particles is used to expand and fuse the particles to each other to form the mold. For example, the in-mold foam molding method for forming the body is described in
Publication No. 996, ■Specification of British Patent No. 1560630, ■Japanese Unexamined Patent Publication No. 1984-1984, ■Japanese Unexamined Patent Publication No. 1984-1984
-212131 is described in publications and the like and is well known.

之等■〜■の成形方法は、同じ型内に充填した予備発泡
粒子を水蒸気で加熱して粒子相互を膨張融着させて成形
体にする型内発泡成形方法であっても、例えば特公昭5
1−22951号公報に記載されている処の発泡成形方
法、即妃型内での膨張に利用される発泡粒子の膨張能は
、予備発泡粒子に予め追徴しておいたガス圧の膨張能で
ある処の発泡成形方法と一線を異にし、異種の技術分野
を構成している。
The molding methods described in the above ■~■ may be an in-mold foam molding method in which pre-expanded particles filled in the same mold are heated with steam to expand and fuse the particles to each other to form a molded product. 5
In the foam molding method described in Japanese Patent Publication No. 1-22951, the expansion ability of the foamed particles used for expansion in the instant mold is the expansion ability of the gas pressure added to the pre-expanded particles in advance. It is completely different from other foam molding methods and constitutes a different technical field.

一上記■の方法は例えば特公昭51−2295]号公報
の方法に比べて、型内で利用する膨張能を予備発泡粒子
に付与する工程が時間的に短縮できる、膨張能の調整・
管理が容易になる等の利点がある優れた方法であるが、
得られる成形体には、粒子相互の融着が不充分になり易
い、局所に密度斑が生じ易い、低密度の成形体が得5i
ftいなどの問題点がある。■〜■の方法はこれ等の問
題点を改善しようとしたもので、具体的に■は型内に充
填j〜た圧縮粒子の充填圧を−gI−Jjり圧I7て粒
子を膨張させておき、型内充填時の圧力と同じかそ一゛
Lよりも高い圧力の水蒸気で粒子を加熱I−膨張融着さ
ぜることを提案している。叉■■の方法は、型内に充填
した圧縮粒子の充填圧を保持して粒子の膨張を抑えてお
き、充填型内圧より幾分高い圧力0すlく蒸気を通気し
て粒子間の空気を抜気して後、型内圧を一旦放圧して粒
子を膨張させておき、しかる後に成形に必要な水蒸気圧
で加熱して型内粒子を膨張融着させることを提案してい
るものである。
1) Compared to the method disclosed in, for example, Japanese Patent Publication No. 51-2295, method (1) above can shorten the time required for imparting expansion ability to the pre-expanded particles for use in the mold.
This is an excellent method with advantages such as ease of management, but
The obtained molded product may be one in which the particles tend to be insufficiently fused together, local density unevenness tends to occur, or a low-density molded product is obtained.
There are problems such as ft. The methods of ■ to ■ are attempts to improve these problems.Specifically, method (■) expands the particles by increasing the filling pressure of the compressed particles filled in the mold by -gI-Jj and increasing the pressure I7. It is proposed to heat the particles with water vapor at a pressure equal to or higher than the pressure at the time of filling the mold into I-expansion fusion. In method 2, the filling pressure of the compressed particles filled in the mold is maintained to suppress the expansion of the particles, and steam is vented at a pressure slightly higher than the internal pressure of the filling mold to remove the air between the particles. After venting the mold, the pressure inside the mold is temporarily released to allow the particles to expand, and then the mold is heated with the water vapor pressure necessary for molding to expand and fuse the particles inside the mold. .

一方上記型内成形に供する予備発泡粒子を製造する方法
には、上記特公昭51−22951号公報の実施例1に
記載されている様な、発泡剤を含浸させてなる発泡性樹
脂粒子を水に〜気で加熱して発泡させ予備発泡粒子とす
る方法、特公昭56−1344号公報の実施例1に記載
されている様な発泡剤を含浸させてなる発泡性樹脂粒子
を耐圧容器内で高温高圧の水成液の懸濁状態にし、この
粒子を水成液と共に低温低圧の発泡領域に放出して発泡
させて予備発泡粒子とする方法、その他は押出機で溶融
混練した発泡性樹脂を、多数の小穴を持つダイかも押出
して発泡させ、所定の小寸法長さに切断して予備発泡粒
子とする方法等がある。
On the other hand, in the method for producing pre-expanded particles to be subjected to in-mold molding, expandable resin particles impregnated with a blowing agent are soaked in water, as described in Example 1 of the above-mentioned Japanese Patent Publication No. 51-22951. A method of heating and foaming with air to obtain pre-expanded particles, in which expandable resin particles impregnated with a blowing agent as described in Example 1 of Japanese Patent Publication No. 1344/1980 is placed in a pressure-resistant container. The particles are made into a suspension state in a high-temperature, high-pressure aqueous liquid, and the particles are then discharged into a low-temperature, low-pressure foaming region together with the aqueous liquid to form pre-expanded particles. There are methods such as extrusion using a die having a large number of small holes to foam the particles, and cutting the particles into pre-expanded particles into pre-expanded particles.

従って予備発泡粒子による型内発泡成形法は技術的に一
応完成の領域に到達したものと見られてきた。
Therefore, the in-mold foam molding method using pre-expanded particles has been considered to have reached the level of technological perfection.

しかしながら」二記エチレン系樹脂の予fliii発泡
方法及びその型内発泡成形法の技術は、ジクI旧コシフ
ロロメタン、トリクロロモノフロロメタン、1゜2−ジ
クロロテトラフロロエタン等で代表される飽和クロロフ
ロロカーボン類を発泡剤に選7S記とで完成されてきた
技術と言って過言ではないのである。しかるに近年、上
記飽和クロロフロロカーボン類の使用量の削減或いは使
用中11−の問題がクローズアップされている。これは
飽和クロロフロロカーボン類は成層圏のオゾン層を破壊
する作用があるとする見解が有力で、地球規模の環境保
全上の課題となっているとによる。それ故飽和クロロフ
ロロカーボン類の使用制限は、エチレン系樹脂の型内発
泡成形業界に重大な問題点を新たに提起したことになる
However, the pre-foaming method for ethylene-based resins mentioned above and the in-mold foaming molding method for ethylene-based resins are limited to saturated chloromethane such as dichloromethane, trichloromonofluoromethane, 1゜2-dichlorotetrafluoroethane, etc. It is no exaggeration to say that this technology was perfected in 7S when fluorocarbons were used as blowing agents. However, in recent years, the problem of reducing the amount of saturated chlorofluorocarbons used or during use has attracted attention. The prevailing opinion is that saturated chlorofluorocarbons have the effect of destroying the ozone layer in the stratosphere, making them a global environmental conservation issue. Therefore, the restriction on the use of saturated chlorofluorocarbons poses new and serious problems in the in-mold foam molding industry for ethylene resins.

即ちそれは、オゾン層の破壊が比較的少ない或いは破壊
作用はないとされている処の発泡剤、例えば1−クロロ
−1,1−ジフロロエタン、1.1−ジフロロエタン、
ブタン等の発泡剤は、n(燃性ガスであるために之を予
備発泡用の発泡剤に使用しようとする時は、発泡体から
逸散する発泡剤ガスが空気と混合されて可燃性混合ガス
を形成するので 製造工程や環境設備上に之に対する大
損りな対策設備や監視体制が必要になる問題がある。
That is, it is a blowing agent that is said to have relatively little or no destructive effect on the ozone layer, such as 1-chloro-1,1-difluoroethane, 1,1-difluoroethane,
Since blowing agents such as butane are flammable gases, when they are used as blowing agents for pre-foaming, the blowing agent gas escaping from the foam mixes with air and creates a flammable mixture. Because gas is formed, there is a problem in that manufacturing processes and environmental equipment require costly countermeasure equipment and monitoring systems.

叉クロロジフロロメタン、クロロトリフロロメタン、1
.1.1.2−テトラフロロエタン、塩化エチル、塩化
メチレン等の難燃性ガスを発泡剤にする時は、独立気泡
性に乏しく再発泡に耐える発泡粒子が得難く、之の発泡
方法条件を工夫してその低独立気泡性や気泡構造の不揃
いを改良した場合でも、その粒子を型内に供する時は何
故か良質の成形体になりにくい問題がある。更に叉空気
、窒素、二酸化炭素、アルゴン等の無機ガスを予備発泡
用の発泡剤に使用しようとする試みもなされてはいるが
、経済性に乏しい上に気泡構造が不揃いになることで工
業的実用段階には到っていない。
Chlorodifluoromethane, chlorotrifluoromethane, 1
.. 1.1.2-When using flame-retardant gases such as tetrafluoroethane, ethyl chloride, methylene chloride, etc. as a blowing agent, it is difficult to obtain foamed particles that have poor closed cell properties and can withstand re-foaming. Even if the particles are devised to improve their low closed-cell properties and irregular cell structure, there is a problem that for some reason it is difficult to form a molded product of good quality when the particles are placed in a mold. Furthermore, attempts have been made to use inorganic gases such as air, nitrogen, carbon dioxide, and argon as blowing agents for pre-foaming, but these are not economical and result in irregular cell structures, making them difficult to use industrially. It has not yet reached the practical stage.

つまり要するにエチ1/ン系樹脂が発泡に供し18いと
言う基本的な問題が解消されていない為に、飽和クロロ
フロロカーボン類に替る適切な発泡剤が見出し難いと言
う問題が生じているのである。
In other words, since the basic problem of ethyl 1/one resin being subjected to foaming has not been solved, it is difficult to find a suitable blowing agent to replace saturated chlorofluorocarbons.

[発明が解決しようとする課題] 本発明は」二連した様に、採用する発泡剤等の都合で独
立気泡性に乏Iく再発泡に耐える発泡粒子が得難く、之
の発泡方法条件を工夫してその低独立気泡性や気泡構造
の不揃いを改良した場合でも、その粒子を型内に供する
時は何故か良質の成形体になりにくい問題の予備発泡粒
子を、型内成形方法の改良で対処しようとするものであ
る。
[Problems to be Solved by the Invention] As stated above, the present invention is directed to the following: Due to the blowing agent employed, etc., it is difficult to obtain foamed particles that have poor closed cell properties and can withstand re-foaming. Even if the low closed-cell nature and irregularity of the cell structure are improved by devising methods, pre-expanded particles are difficult to form into good quality moldings when they are placed in a mold. This is what we are trying to deal with.

換言すれば本発明の目的は従来の成形方法では良質の成
形体になりにくい予備発泡粒子を用いた場合でも良質の
発泡体、即ち粒子の融着性、吸水性に優れ、十分な圧縮
応力(指数)を有し、圧縮永久歪が小さく、ひLlがな
くて外観品位に優わる成形体を、より経済的なく使用蒸
気量が少ない)状態で成形することができる型内成形方
法を提供することである。
In other words, the purpose of the present invention is to produce a high-quality foam even when using pre-expanded particles, which are difficult to form into a high-quality molded product using conventional molding methods, that is, with excellent particle fusion properties and water absorption, and with sufficient compressive stress ( To provide an in-mold molding method capable of molding a molded article having a low compression set, no cracks, and superior appearance quality, in a more economical manner and using a smaller amount of steam. That's true.

