JPH02309821A - Fano type successive decoder - Google Patents

Fano type successive decoder

Info

Publication number
JPH02309821A
JPH02309821A JP13215589A JP13215589A JPH02309821A JP H02309821 A JPH02309821 A JP H02309821A JP 13215589 A JP13215589 A JP 13215589A JP 13215589 A JP13215589 A JP 13215589A JP H02309821 A JPH02309821 A JP H02309821A
Authority
JP
Japan
Prior art keywords
replica
backward
memory
internal code
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13215589A
Other languages
Japanese (ja)
Inventor
Kaneyasu Shimoda
下田 金保
Toshiharu Sakai
敏晴 酒井
Yuuzou Ageno
揚野 祐三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13215589A priority Critical patent/JPH02309821A/en
Publication of JPH02309821A publication Critical patent/JPH02309821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)

Abstract

PURPOSE:To improve the error correction capability by providing a forward replica exclusive OR circuit (EX-OR) between 2-way flip-flops(FFs), providing a replica memory, storing a backward replica into the replica memory and reading the replica. CONSTITUTION:A replica memory 5 is provided and a forward replica generating circuit of an internal code section 3 is constituted by providing a forward replica EX-OR between 2-way FFs. When a forward replica is generated, a backward replica is generated and stored in the replica memory 5 and the backward replica stored in the replica memory 5 is read and given to a path retrieval section 2 via the internal code section 3. Thus, even when a generation matrix at the sender side is prolonged to improve the error correction capability, the internal processing time is quickened to increase the error correction capability.

Description

【発明の詳細な説明】 〔概 要] ファノ型逐次復号器に関し、 ■クロックの間での前方レプリカ及び後方レプリカの処
理時間を短く、内部処理時間を短く出来、従って送信側
の生成行列を長くして、誤り訂正能力を上げることが出
来るファン型逐次復号器の提供を目的とし、 レプリカメモリを設け、又内部符号部の前方レプリカ生
成回路を、前方レプリカ用の排他的論理和回路(以下E
X−ORと称す)を上記双方向フリップフロップ(以下
双方向FFと称す)の間に設けたものとし、 該内部符号部にて前方レプリカを生成する時に其の時の
後方レプリカを生成して該レプリカメモリに蓄えておき
、該レプリカメモリより蓄えた後方レプリカを読み出し
該内部符号部に入力するようにし、該内部符号部より前
方レプリカと後方レプリカを該パス探索部に与えるよう
に構成する。
[Detailed Description of the Invention] [Summary] Regarding the Fano-type sequential decoder, ■The processing time of forward replicas and backward replicas between clocks can be shortened, the internal processing time can be shortened, and the generation matrix on the transmitting side can therefore be lengthened. With the aim of providing a fan-type sequential decoder that can improve error correction performance, a replica memory is provided, and the forward replica generation circuit of the internal code section is replaced with an exclusive OR circuit (hereinafter referred to as E) for the forward replica.
An X-OR) is provided between the bidirectional flip-flops (hereinafter referred to as bidirectional FFs), and when a forward replica is generated in the internal code section, a backward replica is generated at that time. A backward replica stored in the replica memory is read out from the replica memory and inputted to the internal code section, and a forward replica and a backward replica are provided from the internal code section to the path search section.

〔産業上の利用分野] 本発明は、送信側のデータ及び、該データをウォンゼン
クラフト型符号器、マツシイ型符号器等の符号器により
生成行列とした信号を送信し、受信側にて近似的な最尤
復号を実現するファン型逐次復号器の改良に関する。
[Industrial Application Field] The present invention transmits data on the transmitting side and a signal in which the data is made into a generation matrix by an encoder such as a Wonzencraft type encoder or a Matsushi type encoder, and approximates the data on the receiving side. This paper relates to an improvement of a fan-type sequential decoder that realizes maximum likelihood decoding.

ファン型逐次復号器としては、内部動作を高速に出来、
訂正能力の高いことが望ましい。
As a fan-type sequential decoder, internal operation can be made faster,
High correction ability is desirable.

〔従来の技術〕[Conventional technology]

第7図は従来例のファン型逐次復号器のブロック図、第
8図は従来例の内部符号部のブロック図である。
FIG. 7 is a block diagram of a conventional fan-type sequential decoder, and FIG. 8 is a block diagram of a conventional internal code section.