[課題を解決するための手段] 圧縮された発泡粒子の膨張能を利用してエチレン系樹脂
発泡粒子の型内成形体を得る従来の成形体の製造方法に
おいて、 (1)、、、、I=記配子+iti発泡粒子の圧縮を、
元の見掛けの嵩容積の55〜75%(圧縮度で45〜2
5%)の状態の範囲に1トめること、 (211記圧縮された粒子の型内充填は、上記圧縮状態
を保持する圧力(ゲージ圧)下で行なうこと、(3)上
記型内充填後、型内の圧力を0.2〜0.7kg/cm
”(ゲージ圧)の範囲にあって且つ上記充填圧の70〜
30%の圧力(ゲージ圧)になるように減圧し、その状
態の型内粒子に水蒸気を通、過させて型内温度を100
℃以七〜基材樹脂の融点未満の範囲の温度にして型内の
粒子を予備加熱をすること。
[Means for Solving the Problems] In a conventional method for manufacturing a molded body for obtaining an in-mold molded body of expanded ethylene resin particles by utilizing the expansion ability of compressed expanded beads, (1), , I = molecule + iti Compression of expanded particles,
55-75% of the original apparent bulk volume (45-2
5%), (211) The filling of the compressed particles in the mold is carried out under pressure (gauge pressure) that maintains the compressed state; (3) The filling in the mold is as follows. After that, reduce the pressure inside the mold to 0.2 to 0.7 kg/cm.
” (gauge pressure) and the above filling pressure is 70~
The pressure is reduced to 30% (gauge pressure), and the temperature in the mold is reduced to 100% by passing water vapor through the particles in the mold.
The particles in the mold are preheated to a temperature in the range from 7°C to below the melting point of the base resin.

(4)次いで高圧水蒸気を型内に供給し型内温度を基材
樹脂の融点プラス[5℃以上〜14℃以下]の範囲の温
度に加熱して発泡粒子の膨張と粒子相互の融着とを行な
わせること、 の各段階を経ることを特徴とするエチレン系樹脂発泡粒
子の型内成形体の製造方法の採用にある。
(4) Next, high-pressure steam is supplied into the mold and the temperature inside the mold is heated to a temperature within the range of the melting point of the base resin plus [5°C or more and 14°C or less] to cause expansion of the foamed particles and mutual fusion of the particles. The present invention relates to a method for producing an in-mold molded article of expanded ethylene resin particles, which is characterized by carrying out the following steps.

以下本発明の内容を図面等を用いて詳述する。The contents of the present invention will be explained in detail below using drawings and the like.

第1図は2本発明で利用する処の圧縮された発泡粒子の
膨張能を用いてするエチレン系樹脂発泡粒子型内成形体
の製造方法の工程原理を示す概念図である。
FIG. 1 is a conceptual diagram showing the process principle of a method for manufacturing an ethylene resin foam particle in-mold molded article using the expansion ability of compressed foam particles, which is utilized in the present invention.

第1図に於いて、ここて用いる成形型は、蒸気室、2を
有するコアー型1)1.蒸気室、2・を有するキャビテ
ィ型I〕2が組合わさったときその両型の間に型窩D:
(が生じる組合わせ型である。この型の特質は型窩D:
、に供給された発泡粒子を水蒸気等で加熱する際1発泡
粒子が水蒸気の直接加熱になるように、型窩D 、を構
成する型壁には無数の小穴が立付たれていて、粒子は閉
鎖するが流体は密閉できない所謂[閉鎖し得るが密閉し
得ない型Jになっている。しがし型窩を形成した時はそ
の外部には加熱蒸気弁12,12“、冷却水弁10゜ド
レン弁0,0゛ をもつ蒸気室、2.蒸気室12・で密
閉されているので、これ等の弁を適宜開閉することによ
って排気、加圧、減圧、放圧、加熱 冷却などの操作が
できるのである。
In FIG. 1, the mold used here is a core mold 1) having a steam chamber, 2. Cavity type I having a steam chamber, 2. When 2 are combined, a mold cavity D between the two molds:
(This is a combination type in which
When heating the foamed particles supplied to , with water vapor, etc., each foamed particle is directly heated by the water vapor.There are countless small holes in the mold wall constituting the mold cavity D, so that the particles are heated directly by the water vapor. It is the so-called type J, which closes but cannot seal the fluid. When the burr-shaped cavity is formed, its exterior is sealed with a steam chamber with a heating steam valve 12, 12", a cooling water valve 10°, a drain valve 0,0", and a steam chamber 12. By opening and closing these valves as appropriate, operations such as exhaust, pressurization, depressurization, pressure release, heating and cooling can be performed.

一方原料タンクA(実際は大容量)の予備発泡粒子は、
バルブ10で隔たれた圧縮容器Bに供給(1,0) され、コンプレツサーE、を供給源とする高圧気体供給
ライン15からの気体圧で加圧され、所望の嵩密度に加
圧調節弁1で調整圧縮する。圧縮容器B内の圧縮状態の
粒子は、充填圧供給弁5を経てフィーダー4を通過し噴
出する高圧気体が生み出す吸引力で圧縮容器Bのゲート
弁3から原料ポースCを伝って型窩D3内に供給され、
役目を終えた高圧気体はPIC及び充填圧開放弁7を経
て大気に放出される。この充填過程での型内充填圧の調
整は、圧縮容器I3とドレン弁6,6゛をもつ蒸気室、
□、12・とを均圧弁8を介して結ぶ均圧パイプライン
13,1.4でひとまず圧縮容器I3と蒸気室、2,1
゜・との均圧を保ち、その後は蒸気室、2+ I□・内
の圧力を検出して充填圧開放弁7から過剰の気体を放出
指示する圧力調節器P I Cで所定の圧力を維持する
のである。以降は所望の手順例えば蒸気室、□、12・
のドレン弁6,6゛や集合ドレン弁9の操作で型内を減
圧、放圧、或いは排水することや、ボイラーE2を発生
源とし加熱蒸気弁12.12’ を経て蒸気室、2.蒸
気室、□、とを結ぶ加熱蒸気ライン11と蒸気室12.
12・の温度検出装置T Iによって型内を加熱調温す
ることや水源E、(と冷却水弁]、6.16”を介し蒸
気室、2、蒸気室、2とを結ぶ冷却水ラインj7を操作
をすることで冷却する等の動作を組み合わせ一連の型内
成形を行なうのであるが、十分理解できることであるの
でその手順操作の説明はここでは省略する。
On the other hand, the pre-expanded particles in raw material tank A (actually large capacity) are
The gas is supplied (1,0) to a compression container B separated by a valve 10, pressurized with gas pressure from a high-pressure gas supply line 15 whose source is a compressor E, and adjusted to a desired bulk density by a pressurization control valve 1. Adjust compression. The compressed particles in the compression container B pass through the feeder 4 via the filling pressure supply valve 5, and are transferred from the gate valve 3 of the compression container B through the raw material port C into the mold cavity D3 by the suction force generated by the high-pressure gas jetted out. supplied to,
The high-pressure gas that has finished its role is discharged to the atmosphere through the PIC and the filling pressure release valve 7. The filling pressure in the mold during this filling process is adjusted by using a steam chamber with a compression container I3 and a drain valve 6,6.
□, 12. The pressure equalizing pipeline 13, 1.4 connects the compressor vessel I3 and the steam chamber 2, 1 through the pressure equalizing valve 8.
After that, the predetermined pressure is maintained by the pressure regulator PIC which detects the pressure in the steam chamber and 2+I□ and instructs to release excess gas from the filling pressure release valve 7. That's what I do. From then on, follow the desired procedure, e.g. steam room, □, 12.
By operating the drain valves 6, 6' and the collective drain valve 9, the pressure inside the mold can be reduced, depressurized, or drained. A heating steam line 11 connecting the steam room, □, and the steam room 12.
The temperature inside the mold is controlled by the temperature detection device T I of 12, and the cooling water line j7 connects the steam chamber 2 and the steam chamber 2 via the water source E (and the cooling water valve), 6.16". A series of in-mold molding is performed by combining operations such as cooling and the like, but since it is easy to understand, the explanation of the procedure will be omitted here.

上述した成形工程で留意すべき事柄は。What should be noted in the above-mentioned molding process?

a)一連の系の中に、予備発泡粒子を圧縮する(型内で
膨張させるための膨張能を付与する)工程が存在するこ
と、 b)型内で加熱した際、粒子間にある空隙を埋めて粒子
相互を密に融着さぜるに要する膨張能は圧縮されて折畳
まれた気泡壁群の復元力によると考えられること である。ことに」二連の様な工程では、圧縮台″aB内
には1ショット成形分を越える余分(通常は数ショット
分)の発泡粒子を収容するのが常套であり、原料ホース
内の粒子はショク)−毎に圧縮容器側を放圧にして圧縮
容器に戻すことにするので、これら粒子の幾分かは加圧
と放圧との繰り返し操作を圧縮容器内で受けることにな
る。
a) There is a step in the series of systems that compresses the pre-expanded particles (providing them with the ability to expand in the mold), and b) When heated in the mold, the voids between the particles are compressed. It is believed that the expansion capacity required to tightly fuse the particles together is due to the restoring force of the compressed and folded cell walls. In particular, in processes such as "double series", it is customary to store foamed particles in excess of one shot (usually several shots) in the compression table "aB", and the particles in the raw material hose are Since the compression container side is depressurized and returned to the compression container each time the particles are released, some of these particles will undergo repeated pressurization and depressurization operations in the compression container.

第2図1. It、 IIIは、発泡粒子の断面拡大図
でIは従来の飽和クロロフロロカーボン類を発泡剤にし
て得た発泡粒子、11不飽和のクロロフロロカーボン類
を発泡剤にして得た発泡粒子、Illは11の発泡条件
を工夫して完成した発泡粒子である。
Figure 2 1. It and III are enlarged cross-sectional views of expanded particles; I is expanded particles obtained using conventional saturated chlorofluorocarbons as a blowing agent; These foamed particles were created by devising the foaming conditions.

第2図1 、1.1 、 IIIに於いて、11は独立
気泡性や気泡形状の揃い方の双方で1.11のいずれに
も劣るものであるが、1.1.Iはlにくらべて大きく
遜色のあるものとは思えない。ところがIIIはlとは
成形上、本質的に違ってしまうのである。
In FIG. 2, 1, 1.1, and III, 11 is inferior to 1.11 in both closed cell properties and cell shape alignment, but 1.1. I do not think that I is significantly inferior to l. However, III is essentially different from I in terms of molding.

第1表はこの処の違いを定性評価した結果表(実験例1
と対応)である。この実験現象は本発明者等の不良要因
解析の努力によって、ようやく究明された不良現象の再
現でもある。つまり第2図1 、 11 、1.11に
対応する発泡粒子の同じ圧力下での圧縮のされ方と、そ
の復元性の違いとを、加圧−放圧の繰り返しの数をかえ
ることで評価しtこものである。
Table 1 shows the results of qualitative evaluation of the differences in this area (Experimental Example 1
). This experimental phenomenon is also a reproduction of a defect phenomenon that was finally discovered through the efforts of the inventors to analyze the cause of the defect. In other words, the way the foamed particles corresponding to Figure 2 1, 11, and 1.11 are compressed under the same pressure and the difference in their recovery properties were evaluated by changing the number of pressurization-release cycles. It's a shitty thing.

第1表の結果によると同じ発泡密度(発泡倍率)の粒子
1 、 1.1 、11.1でも、その気泡構造や受け
た加圧の履歴によって、圧縮される程度や復元回復の程
度が違ってくることを示している。即ち]の従来の粒子
は加圧の履歴によって圧縮のさllする方や回復の程度
は差程変化しない。これに対してII。
According to the results in Table 1, even for particles 1, 1.1, and 11.1 with the same expansion density (expansion ratio), the degree of compression and the degree of recovery differ depending on the cell structure and the history of pressure applied. It shows that it will come. In other words, the degree of compression and recovery of conventional particles do not change significantly depending on the history of pressurization. On the other hand, II.

1.11の粒子は、加圧の履歴による圧縮のされる方の
大きさや回復性の劣化が著しいことがわかる。
It can be seen that the size of the compressed particle and the recovery performance of the particles No. 1.11 deteriorate significantly due to the pressure history.

殊にIIの粒子は、その圧縮回復性が乏しいので本発明
が対象とする成形方法は採用できない粒子であることが
わかる。
In particular, it can be seen that particles II cannot be used in the molding method targeted by the present invention because of their poor compression recovery properties.

そしてこの第1表の結果(発泡剤種の変更)は。And the results in Table 1 (change in blowing agent type) are as follows.

★発泡密度と気体圧力との関係のマスターグラフで粒子
の圧縮度を設定し、そのことで成形体の品質管理の指標
にできていた従来の管理体制や装置の見直し、 ☆気泡壁が劣化し易い発泡粒子に合う成形条件の新たな
設定、 の必要性を教示している。
★We set the degree of compression of particles using a master graph of the relationship between foam density and gas pressure, and reviewed the conventional control system and equipment that used this as an indicator for quality control of molded products. This study teaches the necessity of new setting of molding conditions suitable for easily foamed particles.

以下発明の要件について説明する。The requirements of the invention will be explained below.

く14) 先ず、予備発泡粒子の密度0.020〜0.0488/
cm’の制限は、圧縮された状態の粒子の持つ加熱回復
性を成形時の膨張能として利用する成形方法に応用でる
粒子の発泡密度である。従って本発明では目標とする成
形体の密度に合わせて、上記粒子密度の範囲から使用す
る予備発泡粒子を選ぶことになる。
14) First, the density of the pre-expanded particles is 0.020 to 0.0488/
The limit on cm' is the foaming density of particles that can be applied to a molding method that utilizes the heat recovery properties of compressed particles as expansion ability during molding. Therefore, in the present invention, the pre-expanded particles to be used are selected from the above particle density range in accordance with the target density of the molded article.

次に上記(1)の要件、即ちr予備発泡粒子の圧縮を、
元の見掛けの嵩容積の55〜75%(圧縮度で45〜2
5%)の状態の範囲に止めること1の必要性について述
べる。
Next, the above requirement (1), that is, the compression of the pre-expanded particles,
55-75% of the original apparent bulk volume (45-2
5%) We will discuss the necessity of keeping it within the range of 1.

第2表は上述した第1表(第2図相当)発泡粒子1.I
IIについて、圧縮する程度とその回復性を示すもので
ある。第2表の結果によると、10粒子は元の見掛けの
嵩容積の55%(圧縮度で45%)状態を越えて大きく
圧縮しても、その回復性は損なわれずに90%以」二の
回復性をしめずものであるのに対し、Illの粒子は元
の見掛けの嵩容積の55%(圧縮度で45%)状態の圧
縮を越えると、その回復性が低下し回復性で90%を下
回る現象が認められる。この現象は、111の粒子(不
飽和のクロロフロロカーボン類を発泡剤にして得た発泡
粒子)が、加圧による気泡壁の損傷が大きし・ことによ
るものと推察される。
Table 2 shows the expanded particles 1. I
Regarding II, it shows the degree of compression and its recoverability. According to the results in Table 2, even if 10 particles are compressed beyond 55% (45% in compression) of their original apparent bulk volume, their recovery remains unchanged and exceeds 90%. On the other hand, when Ill particles are compressed to a state of 55% (45% compression) of their original apparent bulk volume, their recovery decreases to 90% recovery. Phenomena below are observed. This phenomenon is presumed to be due to the fact that the cell walls of No. 111 particles (expanded particles obtained using unsaturated chlorofluorocarbons as a blowing agent) were significantly damaged by pressurization.

ちなみに対象とする型内成形では、充填された粒子の空
隙を埋めるに要する膨張能は、少なくとも元の見掛けの
嵩容積の75%(圧縮度で25%)の状態の圧縮は必要
で、且ついずA1の場合も圧縮状態の粒子の回復性は9
0%以上大きいことが、良質の成形体を得る上で必要で
あることが知られている。よって」二連の現象・知見か
ら、上記(1)の要件は上記11.1の様な発泡粒子を
成形する」二での必要条件であることが分かる。
By the way, in the target in-mold molding, the expansion capacity required to fill the voids of the filled particles requires compression to at least 75% of the original apparent bulk volume (25% in compression degree), and In the case of Zu A1, the recovery of the particles in the compressed state is 9
It is known that 0% or more is necessary to obtain a molded article of good quality. Therefore, from the two series of phenomena and knowledge, it can be seen that the requirement in (1) above is the necessary condition in (2) for molding expanded particles as in 11.1 above.

次ぎの上記(2)の要件、即ちr圧縮された粒子の型内
充填は、上記圧縮状態を保持する圧力(ゲージ圧)下で
行なうこと1の必要性に4=1いて述べる。
The next requirement (2) above, ie, the necessity of filling the compressed particles in the mold under pressure (gauge pressure) that maintains the compressed state, will be described based on 4=1.

この種の型内成形では、目標とする成形体の密度は使用
する発泡粒子の密度と、」二記要件(1,、lの圧縮状
態の程度によって定める。−力圧縮状態の粒子の圧縮度
は、その粒子の置かれた圧力環境に応じて変化する。従
ってこの(2)の要件は、上記(1)の要件で設定した
目標成形体を、斑なく安定した状態で確実に得るための
ものであると言える。
In this type of in-mold molding, the target density of the molded body is determined by the density of the expanded particles used and the degree of compression of the particles in the two conditions (1, l).-The degree of compression of the particles in the force compression state. changes depending on the pressure environment in which the particles are placed.Therefore, requirement (2) is necessary to ensure that the target molded product set in requirement (1) above is obtained in a stable state without unevenness. It can be said that it is a thing.

次いで要件(3)、即ちr型内充填後、型内の圧力を0
.2〜0.7kg/cm2(ゲージ圧)の範囲にあって
且つ上記充填圧の70〜30%の圧力(ゲージ圧)にな
るように減圧し、その状態の型内粒子に水蒸気を通過さ
せて型内温度を100°0以上〜基材樹脂の融点未満の
範囲の温度に型内の粒子を予備加熱をすること1の必要
性について述べる。
Next, we meet requirement (3), that is, after filling the r mold, the pressure inside the mold is reduced to 0.
.. The pressure is reduced to a pressure (gauge pressure) in the range of 2 to 0.7 kg/cm2 (gauge pressure) and 70 to 30% of the above filling pressure, and water vapor is passed through the particles in the mold in that state. The necessity of preheating the particles in the mold to a temperature in the mold range of 100° 0 or more to less than the melting point of the base resin will be described.

先ずこの場合の1減圧1の意義に付いて考察する。この
必要性の本質は、次ぎの1予備加熱1時に行なわれる処
の、粒子間に介在する空気を排出を容易にして成形加熱
時の加熱効率を高める為のものと考えられている。この
処の重要性を従来の型内発泡成形方法での実体を見ると
、例えば■特公昭53−33996号公報の方法では、
特にこれには触れていない。そして■英国特許第156
0630号公告明細書の方法では「圧を開放すること」
を、■特開昭82−498444号公報。
First, let us consider the significance of 1 reduced pressure 1 in this case. The essence of this necessity is considered to be to facilitate the discharge of air interposed between particles during the next preheating step 1, thereby increasing the heating efficiency during forming heating. If we look at the importance of this point in the conventional in-mold foam molding method, for example, in the method of ■ Japanese Patent Publication No. 53-33996,
This is not specifically mentioned. and ■ British Patent No. 156
In the method of Publication No. 0630, "releasing the pressure"
, ■Japanese Unexamined Patent Publication No. 82-498444.

■特開昭62−212131号公報等の方法では[充填
時の型の内圧を保持して圧縮粒子の回復を抑えること」
を各々発明の要件にしていてる。
■The method disclosed in Japanese Patent Application Laid-Open No. 62-212131 [maintains the internal pressure of the mold during filling to suppress recovery of compressed particles]
are requirements for each invention.

しかしながら本発明で言うIIIの様な発泡粒子を対象
にするときは、これら従来の上記要件部分を踏襲したの
では、目標とする成形体が経済的に得られる成形方法に
はならないのである。
However, when foamed particles such as III referred to in the present invention are targeted, following the above-mentioned conventional requirements will not result in a molding method that can economically obtain the targeted molded product.

第3表(比較例1と対応)はこの処の事情を実証してい
る。即ち上記■の方法(TNo、1.5)では得られる
成形体に部分的な粒子の融着不良現象が生じ、之を改善
しようとすると(TN(1,216+)、発泡体特性が
部分的に悪化した斑のある成形体になる現象が生じて適
性条件が見出せない。又上記■■の方法(TNo、3.
7)では、成形体の表層部は良く融着しているが、その
内部粒子は殆んど融着しないと言う現象が生じる。之を
改善しようとする加熱条件では(TNo、4.8)内部
粒子の融着不良は改善できたとは言え、部分的な粒子の
融着不良が残った成形体にしかならず、適性条件が見出
せないのである。
Table 3 (corresponding to Comparative Example 1) demonstrates the situation here. In other words, in the above method (1,216+), a phenomenon in which the particles are partially fused together occurs in the resulting molded product, and when trying to improve this (TN (1,216+), the foam properties partially deteriorate. The phenomenon of forming a molded product with uneven spots occurred, and suitable conditions could not be found.Also, the above method (■■) (T No. 3.
In 7), a phenomenon occurs in which the surface layer of the molded body is well fused, but the internal particles are hardly fused. Although the heating conditions intended to improve this (T No. 4.8) improved the poor fusion of the internal particles, the result was a molded product with partial particle fusion defects remaining, and suitable conditions could not be found. It is.

この処の現象を、本発明の要件(3)の必要性を実証し
ている第4表(実施例・比較例2と対応)の検討結果の
現象から検討すると、型内圧力(以下ゲージ圧; kg
/ cm2)を0.2を越えて低くした場合(例えばT
No、18)のものは 結局上記■の方法のものと、又
型内圧力が0.7を越えて高い状態にした場合(例えば
TNo、14)のものは、結局上記■、■の方法のもの
と同じ傾向の不良現象が認められる。
Examining this phenomenon from the phenomenon shown in Table 4 (corresponding to Example/Comparative Example 2), which proves the necessity of requirement (3) of the present invention, shows that the pressure inside the mold (hereinafter referred to as gauge pressure ; kg
/ cm2) is lowered by more than 0.2 (for example, T
No. 18) is the result of the above method (■), and when the pressure inside the mold is set to a high state exceeding 0.7 (e.g. T No. 14), the method of the above (■) and (■) is the result. A defective phenomenon with the same tendency as that of the previous one is observed.