第7図の1はシンボルメモリで、送信側のデータ及び、
該データを符号器により生成行列とした信号を受信し蓄
えておくものである。
1 in FIG. 7 is a symbol memory, which contains data on the transmitting side and
A signal obtained by converting the data into a generation matrix by an encoder is received and stored.

2はパス探索部で、シンボルメモリ1から読み出した受
信信号と、内部符号部3′で生成した前方レプリカ又は
後方レプリカで演算を行い最も確からしい復号データを
求め1ビットづつ該内部符号部3′に与えるものである
Reference numeral 2 denotes a path search unit which performs calculations on the received signal read out from the symbol memory 1 and the forward replica or backward replica generated by the internal code unit 3' to find the most probable decoded data, bit by bit. It is given to

3゛は内部符号部で、パス探索部2で求めた復号データ
の、送信側の生成行列により定まるnビットを、前方、
後方に方向変換出来る双方向FFよりなるシフトレジス
タに蓄積し、係数乗算器及びEX−ORを用いて符号化
し前方レプリカ及び後方レプリカとして該パス探索部2
に与え又蓄積したnビットの復号データを1ビットづつ
順次パスメモリ4に与えるものである。
3 is an internal code section, which converts the n bits determined by the generation matrix of the transmitting side of the decoded data obtained by the path search section 2 into the forward,
The path search unit 2 stores the data in a shift register consisting of bidirectional FFs that can change the direction backward, encodes it using a coefficient multiplier and EX-OR, and uses it as a forward replica and a backward replica.
The decoded data of n bits which have been applied to the path memory 4 and accumulated is sequentially applied bit by bit to the path memory 4.

4はパスメモリで、内部符号部3′よりの復号データを
蓄えておきメモリ容量一杯になると順次出力するもので
ある。
4 is a path memory which stores the decoded data from the internal code section 3' and outputs it sequentially when the memory capacity is full.

このファン・アルゴリズムを用いたファン型逐次復合器
は、時刻t0において、パス探索部2で求めた最も確か
らしいと思われる復号データを1ビットづつ順次内部符
号部3″の、前方、後方に方向変換出来る双方向FFよ
りなるnビットのシフトレジスタに順次与え、内部符号
部3°にて生成した前方レプリカを用いて、時刻t0よ
り1クロック分後の時刻t1における最も確からしいと
思われる復号データを検索する(これを前を見ると言う
)。
At time t0, the fan-type sequential decoder using this fan algorithm sequentially directs the most likely decoded data found by the path search unit 2 one bit at a time forward and backward into the internal code unit 3''. The most probable decoded data at time t1, one clock minute after time t0, is sequentially applied to an n-bit shift register consisting of bidirectional FFs that can be converted, and using the forward replica generated by the internal code section 3°. Search for (this is called looking forward).

しかし時刻t1において時刻tl以前の復号データに誤
りがあると判断した場合は、時刻t、又はそれ以前に後
戻りする為に、パスメモリ4より復号データを1ビット
づつ順次読み出し、内部符号部3°にて符号化し後方レ
プリカとしてパス探索部2に与える(これを後を見ると
言う)。
However, if it is determined at time t1 that there is an error in the decoded data before time tl, in order to go back to time t or earlier, the decoded data is sequentially read out bit by bit from the path memory 4, and the internal code section 3 It is encoded in the path search unit 2 as a backward replica (this is referred to as looking backward).

このように前を見る動作と後を見る動作を繰り返し、最
も確からしいデータ列を復号結果としてパスメモリ4よ
り出力する。
In this way, the motion of looking forward and the motion of looking back are repeated, and the most probable data string is output from the path memory 4 as the decoding result.

向上記各部の制御は制御ブロック図6にて行う。The control of each part described above is performed using the control block diagram 6.

次に内部符号部3′につき第8図を用いて説明する。Next, the internal code section 3' will be explained using FIG. 8.

第8図は送信側の符号器での生成行列がA (x) =
a0+a+x +azX”+HH、a 、 x ”の場
合の内部符号部を示すもので、拘束長はnである。
Figure 8 shows that the generation matrix in the encoder on the transmitting side is A (x) =
It shows the internal code part in the case of a0+a+x+azX"+HH, a, x", and the constraint length is n.