この現象は恐らく、型内圧が(0,2よりも)低いと圧
縮粒子の膨張で粒子間隔が狭められていて、蒸気の流通
を妨げられるので空気の排出が部分的に不十分になり粒
子の融着斑が生じる。この融着斑を解消しようとする加
熱は、蒸気の流通し易い部分を過剰加熱する結果となり
、局所粒子の気泡破壊を進行させ発泡体特性が部分的に
悪化した斑のある成形体になる現象が生じると推定され
る。又他方、型内圧が(0,7よりも)高いと、この内
圧に打ち勝って型に供給できる水蒸気の圧力が高まるの
で、この水蒸気に最初に接触する成形体表面部の粒子が
先に膨張・融着して、内部への蒸気の流通を遮蔽する結
果、加熱不足番こなつlと内部粒子が融着しない現象が
生じる。そしてこの先行する表面部粒子の膨張・融着を
抑え内部粒子の融着を高めようとする予備加熱条件は、
粒子間の空気の排出を十分に出来ず、各所に粒子の融着
斑を残してしまう現象が生じているものと推定される。
This phenomenon is probably due to the fact that when the mold internal pressure is lower (than 0.2), the compressed particles expand and the particle spacing becomes narrower, which obstructs the flow of steam, resulting in partially insufficient air evacuation. Adhesive spots occur. Heating to eliminate these fusion spots results in excessive heating of the areas where steam easily flows, causing local particle bubble destruction and resulting in a molded product with spots where the foam properties have partially deteriorated. It is estimated that this will occur. On the other hand, if the mold internal pressure is higher (than 0.7), the pressure of the water vapor that can overcome this internal pressure and be supplied to the mold increases, so the particles on the surface of the molded product that first come into contact with this water vapor expand and expand first. As a result of the fusion and blocking of the flow of steam into the interior, a phenomenon occurs in which the underheated konatsu l and internal particles are not fused together. The preheating conditions to suppress the expansion and fusion of the surface particles and increase the fusion of the internal particles are as follows:
It is presumed that a phenomenon occurs in which the air between particles cannot be sufficiently discharged, leaving spots of fusion of particles in various places.

本発明でr型内の圧力が0.2〜0,7(ゲージ圧)の
範囲jと規定しながら、尚その型内圧を型への粒子の「
充填圧(ゲージ圧)の70〜30%の圧力の状態にする
j意味は、圧縮粒子の充填圧は型内で必ず「減圧するこ
とjの必要性を意味していて、例えば「型内圧は0,7
(ゲージ圧)」であっても「型への粒子の充填圧(ゲー
ジ圧)をそのまま維持した」場合のものは包含しないこ
との意味である。
In the present invention, while the pressure inside the mold r is defined as a range j of 0.2 to 0.7 (gauge pressure), the pressure inside the mold is defined as
Setting the pressure at 70 to 30% of the filling pressure (gauge pressure) means that the filling pressure of compressed particles must be reduced in the mold.For example, if the pressure inside the mold is 0,7
(gauge pressure)'' does not include cases in which the filling pressure (gauge pressure) of particles into the mold is maintained as it is.

この「減圧する重要性の重要性は上記した説明の通りで
ある。つまり要するに、要件(3)で続く「予備加熱j
の効力を、より低温の状態で完全なものにする為のもの
である。即ちこの場合のr型内粒子に水蒸気を通過させ
て1する予備加熱は、粒子間にあって加熱時の粒子の膨
張融着を阻害する処の気体(主に空気)の排出を、経済
的に完全にする為のものと考えられている。
The importance of this "pressure reduction" is as explained above.In other words, in short, the "preheating" that follows in requirement (3)
This is to perfect the effectiveness of the liquid at a lower temperature. In other words, in this case, preheating by passing water vapor through the r-type internal particles is an economical and complete way to completely eliminate the gas (mainly air) that exists between the particles and inhibits the expansion and fusion of the particles during heating. It is thought that it was intended for the purpose of

しかして本発明では比較的低い圧力の蒸気でr型内温度
を100°0以上〜基材樹脂の融点未満の範囲の温度に
型内の粒子を予備加熱」することが容易にできるのであ
る。そして温度規定の必要性は、」:記型内圧力下でも
型内温度がioo’c未満(例えばTNo、15)では
粒子の融着不良現象が生じるし、逆に基材樹脂の融点以
上の温度(例えばTNo、14.17 になっては、局
所に粒子の融着現象が生じたり、粒子の気泡破壊が生じ
成形体の特性が悪化することになるのである。
Therefore, in the present invention, it is possible to easily preheat the particles in the mold to a temperature within the range of 100° 0 or more to less than the melting point of the base resin using steam at a relatively low pressure. And the need for temperature regulation is as follows: Even under the pressure inside the mold, if the temperature inside the mold is less than IOO'C (for example, T No. 15), poor fusion of particles will occur, and conversely, if the temperature inside the mold is less than IOO'C (for example, T No. 15), If the temperature (for example, TNo. 14.17) is reached, local fusion of particles may occur or bubbles may burst, resulting in deterioration of the properties of the molded product.

本発明では粒子間の空気の排出や予備加熱での粒子温度
の上昇が充分であるので、上記要件(3)の工程後直ち
に(型内を放圧しないで)要件(4)の工程に移ること
ができる(例えばTNo、 11 ’ )。しかし粒子
の融着がより完全なものになり水蒸気の使用量もそれほ
ど多くならないので、この中間二[程として「予備加熱
時の型内圧を放圧する」工程は置いた方が望ましい。こ
の放圧工程は予備加熱の工程段階以降で、例えば加熱蒸
気の供給側の弁を閉じ大気の逆流が生じない程度の瞬時
、排出側の弁の開口度を高めることで容易に実施するこ
とがきる。
In the present invention, the evacuation of air between particles and the rise in particle temperature during preheating are sufficient, so after the step of requirement (3) above, the process moves to requirement (4) immediately (without releasing pressure inside the mold). (e.g. TNo. 11'). However, since the fusion of the particles becomes more complete and the amount of steam used does not increase so much, it is desirable to include a step of ``releasing the pressure inside the mold during preheating'' as an intermediate step. This pressure release step can be easily carried out after the preheating process step, for example, by closing the heating steam supply side valve and increasing the opening of the discharge side valve instantaneously to the extent that atmospheric backflow does not occur. Wear.

続いて上記要件(4)、即ち1次いで高圧水蒸気を型内
に供給し型内温度を基材樹脂の融点プラス[5℃以上〜
14℃以下]の範囲の温度に加熱して発泡粒子の膨張と
粒子相互の融着とを行なわせることjの必要性について
述べる。
Next, meet the above requirement (4), that is, first, high-pressure steam is supplied into the mold to raise the temperature inside the mold to the melting point of the base resin plus [5°C or more].
The necessity of heating the expanded particles to a temperature in the range of 14° C. or below to cause expansion of the expanded particles and fusion of the particles to each other will be described below.

第5表(実施例・比較例3対応)は上記要件(4)に付
いての実験結果である。
Table 5 (corresponding to Example/Comparative Example 3) shows the experimental results regarding the above requirement (4).

第5表によると、この条件範囲の必要性は本発明で言う
11.1の様な発泡粒子が保有する残余の圧縮状態の加
熱回復性を、型内で生せしめる発泡粒子の膨張と粒子相
互の融着とを司どる処の膨張力として、有効に利用する
為の条件と考えられる。即ち基材樹脂の融点プラス5℃
未満の場合(例えばTNo.24、26)は、その膨張
力が不足する為が粒子の融着不良や成形体の吸水性が高
まる現象が生じるし、逆に基材樹脂の融点プラス14℃
を越えて高い温度の場合(例えばTNo、21.23.
28)では、気泡構造が崩壊する為か、ひけが大きくな
ったり、成形体の特性が悪化する現象が観測される。
According to Table 5, the necessity of this condition range is due to the thermal recovery of the residual compressed state of the foamed particles as referred to in 11.1 in the present invention, the expansion of the foamed particles in the mold, and the interaction between the particles. This is considered to be a condition for effective use of the expansion force that governs the fusion and adhesion of the particles. That is, the melting point of the base resin plus 5°C
If the temperature is less than 14°C (for example, T No. 24, 26), the expansion force is insufficient, resulting in poor particle fusion and increased water absorption of the molded product.
(For example, TNo. 21.23.
In No. 28), phenomena such as increased sink marks and deterioration of the properties of the molded product were observed, probably due to the collapse of the cell structure.

尚ここで言う1発泡粒子の膨張と粒子相互の融着とを行
なわせる」の意味は、」二記所定の温度に加熱(加圧)
した状態の型(両前気室)内の圧力を、急激に放圧状態
にして行なわせる処の、粒子を一挙に膨張・融着させて
する成形の意味で、この部分は従来の公知方法とかわり
はない。
Here, the meaning of 1. Expanding the expanded particles and fusion of the particles with each other means 2. Heating (pressurizing) to a predetermined temperature.
The pressure inside the mold (both front air chambers) is suddenly released, and the particles are expanded and fused all at once.This part is a conventional known method. There is no difference.

以上実証して明らかにしてきたように、本発明の成形方
法に依れば第2図111(不飽和クロロフロロカーボン
類を発泡剤にして得た発泡粒子)に示すような加圧や加
熱等の外力に対して劣化し易い発泡粒子を使用する場合
でも、良質の成形体を得ることができる。このことは飽
和クロロフロロカーボン類の使用規制の対策として、極
めて有効である。ちなみに本発明の成形方法に依れば、
当然のことながら第2図Iに示す従来の良質の粒子(飽
和クロロフロロカーボン類を発泡剤にして得た発泡粒子
)を使用する場合でも、良質の成形体を得ることが確認
(TNo、29)さillている。
As has been demonstrated and clarified above, according to the molding method of the present invention, pressure, heating, etc. as shown in FIG. 2 111 (expanded particles obtained using unsaturated chlorofluorocarbons as a blowing agent) Even when using expanded particles that easily deteriorate due to external forces, a molded article of good quality can be obtained. This is extremely effective as a measure to regulate the use of saturated chlorofluorocarbons. By the way, according to the molding method of the present invention,
Naturally, it was confirmed that even when using the conventional high-quality particles (expanded particles obtained using saturated chlorofluorocarbons as a blowing agent) shown in Figure 2 I, a high-quality molded article could be obtained (TNo. 29). I'm ill.

本発明の成形方法をより完全で確実なものにする観点か
らは、用いる予備発泡粒子はその密度を0、025〜0
.048g/Ωm3の範囲のものから選ノS1ことが望
ましい。
From the viewpoint of making the molding method of the present invention more complete and reliable, the pre-expanded particles used have a density of 0.025 to 0.
.. It is desirable to select S1 from the range of 0.048 g/Ωm3.

本発明で言うエチ1/ン系樹脂とは、エチレン成分が5
0重量%以上である処の重合体樹脂・共重合体樹脂・こ
れら樹脂相互の混合樹脂、及びこれら樹脂と混合可能な
他の樹脂との混合樹脂の総称である。具体的には例えば
、高、4J、低密度のポリエチレンで代表されるエチレ
ン重合体樹脂、LLDPE、VLDPEの呼称で代表さ
れるエチレンとα−オレフィンとの共重合体樹脂、エチ
レンと酢酸ビニル、塩化ビニル、エチルアクリレート。
In the present invention, the ethyl-1/one-based resin has an ethylene component of 5
It is a general term for polymer resins, copolymer resins, mixed resins of these resins, and mixed resins of other resins that can be mixed with these resins, where the amount is 0% by weight or more. Specifically, for example, ethylene polymer resins represented by high, 4J, and low density polyethylene, copolymer resins of ethylene and α-olefin represented by the names LLDPE and VLDPE, ethylene and vinyl acetate, and chloride. Vinyl, ethyl acrylate.

メヂルメタアクリレート、アクリル酸などの単量体の1
種以上との共重合体樹脂、及びこれら2種以」二の混合
樹脂、又はこれら樹脂成分が主体の他の樹脂との混合樹
脂である。中でもその密度が0゜935〜0.900 
(g/cm3)の範囲にあり通称ポリエチレン、LLD
PE、VLDPEと呼称されている樹脂及びそれらの混
合樹脂であることが望ましい。これらは無架橋のまよ或
いは架橋して使用されているが1発泡状態が安定する上
では架橋して使用した方が望ましい。この場合の架橋方
法は、ジクミルパーオキサイドなどの化学架橋剤の所定
量を樹脂に含浸させ、加熱して架橋させる方法が一般的
で良く知られている。
1 of monomers such as methacrylate and acrylic acid
These include copolymer resins with more than one species, mixed resins of two or more of these, and mixed resins with other resins mainly consisting of these resin components. Among them, the density is 0°935~0.900
(g/cm3), commonly known as polyethylene, LLD
Resins called PE, VLDPE, and mixed resins thereof are preferable. These are used either uncrosslinked or crosslinked, but in order to stabilize the foamed state, it is preferable to use them crosslinked. A common and well-known crosslinking method in this case is to impregnate a resin with a predetermined amount of a chemical crosslinking agent such as dicumyl peroxide, and then heat and crosslink the resin.

本発明で言う飽和クロロフロロカーボン類とは、その炭
化水素の水素の部分が弗素、塩素等のハロゲン類のいず
れがで満たされていて、水素のまま残った部分がないも
のを意味し、逆に不飽和クロロフロロカーボン類とは、
その炭化水素の水素部分が残っているものの意味である
In the present invention, saturated chlorofluorocarbons refer to hydrocarbons in which the hydrogen portion is filled with halogens such as fluorine and chlorine, with no portion remaining as hydrogen; What are unsaturated chlorofluorocarbons?
It means that the hydrogen part of the hydrocarbon remains.

(以下空白) 本発明で用いる評価方法は次ぎの通りである。(blank below) The evaluation method used in the present invention is as follows.

尚この評価は、実施例等で得た縦、横各300mm厚さ
80mmの板状型内成形体を対象にした。
Note that this evaluation was performed on plate-shaped in-mold molded bodies having a length and width of 300 mm each and a thickness of 80 mm obtained in Examples and the like.

i)(粒子の)融着性 成形体に厚さ方向に深さ2mmで横寸法を横断する切れ
目を入れ、その切れ目から成形体を厚さ方向に押し割る
。その破断面に存在する全粒子の数に対する材料破断し
ている粒子の割合を求め、次ぎの尺度で評価する。
i) A slit is made in the fusion-adhesive molded body (of particles) at a depth of 2 mm across the lateral dimension in the thickness direction, and the molded body is pushed apart in the thickness direction through the slit. The ratio of material-broken particles to the total number of particles existing on the fracture surface is determined and evaluated using the following scale.

ii)吸水性 重量を測定した成形体を、約20’Cの淡水中の水面下
25mn+の位置に水没させ、その時のく26) 浮力から成形体の体積を求める。水没状態を24時間持
続させた後、成形体をエヂルアルコール浴に移し1分間
浸して取り出し、40分間風乾して重量を測定しする。
ii) The molded product whose water absorption weight has been measured is submerged in fresh water at a temperature of about 20'C at a position 25 mm+ below the water surface, and the volume of the molded product is determined from the buoyancy at that time. After maintaining the submerged state for 24 hours, the molded body is transferred to an alcohol bath, immersed for 1 minute, taken out, air-dried for 40 minutes, and weighed.

水没前後の重量増加分から次ぎの計算をし評価する。Evaluate by calculating the weight increase before and after submersion as follows.

吸水性(%)=[重量増加分(g)X100]÷[成形
体体積(cm3) X水の密度(g/am3) ]山)
ひけ 成形体の上面、対角線方向に水平定規を当て成形体表面
と定規との間に生じた間隙の最大寸法を求め、次ぎの様
に評価する。
Water absorption (%) = [weight increase (g) x 100] ÷ [molded object volume (cm3) x water density (g/am3)] mountain)
A horizontal ruler is placed on the top surface of the molded product in the diagonal direction, and the maximum dimension of the gap created between the surface of the molded product and the ruler is determined and evaluated as follows.

(以下空白) iv)圧縮応力指数 圧縮応力はその発泡体密度の影響が大きいので、−律評
価とする為に指数化して表現する。
(Blank below) iv) Compressive Stress Index Compressive stress is greatly influenced by the density of the foam, so it is expressed as an index in order to make a -law evaluation.

成形体から縦横100mmの試料片を切り出しその密度
をJIS K[3767の試験方法で求める。次いでそ
の試料片の25%圧縮時の圧縮応力を、JIS ZO2
34(圧縮速度10mm/分)の試験方法で求め、次ぎ
の式で係数化(単位なし)し評価する。
A sample piece of 100 mm in length and width is cut out from the molded body, and its density is determined by the test method of JIS K [3767]. Next, the compressive stress at 25% compression of the sample piece was determined according to JIS ZO2.
34 (compression speed 10 mm/min), and evaluated by converting it into a coefficient (without unit) using the following formula.

圧縮応力指数=25%25%圧縮縮応力(kg/cm2
)÷試料片の密度(g/cm3)(以下空白) ■)圧縮永久歪 成形体から縦横50mm、厚み25mmの試料片を切り
出し、JIS K6707の試験方法で圧縮永久歪を求
め、次ぎのように評価する。
Compressive stress index = 25% 25% compressive stress (kg/cm2
) ÷ Density of sample piece (g/cm3) (blank below) ■) Cut a sample piece of 50 mm in length and width and 25 mm in thickness from the compression set molded body, and determine the compression set using the test method of JIS K6707, as follows. evaluate.

vi)経済性(蒸気使用量) 成形に要する水蒸気の使用量を水蒸気流量計[ターボス
チームメーターG5−11081B−Zr2 (オーバ
ル機器工業■製]で測定し、■ショット当たり相当の蒸
気の消費量く連続10ショット分の平均)を算出し次ぎ
のように評価した。
vi) Economic efficiency (amount of steam used) The amount of steam used for molding was measured using a steam flow meter [Turbo Steam Meter G5-11081B-Zr2 (manufactured by Oval Equipment Industry), and the amount of steam consumed per shot was determined. The average of 10 consecutive shots was calculated and evaluated as follows.

vii)総合評価 上記i)〜vi)の評価結果を総合して次ぎのように評
価した。
vii) Comprehensive evaluation The above evaluation results of i) to vi) were combined and evaluated as follows.

vii)独立気泡率(%) エヤーコンブレッションビクノメーター(ベラクマン社
製930旧型)で評価し次式で計算する。
vii) Closed cell ratio (%) Evaluated using an air compression vicinometer (930 old model manufactured by Beracman) and calculated using the following formula.

独立気泡率(%)=100X(VX−W÷D)÷(RX
W−W+D) 但し R;発泡倍率=発泡体密度の逆数(cm3/g )■8
;発泡粒子の体積(cm3) W;その発泡粒子の重量(g) D;発泡粒子の樹脂密度(g/cm3)[実施例] 以下の実験例、実施例、比較例に使用する樹脂な次ぎに
まとめる。
Closed cell ratio (%) = 100X (VX-W÷D)÷(RX
W-W+D) However, R: Foaming ratio = reciprocal of foam density (cm3/g)■8
; Volume of expanded particles (cm3) W; Weight of expanded particles (g) D; Resin density of expanded particles (g/cm3) [Example] Resin row used in the following experimental examples, working examples, and comparative examples summarized in.

記号   内  容 A;高圧法低密度ポリエチレン (サンチックLD  Q951.1  旭化成四社製)
密度、0.930、 M I ;2.4、 融点;II
6℃B;高圧法低密度ポリエチレン (サンチックLDM2115  旭化成■社製)密度;
o、921、 M I ;1.5、 融点;I08℃C
;線状低密度ポリエチレン (ダウレックス2032ダウケミ・ ■社製)密度;0
.925、 M I ;2.0、 融点; 121℃D
;超低密度ポリエチレン (ナックフレックスDFDA−1137日本ユニカー■
社製) 密度;0.906、 M!、1.口、 融点;118℃
実施例1 この実施例は、以下の実験例、実施例、比較例等に使用
する予備発泡粒子を作成したものである。
Symbol Contents A: High-pressure low-density polyethylene (Santic LD Q951.1 manufactured by Asahi Kasei Shisha)
Density, 0.930, M I ; 2.4, Melting point; II
6°C B: High pressure low density polyethylene (Santic LDM2115 manufactured by Asahi Kasei Corporation) Density;
o, 921, M I ; 1.5, melting point; I08°C
; Linear low-density polyethylene (Dowlex 2032 manufactured by Dow Chemi ■) Density: 0
.. 925, M I; 2.0, melting point; 121°C D
;Ultra low density polyethylene (Nacflex DFDA-1137 Nippon Unicar■
company) Density: 0.906, M! , 1. Melting point: 118℃
Example 1 In this example, pre-expanded particles were prepared to be used in the following experimental examples, examples, comparative examples, etc.

第6表に示す使用樹脂、発泡剤種、予備発泡条件等は、
その時の実態を説明したものである。
The resin used, blowing agent type, pre-foaming conditions, etc. shown in Table 6 are as follows:
This is an explanation of the actual situation at that time.

そして−次発泡、二次発泡とあるのは予備発泡粒子にす
るのに二段階の発泡工程を、−次発泡、二次発泡、三次
発泡とあるのは予備発泡粒子にするのに三段階の発泡工
程を各々とったことを意味している。又二、三次発泡の
欄にある「気泡内圧付与処理」は、発泡性粒子は一回の
発泡でその発泡能をすべて消費してしまうので、各々の
段階で発泡させるための発泡能として、空気を粒子気泡
内に含浸させることの意味で、その欄内はその為の条件
と到達した発泡粒子の密度を記載している。
- Secondary foaming and secondary foaming refer to a two-step foaming process to produce pre-foamed particles, and - secondary foaming, secondary foaming and tertiary foaming refer to a three-stage foaming process to produce pre-foamed particles. This means that each foaming process was carried out separately. In addition, in the "bubble internal pressure imparting process" in the second and third foaming sections, foamable particles consume all of their foaming ability in one foaming process, so air is used as the foaming ability for foaming at each stage. In the meaning of impregnating the particles into the bubbles, the column describes the conditions for this purpose and the density of the foamed particles reached.