図中11は前方レプリカ用EX−ORで、生成行列のタ
ップ数−2個あり、12は後方レプリカ用EX−ORで
生成行列のタップ数−1個ある。
In the figure, reference numeral 11 denotes an EX-OR for the forward replica, which has the number of taps of the generation matrix minus two, and numeral 12 denotes an EX-OR for the backward replica, which has the number of taps of the generation matrix minus one.

10は双方向FFで、生成行列のタップ数だけありシフ
トレジスタを構成しており、又第8図(A)に示す如く
フリップフロップ(以下FFと称す)20とセレクタ2
1で構成され、セレクタ21は前方に進む時はA側を選
択し、後方に進む時はB側を選択するものである。
Reference numeral 10 denotes a bidirectional FF, which has the same number of taps as the generation matrix and constitutes a shift register, and as shown in FIG.
1, and the selector 21 selects the A side when moving forward, and selects the B side when moving backward.

13は送信側の生成行列の係数に対応して1又はOを乗
算する前方レプリカ用乗算器で、生成行列のタップ数−
1個ある。
13 is a forward replica multiplier that multiplies by 1 or O corresponding to the coefficient of the generator matrix on the transmitting side; the number of taps of the generator matrix -
There is one.

14は送信側の生成行列の係数に対応して1又はOを乗
算する後方レプリカ用乗算器で、生成行列のタップ数だ
けある。
Reference numeral 14 denotes a backward replica multiplier that multiplies the coefficients of the generator matrix on the transmitting side by 1 or O, and has the same number of taps as the generator matrix.

そして、前方レプリカを生成する時は双方向FFl0は
セレクタ21にてA側を選択し各双方向FFl0のFF
20に記憶しているデータに乗算器13にて所定の1又
はOを乗じEX−ORIIにて排他的論理和をとりバス
探索部2に与える。
Then, when generating a forward replica, the bidirectional FF10 selects the A side with the selector 21, and the FF of each bidirectional FF10
The data stored in 20 is multiplied by a predetermined 1 or O in multiplier 13, exclusive ORed in EX-ORII, and the result is provided to bus search unit 2.

尚、時刻t1における前方レプリカと、その時検索して
求めた確からしいデータに、係数37に相当する乗算器
11で1又はOを乗算したものとを、1個のEX−OR
12にて排他的論理和をとったものは時刻t2における
後方レプリカに等しくなっており、これを後方レプリカ
としてバス探索部2に与えている。
In addition, the forward replica at time t1 and the probable data obtained by searching at that time are multiplied by 1 or O by the multiplier 11 corresponding to the coefficient 37, and the result is one EX-OR.
The exclusive OR at step 12 is equal to the backward replica at time t2, and this is given to the bus search unit 2 as the backward replica.

又以前の後方レプリカを生成する時は、双方向FFl0
のセレクタ21にてB側を選択させFF20に記憶して
いるデータ及び、順次パスメモリ4より読み出し双方向
FFl0のFF20に記憶したデータに、乗算器14に
て所定の1又は0を乗じ、EX−OR12にて排他的論
理和をとりバス探索部2に与える。
Also, when generating a previous backward replica, bidirectional FF10
The selector 21 selects the B side, and the data stored in the FF 20 and the data sequentially read from the path memory 4 and stored in the FF 20 of the bidirectional FF10 are multiplied by a predetermined 1 or 0 in the multiplier 14, and EX - OR12 performs an exclusive OR and provides it to the bus search unit 2.

〔発明が解決しようとする課題] ファノ型逐次復号器にて誤り訂正能力を上げる為には、
送信側の生成行列を長くし拘束長を長くせねばならない
が、ごれに伴い前方レプリカ用EX−ORII、後方レ
プリカ用EX−OR12(7)数が増大する。
[Problems to be solved by the invention] In order to improve the error correction capability of the Fano-type sequential decoder,
Although it is necessary to lengthen the generation matrix on the transmitting side and increase the constraint length, the number of EX-OR IIs for forward replicas and EX-ORs 12 (7) for backward replicas increases as a result of the confusion.

この数が増大すると前方レプリカ用EX−OR11、後
方レプリカ用EX−OR12による処理時間は長くなり
、この処理は1クロツタの間に処理せねばならず、内部
処理を高速に出来なくなる。
When this number increases, the processing time by the EX-OR 11 for the forward replica and the EX-OR 12 for the backward replica becomes longer, and this processing must be performed within one clock, making it impossible to speed up the internal processing.