そして得られた予備発泡粒子には各々■からXの番号を
付し第6表にまとめた。
The obtained pre-expanded particles were numbered from ■ to X and summarized in Table 6.

以下に示す図面、実験例、実施例、比較例等との関係を
分かり易くするために、次ぎの表を用意した。
In order to make it easier to understand the relationship with the drawings, experimental examples, examples, comparative examples, etc. shown below, the following table has been prepared.

T No、9〜18は第4表(実施例・比較例2と対応
) T No、 I 9〜28は第5表(実施例・比較例3
と対応) ’rNo、29は実施例4 「実験例」 この実験は発泡粒子の性能を比較して示す為のものであ
る。
T No. 9 to 18 are in Table 4 (corresponding to Example/Comparative Example 2) T No. I 9 to 28 are in Table 5 (corresponding to Example/Comparative Example 3)
) 'rNo. 29 is Example 4 "Experimental Example" This experiment is for comparing and demonstrating the performance of foamed particles.

実験−1 実施例1で得た密度0.03g/cm’の発泡粒子(。Experiment-1 Expanded particles with a density of 0.03 g/cm' obtained in Example 1 (.

1.1 、1.1.Iの各々について、Jlll圧(圧
縮)することと放圧(膨張)させることを繰り返した時
、発泡粒子の圧縮のされ方や回復の程度にどんな変化が
生じるかを評価した。
1.1, 1.1. For each of I, when compression (compression) and release (expansion) were repeated, it was evaluated what changes occurred in the way the expanded particles were compressed and the degree of recovery.

即ち目盛り付きの耐圧カラス容器に入れた発泡粒子を、
1.0 kg/cm”Gの加圧空気で30秒間圧縮して
その圧縮時の粒子の嵩容積を泪ること、とその容器内の
圧力を開放した時の粒子の嵩容積を計ることとの操作を
5回繰り返し、元の粒子の嵩容積との関係から、圧縮回
数に対する粒子の圧縮度と(3F3) 回復性とを求め、その結果を第1表にまとめた。
In other words, foamed particles placed in a pressure-resistant glass container with graduations,
Compress the particles with pressurized air at 1.0 kg/cm"G for 30 seconds and measure the bulk volume of the particles at the time of compression, and measure the bulk volume of the particles when the pressure inside the container is released. The above operation was repeated five times, and the degree of compression and (3F3) recovery of the particles with respect to the number of compressions were determined from the relationship with the bulk volume of the original particles, and the results are summarized in Table 1.

実験−2 実施例1で得た密度0.03g/cm30発泡粒子1゜
11.1の各々について、加圧(圧縮)する程度を変更
して放圧(膨張)させた時の、発泡粒子の圧縮のされ方
や回復の程度がどう変化するかを評価した。即ち上記実
験−1の条件で加圧空気を0.9゜1、0.1.2.1
.3.1.4 kg/cm”Gの5水準にし、圧縮回数
を1回に変更して上記実験−1と同じ実験を繰り返した
粒子の圧縮度と回復性とを求めその結果を第2表にまと
めた。
Experiment-2 For each of the foamed particles with a density of 0.03 g/cm30 and 1°11.1 obtained in Example 1, the degree of pressurization (compression) was changed and the pressure was released (expanded). We evaluated how the compression and the degree of recovery changed. That is, under the conditions of Experiment 1 above, the pressurized air was 0.9°1, 0.1.2.1
.. 3.1.4 The same experiment as above Experiment 1 was repeated using 5 levels of 1 kg/cm"G and the number of compressions was changed to 1. The degree of compression and recovery of the particles were determined and the results are shown in Table 2. summarized in.

尚上記再実験で用いた発泡粒子1 、 II、 III
の独立気泡率は、各々1は98%、 IJは88%、川
は93%であった。そしてその断面拡大(部分)図を第
1図1. II、 IIIとして示す。
In addition, the expanded particles 1, II, and III used in the above re-experiment
The closed cell ratio was 98% for 1, 88% for IJ, and 93% for Kawa. The enlarged (partial) cross-sectional view is shown in Figure 1.1. Shown as II and III.

比較例1 この比較例は、本発明と類似の従来公知の成形方法では
、本発明で対象としている発泡粒子の成形には不向きで
あることを実証するものである。
Comparative Example 1 This comparative example demonstrates that conventionally known molding methods similar to the present invention are unsuitable for molding expanded particles targeted by the present invention.

成形装置は第1図のものを用い、金型には、コアー型り
、とキャビティ型D2とが組合った時の型窩のD3の寸
法が311X311X82 mmである、所謂「閉鎖し
得るが密閉し得ない型」を使用した。
The molding device shown in Fig. 1 was used, and the mold had dimensions of 311 x 311 x 82 mm when the core mold and cavity mold D2 were combined, so-called "closeable but not airtight". I used a type that could not be done.

そしてこれ等従来法の再現は、対象とする明細書の記載
に可能なかぎり忠実な再現に勤めであるが、紙面の関係
で詳細な工程手順の記載は省略し当該技術の特徴とする
部分の記載に留める。又成形上の管理項目は、各々の方
法に依って異なっていて繁雑になるので、本発明との対
比が良くできる様に本発明で採用している管理項目に統
一し。
In the reproduction of these conventional methods, efforts are made to reproduce the description of the target specification as faithfully as possible, but due to space constraints, detailed process steps are omitted, and the features of the technology are omitted. Please keep it in the description. In addition, since the control items for molding differ depending on each method and are complicated, the control items adopted in the present invention are unified so that they can be easily compared with the present invention.

その条件と成果の関係を第3表にまとめ表現するように
した。尚この成形実験に使用した予備発泡粒子は、第2
図IIIの粒子に相当する発泡粒子No、lIlとNo
、 Vの二水準のものである。
The relationship between the conditions and results is summarized and expressed in Table 3. The pre-expanded particles used in this molding experiment were
Expanded particles No., IIl and No. corresponding to the particles in Figure III
, V.

(i)英国特許第1500030号公報記載の方法によ
る検討 この製法の特徴(ff  jで示す)部分は、圧縮した
状態の粒子を型内に充填した1その型内圧を放圧しJそ
れに1水蒸気を導入してその圧力が粒子を型内に充填し
た時の有効圧と同じがそれ以」−の圧力になる状態に加
熱する」そして型内圧を放圧して粒子の膨張と融着を行
なう成形方法である。
(i) Study using the method described in British Patent No. 1,500,030 The feature of this manufacturing method (indicated by ff j) is that compressed particles are filled into a mold, the pressure inside the mold is released, and water vapor is added to the mold. A molding method in which the particles are introduced and heated to a state where the pressure is equal to or greater than the effective pressure when the particles are filled into the mold, and the pressure inside the mold is released to expand and fuse the particles. It is.

この製法を再現したのが第3表のTNo、1.2.5゜
6に当たるが、その内T No、 1 、5はそのまま
での再現をT No、 2 、6は加熱条件を変更して
した再現である。つまりTNo、1.5に示す再現では
、得られた成形体が部分的に融着不良になる現象が生じ
てしまうので、T No、 2 、6では加熱を高めて
その融着不良を解消すべく加熱条件の水準を変更した場
合のものを意味している。しかしその結果は、部分的に
存在していた融着不良は幾分改良出来たが逆に過熱現象
とみられる粒子気泡の崩壊が目立ち、成形体特性が悪化
する現象が生じて、最適条件を見出すことができなかっ
たのである。この現象は恐らく、この製法の特徴、即ち
圧縮状態の粒子を充填した「その型内圧を放圧する(圧
縮状態の粒子は当然膨張する)1ことの特徴が、粒子間
隙に蒸気を通過させてする空気排出して加熱する効果を
減少させ、対象とする発泡粒子の加熱には不都合な条件
になるものと推定される。
This manufacturing method was reproduced with T No. 1.2.5°6 in Table 3, of which T No. 1 and 5 were reproduced as they were, while T No. 2 and 6 were reproduced with different heating conditions. This is a reproduction. In other words, in the reproduction shown in T No. 1.5, a phenomenon occurs in which the obtained molded body becomes partially defective in fusion, so in T No. 2 and 6, the heating is increased to eliminate the defect in fusion. This refers to the situation where the level of heating conditions is changed to the extent possible. However, the results showed that although the partially existing poor fusion could be improved somewhat, on the contrary, the collapse of particle bubbles, which appeared to be caused by overheating, became noticeable and the properties of the molded product deteriorated, so it was difficult to find the optimal conditions. I was unable to do so. This phenomenon is probably due to a feature of this manufacturing method, namely, the fact that the pressure inside the mold is released after filling the compressed particles (particles in a compressed state naturally expand)1. It is presumed that this reduces the effect of heating by exhausting air and creates conditions that are inconvenient for heating the target expanded particles.

(ii)特開昭[12−212131号、特開昭02−
198444号公報記載の方法による検討 この製法の特徴(r  Jで示す)部分は、1型内圧を
保って充填した粒子の圧縮状態を維持したまま1 それ
にr(充填圧+0.2kg/cm2以上)の圧力の水蒸
気を導入して粒子を予備加熱し11その型内圧を放圧し
1それに加熱用水蒸気を導入して加熱した後型内圧を放
圧して粒子の膨張と融着を行なう成形方法である。そし
て特開昭02−198444号は特開昭82−2121
31号の予備加熱条件の改良技術と推定され、その相違
点は特開昭82−198444号には上記予備加熱の途
中で別途r型の蒸気室にもぐ充填圧+0.2kg/cm
2G以上)の圧力の水蒸気を導入する1と言う工程が付
加されているのである。
(ii) Japanese Patent Application Publication No. 12-212131, Japanese Patent Application Publication No. 02-
Study using the method described in Publication No. 198444 The feature of this manufacturing method (indicated by r This is a molding method in which particles are preheated by introducing water vapor at a pressure of 11, the pressure inside the mold is released, 1 steam for heating is introduced into the mold, the particles are heated, and then the internal pressure of the mold is released to expand and fuse the particles. . And JP-A-02-198444 is JP-A-82-2121.
It is presumed that this is an improved technology for the preheating conditions of No. 31, and the difference is that in JP-A No. 82-198444, the filling pressure +0.2 kg/cm is separately added to the R-type steam chamber during the preheating process.
A step 1 is added in which water vapor is introduced at a pressure of 2G or more.

第3表のTNo.7は特開昭82−212131号製法
のそのままの再現に当たる。しかし得られた成形体はそ
の表面部分の粒子は過熱気味を思わず程に良く融着して
いるのに、内部粒子はほとんど融着していないと言う不
良現象が生じてしまう。そこでTNo.8では予備加熱
の加熱時間を短縮して上記の表面側か先に融着してしま
う現象を改良し、内部粒子がもっと加熱される様に勤め
たが、成形体全体が融着不良気味となり吸水率や発泡体
特性の悪い成形体になってしまい、適性条件が見出せな
い。
T No. in Table 3. 7 corresponds to the exact reproduction of the manufacturing method of JP-A No. 82-212131. However, in the resulting molded article, a defective phenomenon occurs in that although the particles on the surface of the molded body are reasonably well fused without causing a slight overheating, the internal particles are hardly fused. Therefore, T No. In No. 8, we shortened the heating time for preheating to improve the above-mentioned phenomenon of the surface side being fused first, and tried to heat the internal particles more, but the entire molded body seemed to have poor fusion. The result is a molded product with poor water absorption and foam properties, making it impossible to find suitable conditions.

そこでi’ Ni1.3として特開昭[12−1984
44号の方法を採用して、r型の蒸気室にも1.14 
kg/cm2Gの水蒸気を導入Jして上記予備加熱の条
件改良を試みたたが、結局は表面部分の粒子のみが先に
融着して内部粒子はほとんど融着していない現象は解消
しない。その為TNo、4では予備加熱の温度を下げ加
熱時間を短くして内部粒子がもっと加熱される様に勤め
たが、成形体全体が融着不良気味となり吸水率や発泡体
特性の悪い成形体しか得られないのである。
Therefore, as i' Ni1.3, the
Adopting the method of No. 44, 1.14 was also applied to the r-type steam chamber.
An attempt was made to improve the preheating conditions by introducing water vapor at a rate of kg/cm2G, but this did not resolve the phenomenon in which only the particles on the surface were fused first and the internal particles were hardly fused. Therefore, for T No. 4, we tried to lower the preheating temperature and shorten the heating time so that the internal particles could be heated more, but the entire molded product seemed to have poor fusion and the molded product had poor water absorption and foam properties. You can only get it.

この現象は恐らく、特開昭62−212131号、特開
昭62−198444号の製法の特徴、即ち1型内圧を
保って充填した粒子の圧縮状態を維持したままj それ
にr(充填圧+0.2kg/cm”以上)の圧力の水蒸
気を導入する1予備加熱の特徴的条件が、粒子間に存在
する空気の排出効果が悪く、それを押してしようとする
高圧(高温)での予備加熱は、対象とする発泡粒子の加
熱には不都合な条件になるものと推定される。
This phenomenon is probably due to the characteristics of the manufacturing methods of JP-A No. 62-212131 and JP-A No. 62-198444, that is, the internal pressure of mold 1 is maintained and the compressed state of the packed particles is maintained while j and r (filling pressure + 0. One characteristic condition of preheating, which introduces water vapor at a pressure of 2 kg/cm" or higher), is that the effect of discharging the air existing between particles is poor, and preheating at high pressure (high temperature) to try to push it out is It is estimated that the conditions would be inconvenient for heating the target expanded particles.

」二記の結果は、本発明と類似の従来公知の成形方法で
は、本発明で対象にしている発泡粒子の成形には不向き
であることを実証している。
The results shown in ``2'' demonstrate that conventionally known molding methods similar to the present invention are unsuitable for molding the expanded particles targeted by the present invention.

実施例・比較例2 この成形実験は、本発明の成形方法の内の「構成の要件
(3)」の部分、即ち本発明で言う「予備加熱時の型内
圧力(粒子充填後の型内の減圧条件)jと「予備加熱の
仕方とその温度条件Jの部分の必要性を実証するための
ものである。従って他の条件、例えば粒子の「圧縮嵩容
積比(圧縮度)」「成形時の型内温度」は本発明の水準
に固定し、「使用樹脂」「発泡粒子密度」と得られる「
成形体密度」も、この実証の内容は適用範囲を持つもの
であることが容認される最低限の変更にと留めることに
した。従って使用する発泡粒子は、No、 III、I
V。
Example/Comparative Example 2 This molding experiment was carried out based on the “requirement (3) of the structure” in the molding method of the present invention, that is, the “in-mold pressure during preheating (in-mold pressure after particle filling)” part of the molding method of the present invention. This is to demonstrate the necessity of preheating method and its temperature condition J.Therefore, other conditions, such as particle compression bulk volume ratio (compressibility degree), compaction ``temperature inside the mold at the time'' is fixed at the level of the present invention, ``resin used'', ``expanded particle density'' and
It was also decided that the content of this demonstration would be limited to the minimum change that would allow for the scope of application of the "density of the compact". Therefore, the foam particles used are No., III, and I.
V.

Vl 、 Vll 、■の5種類にした。There were five types: Vl, Vll, and ■.

又成形装置、金型は比較例1のものと同じものを用い、
その管理項目(成形条件とその結果)はすべて第4表に
まとめた。尚この項目中で「減圧後の型内圧」はその圧
力がro、2〜0.7kg/cm”GJの範囲にあるか
否かを、[(充填圧との割合)」は必ず減圧しその減圧
の程度はr充填圧の70〜30%」の範囲にあるか否か
を、「予備加熱時の型内温度」はr100℃以上〜基材
樹脂の融点未満1の範囲の温度に達したか否かを、「予
備加熱時の型内圧」は予備加熱時は減圧した状態を維持
しているか否を各々確認するためのもので、そのことに
よって本発明の成形方法の「構成の要件(3)」の意義
が立証される。そして必要によっては「減圧後の型内圧
」÷「(充填圧との割合)」で粒子の型内充填圧を求め
ることもできる。
In addition, the same molding equipment and mold as in Comparative Example 1 were used,
All of the control items (molding conditions and results) are summarized in Table 4. In this item, "mold pressure after depressurization" indicates whether the pressure is in the range of RO, 2 to 0.7 kg/cm"GJ, and [(ratio to filling pressure)" indicates that the pressure must be reduced. Check whether the degree of pressure reduction is in the range of 70 to 30% of the filling pressure, and whether the temperature inside the mold during preheating has reached a temperature in the range of 100℃ or higher to 1 below the melting point of the base resin. The "mold internal pressure during preheating" is used to confirm whether or not a reduced pressure state is maintained during preheating. 3)” is proven. If necessary, the mold filling pressure of the particles can also be determined by dividing the "mold pressure after decompression" by "(ratio to the filling pressure)".

ちなみに第1図の成形装置で、当該実験の1充填後の型
内を減圧」する操作は、圧力調節器PICを「充填圧設
定」と「減圧後の型内圧設定」との2段設定にしておき
充填が終わると減圧に移るようにして、減圧時の過剰の
圧縮気体を充填圧開放弁7がら放出させて達成した。又
本発明で言う「型内粒子に水蒸気を通過させて1する予
備加熱の操作は、ドレン弁6′を閉じたキャビティ型D
2の蒸気室、□・内に加熱蒸気弁12゛かもの所定圧の
蒸気を供給し、コアー型D1の蒸気室、□内を経て開度
を絞ったドレン弁6から流出させる所謂片側加熱を行な
うことで達成させた。
By the way, in the molding apparatus shown in Figure 1, the operation of "depressurizing the inside of the mold after one filling" in the experiment involved setting the pressure regulator PIC in two stages: "setting the filling pressure" and "setting the mold internal pressure after depressurization." This was achieved by moving to a reduced pressure after the filling was completed, and releasing excess compressed gas during the reduced pressure from the filling pressure release valve 7. Furthermore, in the present invention, the "preheating operation of passing water vapor through the particles in the mold" is carried out in the cavity mold D with the drain valve 6' closed.
So-called one-sided heating is performed by supplying steam at a predetermined pressure of 12゜ into the steam chamber of the core type D1, □, and flowing it out from the drain valve 6 whose opening degree is narrowed through the steam chamber of the core type D1, □. I achieved it by doing it.

第4表に於いて、実施例はT No、 9〜13、比較
例はTNo、14〜18に示ず。そしてT No、 1
1. ’はTNo、11と同じ条件を採用しながら、予
備加熱後成形時の加熱をする中間過程でする、予備加熱
時の型内圧の開放工程を省略したもを示す。
In Table 4, Examples are shown in T No. 9 to 13, and Comparative Examples are shown in T No. 14 to 18. And T No. 1
1. ' indicates that the same conditions as T No. 11 are adopted, but the process of releasing the mold internal pressure during preheating, which is an intermediate process of heating after preheating and heating during molding, is omitted.

成形実験の結果の総合評価からみて、■印の満足できる
結果がえられるものは、本発明の成形方法の「構成の要
件(3)」の各条件を満たすTNo、11゜を含むT 
No、 9〜13(実施例)のものだけで、この条件を
満たさないTNo、14〜18(比較例)のもは、△印
;不満足、X印;実用不能の成形体になってしまうこと
が分かる。
In view of the comprehensive evaluation of the results of the molding experiment, the ones that can give satisfactory results marked with a ■ are those with a T number that satisfies each condition of "Construction Requirements (3)" of the molding method of the present invention, and a T that includes 11°.
Only those with No. 9 to 13 (Examples) and those with T No. 14 to 18 (Comparative Examples) that do not meet this condition are marked with △: Unsatisfactory, and X: The molded product is not practical. I understand.

(以下空白) 実施例・比較例3 この成形実験は、本発明の成形方法の内の「構成の要件
(4)」の部分、即ち本発明で言う「成形時の型内温度
jの部分の必要性を実証するためのものである。従って
他の条件1例えば実施例・比較例2で立証した「構成の
要件(3)」の部分は本発明の範囲に固定し「成形時の
型内温度1の変化に注目できるように設計した。反面「
使用樹脂」 「発泡粒子密度」と得られる「成形体密度
」は若干大きく変更し、この実証の内容は適用範囲を持
つものであることも分かるようにし、得られる結果とと
もに管理項目として第5表にまとめた。よって使用する
発泡粒子はNo、III 、■、[X、Xに変更し、実
施例・比較例2と同様の実験を反復した。尚この際、加
熱して「成形時の型内温度」に到達後、型内の圧力を開
放して、粒子の膨張と融着を完成させること、及びその
成形体は冷却して取り出すことは、周知の事実であるの
で記載を省略しであるのは実施例・比較例2場合と同様
である。
(Blank below) Example/Comparative Example 3 This molding experiment was conducted to evaluate the “requirement (4) of the structure” in the molding method of the present invention, that is, the “temperature j inside the mold during molding” in the present invention. This is to demonstrate the necessity.Therefore, other conditions 1, for example, "Construction Requirements (3)" verified in Example/Comparative Example 2 are fixed within the scope of the present invention, and "Inside the mold during molding" is It was designed to focus on changes in temperature 1.On the other hand,
The "resin used", "foamed particle density", and "molded object density" obtained have been slightly changed to make it clear that the content of this demonstration has a scope of application, and Table 5 is shown as a management item along with the obtained results. summarized in. Therefore, the expanded particles used were changed to No., III, ■, [X, and X, and the same experiment as in Example/Comparative Example 2 was repeated. At this time, after heating to reach the "temperature inside the mold during molding", the pressure inside the mold is released to complete the expansion and fusion of the particles, and the molded product must be cooled and taken out. As this is a well-known fact, its description is omitted, as in the case of Example and Comparative Example 2.

第5表に於いて、実施例はTNo、1.9.20.22
.25.27で比較例はT’No、2 I 、 23 
、24゜26.28に示す。
In Table 5, the example is TNo. 1.9.20.22
.. 25.27 and the comparative example is T'No, 2 I, 23
, 24°26.28.

成形実験の結果の総合評価からみて、■印の満足できる
結果がえもれるものは、本発明の成形方法の「構成の要
件(4)」の条件を満たすT’ No、 19 。
In view of the overall evaluation of the results of the molding experiment, those marked with a mark (■) that leave out the satisfactory results are T' No. 19, which satisfy the condition of "Construction Requirement (4)" of the molding method of the present invention.

20.22,25.27 (実施例)のものだけで、こ
の条件を満たさないTNo、21.23,24,26.
28(比較例)のもは、△印;不満足かx Ell ;
実用不能の成形体になってしまうことが分かる。
20.22, 25.27 (Example) are the only TNos that do not satisfy this condition, 21.23, 24, 26.
28 (comparative example) is marked △; unsatisfactory?
It can be seen that this results in a molded product that is not practical.

実施例4 この実施例は本発明の成形方法は、飽和クロフロロカー
ボン類を発泡剤にて得た、従来の良質の予備発泡粒子に
も適用できることを実証するものである。即ち使用する
発泡粒子を1に変更した他は、実施例・比較例3のTN
f口90条件と同じにしてTNo、19の成形を繰り返
えして’I” No、 29とした。この成形状態は良
好でT No、 1.9の場合と変るところがなく、経
済性の評価は記号Oであった。
Example 4 This example demonstrates that the molding method of the present invention can also be applied to conventional high-quality pre-expanded particles made of saturated chlorofluorocarbons with a blowing agent. That is, the TN of Example/Comparative Example 3 was used except that the expanded particles used were changed to 1.
The molding of T No. 19 was repeated under the same conditions as f-mouth 90, and 'I' No. 29 was obtained.The molding condition was good and no different from that of T No. 1.9, and it was economical. The evaluation was O.

得られた成形体に付いて、融着性、吸水性、圧縮応力指
数、圧縮永久歪、ひけの各々を評価したがすべて記号O
で、総合評価の記号は@となった。
The obtained molded body was evaluated for fusion adhesion, water absorption, compressive stress index, compression set, and sink mark, all of which were marked O.
The symbol for the overall evaluation is now @.

[発明の効果] 詳述して明らかにしてきたように本発明は、予備発泡粒
子を得る段階で常用されてきた飽和クロフロロカーボン
類の発泡剤を、例えば不飽和クロロフロロカーボン類に
切換えたときに生じてしまう「良質の成形体が得られな
くなる」と言うエチレン系樹脂発泡樹脂粒子の型内発泡
成形技術上の問題点を、成形方法の改良で解決したもの
である。
[Effects of the Invention] As has been explained in detail and clarified, the present invention has the advantage that when the blowing agent of saturated chlorofluorocarbons, which has been commonly used in the stage of obtaining pre-expanded particles, is changed to, for example, unsaturated chlorofluorocarbons, This problem in the in-mold foam molding technology for ethylene resin foamed resin particles, which ``makes it impossible to obtain high-quality molded objects,'' which occurs, has been solved by improving the molding method.

本発明に依れば、気泡形状構造に不揃いであるとか気泡
構造が外力で劣化し易いとかの問題があって、従来の成
形方法では良質の成形体になり難い処の予備発泡粒子を
用いても、良質の発泡体、即ち粒子の融着性、吸水性に
優れ、十分な圧縮応力(指数)を有し、圧縮永久歪が小
さく、ひけがなくて外観品位に優れる成形体を、より経
済的な(使用蒸気量が少ない)状態で成形することがで
きる利点がある。従って当然、従来の成形方法で良質の
成形体が得られる処の良質の予備発泡粒子を用いて良質
の発泡体を得ることにも応用できる。
According to the present invention, pre-expanded particles can be used in areas where it is difficult to obtain a high-quality molded product using conventional molding methods due to problems such as irregularity in the cell shape structure and the tendency for the cell structure to deteriorate due to external forces. We also offer high-quality foams, that is, molded products with excellent particle fusion properties and water absorption, sufficient compressive stress (index), low compression set, no sink marks, and excellent appearance quality, in a more economical manner. It has the advantage of being able to be molded in a state where the amount of steam used is small. Naturally, therefore, it can also be applied to obtaining a high-quality foamed body using high-quality pre-expanded particles where a high-quality molded body can be obtained by conventional molding methods.

く51) 以上の観点から本発明は、上述の構成を持つことにより
、少なくとも現在地球規模の環境上の課題とされている
飽和クロロフロロカーボン類の使用制限問題への対策を
、一歩進めることができることで意義の高い発明である
51) From the above viewpoint, the present invention, having the above-described configuration, can at least take one step forward in countering the problem of restricting the use of saturated chlorofluorocarbons, which is currently considered a global environmental issue. This is a highly significant invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形工程の原理を示す概念図、第2図I、II
、IIIは発泡粒子の構造を示す実験図である。 [図記号] 型・・・コアー型D1、とキャビティ型D2との組合せ
Figure 1 is a conceptual diagram showing the principle of the molding process, Figure 2 I and II
, III are experimental diagrams showing the structure of expanded particles. [Diagram symbol] Type: combination of core type D1 and cavity type D2

Claims (1)

【特許請求の範囲】 1)エチレン系樹脂で成る密度0.020〜0.048
g/cm^3の予備発泡粒子を元の見掛けの嵩容積の8
0%以下の容積になるように加圧気体で圧縮し、之を型
内に充填した後、その型内に水蒸気を供給して加熱して
該発泡粒子を膨張させ、該粒子相互を融着させて成形体
とするエチレン系樹脂発泡粒子の型内成形体の製造方法
において、 (1)上記予備発泡粒子の圧縮を、元の見掛けの嵩容積
の55〜75%(圧縮度で45〜25%)の状態の範囲
に止めること、 (2)上記圧縮された粒子の型内充填は、上記圧縮状態
を保持する圧力(ゲージ圧)下で行なうこと、(3)上
記型内充填後、型内の圧力を0.2〜0.7kg/cm
^2(ゲージ圧)の範囲にあって且つ上記充填圧の70
〜30%の圧力(ゲージ圧)になる状態に減圧し、その
状態の型内粒子に水蒸気を通過させて型内温度を100
℃以上〜基材樹脂の融点未満の範囲の温度にして型内の
粒子を予備加熱をすること (4)次いで高圧水蒸気を型内に供給し型内温度を基材
樹脂の融点プラス[5℃以上〜14℃以下]の範囲の温
度に加熱して発泡粒子の膨張と粒子相互の融着とを行な
わせること、 の各段階を経ることを特徴とするエチレン系樹脂発泡粒
子の型内成形体の製造方法。 2)予備発泡粒子がモノクロロジフルオロメタンを含有
する密度0.020〜0.048g/cm^3の予備発
泡粒子であることを特徴とする特許請求の範囲第1項に
記載のエチレン系樹脂発泡粒子の型内成形体の製造方法
[Claims] 1) Made of ethylene resin with a density of 0.020 to 0.048
g/cm^3 of the pre-expanded particles to 8 of the original apparent bulk volume.
After compressing with pressurized gas to a volume of 0% or less and filling it into a mold, steam is supplied into the mold and heated to expand the foamed particles and fuse the particles together. In the method for producing an in-mold molded body of expanded ethylene resin particles to form a molded body, (1) the pre-expanded particles are compressed to 55 to 75% of the original apparent bulk volume (45 to 25% in compression degree). (2) Filling the compressed particles into the mold under a pressure (gauge pressure) that maintains the compressed state; (3) After filling the mold, 0.2 to 0.7 kg/cm
^2 (gauge pressure) and 70% of the above filling pressure
The pressure is reduced to ~30% pressure (gauge pressure), and water vapor is passed through the particles in the mold to bring the temperature inside the mold to 100%.
Preheating the particles in the mold to a temperature in the range of ℃ or higher to lower than the melting point of the base resin (4) Next, high-pressure steam is supplied into the mold to increase the temperature inside the mold to the melting point of the base resin plus [5℃]. An in-mold molded article of expanded ethylene resin particles, characterized by passing through the following steps: heating the expanded particles to a temperature in the range of 14°C to 14°C to cause expansion of the expanded particles and fusion of the particles to each other. manufacturing method. 2) The ethylene resin foam particles according to claim 1, wherein the pre-expanded particles contain monochlorodifluoromethane and have a density of 0.020 to 0.048 g/cm^3. A method for producing an in-mold molded body.
JP1131556A 1989-05-26 1989-05-26 Manufacture of molded object of ethylenic resin foamed particle Pending JPH02310026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131556A JPH02310026A (en) 1989-05-26 1989-05-26 Manufacture of molded object of ethylenic resin foamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131556A JPH02310026A (en) 1989-05-26 1989-05-26 Manufacture of molded object of ethylenic resin foamed particle

Publications (1)

Publication Number Publication Date
JPH02310026A true JPH02310026A (en) 1990-12-25

Family

ID=15060831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131556A Pending JPH02310026A (en) 1989-05-26 1989-05-26 Manufacture of molded object of ethylenic resin foamed particle

Country Status (1)

Country Link
JP (1) JPH02310026A (en)

Similar Documents

Publication Publication Date Title
US7358280B2 (en) Process for processing expandable polymer particles and foam article thereof
CN106146874B (en) A kind of supercritical fluid expanded polyolefin material and preparation method thereof
JPH01195014A (en) Manufacture of foamed substance having high compressive strength
EP0109458B1 (en) Pressurization and storage of thermoplastic resin foams prior to secondary expansion
CA2399239A1 (en) Extruded foam product with reduced surface defects
JPH02310026A (en) Manufacture of molded object of ethylenic resin foamed particle
NO844086L (en) PROCEDURE FOR BREATHING POLYETHYL
JP2007320092A (en) Method for producing molding foamed in mold using preliminarily foamed polypropylene particles
US6245267B1 (en) Methods for lowering the density and increasing the flexibility of thermoplastic foams
TWI708671B (en) Multi-stage foaming method
JPH0416330A (en) In-mold molding of thermoplastic resin foamable particle
KR100590224B1 (en) Manufacturing method of expanded poly styrene with superior heat resistance and expanded poly styrene by the method
JPH05255531A (en) Production of molded polymer foam
CN113444277B (en) Raw material composition, EPE pearl wool material and preparation method thereof
EP1149680B1 (en) Method for producing a low density, flexible thermoplastic foam, and foam thus produced
JPS62198444A (en) Method of in-mold molding thermoplastic resin expandable particle
JPH02289633A (en) Production of foamed polyolefin resin particle
JP2872505B2 (en) Method for producing polyolefin foam
KR20230033492A (en) Method for preparing polyether ether ketone expanded bead foam
JPH0415236A (en) Production of expanded high-shrinkage polyolefin resin particle
JP2023019516A (en) Polypropylene-based resin foam particle and method for producing the same
JPH02137912A (en) Method of filling thermoplastic resin foamed particle into mold
JP2562102B2 (en) Method for producing polyolefin foam
CN110591244A (en) Preparation method of environment-friendly PVC (polyvinyl chloride) foamed plastic material
JPH1053663A (en) Production of silicone-based rubber foam