即ち、従来例の内部符号部では、あまり送信側の生成行
列を長くし、誤り訂正能力を上げることが出来ない問題
点がある。
That is, in the internal code section of the conventional example, there is a problem that the generation matrix on the transmitting side is made too long and the error correction capability cannot be improved.

本発明は、1クロツクの間での前方レプリカ及び後方レ
プリカの処理時間を短く、内部処理時間を短く出来、従
って送信側の生成行列を長くして、誤り訂正能力を上げ
ることが出来るファノ型逐次復号器の提供を目的として
いる。
The present invention is a Fano-type sequential method that can shorten the processing time of forward replicas and backward replicas within one clock, shorten the internal processing time, and therefore lengthen the generation matrix on the transmitting side and increase the error correction ability. The purpose is to provide a decoder.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理ブロック図である。 FIG. 1 is a block diagram of the principle of the present invention.

第1図に示す如く、送信側のデータ及び、該データを符
号器により生成行列とした信号を受信し蓄えておくシン
ボルメモリ1と、 該シンボルメモリ1から読み出した受信信号と、内部符
号部3で生成した前方レプリカ又は後方レプリカで演算
を行い最も確からしい復号データを求め1ビットづつ該
内部符号部3に与えるバス探索部2と、 該バス探索部2で求めた復号データの、送信例の生成行
列により定まるnビットを、前方、後方に方向変換出来
る双方向FFよりなるシフトレジスタに蓄積し、係数乗
算器及び排他的論理和回路を用いて符号化し前方レプリ
カ及び後方レプリカとして該バス探索部2に与え又蓄積
したnビットの復号データを1ビットづつ順次パスメモ
リ4に与える内部符号部3と、 該内部符号部3よりの復号データを蓄えておき順次出力
する該バスメモリ4よりなるファノ型逐次復号器におい
て、 レプリカメモリ5を設け、又該内部符号部3の前方レプ
リカ生成回路を、前方レプリカ用のEX−ORを上記双
方向FF0間に設けたものとする。
As shown in FIG. 1, there is a symbol memory 1 that receives and stores data on the transmitting side and a signal in which the data is made into a generation matrix by an encoder, a received signal read out from the symbol memory 1, and an internal encoder 3. An example of transmission of the decoded data obtained by the bus search unit 2, which calculates the most probable decoded data by performing calculations on the forward replica or backward replica generated by the bus search unit 2 and supplies it bit by bit to the internal code unit 3. The n bits determined by the generation matrix are stored in a shift register consisting of bidirectional FFs that can change direction forward and backward, encoded using a coefficient multiplier and an exclusive OR circuit, and are sent to the bus search unit as a forward replica and a backward replica. 2, and a bus memory 4 which stores the decoded data from the internal code section 3 and sequentially outputs it. In the type sequential decoder, it is assumed that a replica memory 5 is provided, and a forward replica generation circuit of the internal code section 3 is provided with an EX-OR for the forward replica between the two-way FF0.

そして、該内部符号部3にて前方レプリカを生成する時
に其の時の後方レプリカを生成して該レプリカメモリ5
に蓄えておき、該レプリカメモリ5より蓄えた後方レプ
リカを読み出し該内部符号部3に入力するようにし、該
内部符号部3より前方レプリカと後方レプリカを該バス
探索部2に与えるようにする。
When the internal code unit 3 generates a forward replica, a backward replica at that time is generated and is stored in the replica memory 5.
The stored backward replica is read from the replica memory 5 and inputted to the internal code section 3, and the forward replica and backward replica are provided from the internal code section 3 to the bus search section 2.

〔作 用〕[For production]

前方レプリカ用EX−ORを双方向FF0間に設ければ
、1クロツクの間に1つのEX−ORの処理を行えばよ
く、1クロツクの時間を高速に出来る点に着目し、前方
レプリカ生成回路としては、前方レプリカ用のEX−O
Rを双方向FFの間に設け、誤り訂正能力を上げる為に
送信側の生成行列が長くなり、前方レプリカ用EX−O
Rの数が多くなっても、内部処理時間を高速に出来るよ
うにしている。
By providing a forward replica EX-OR between two-way FF0, only one EX-OR process can be performed during one clock, and the forward replica generation circuit As for EX-O for forward replica
R is provided between the bidirectional FFs, and in order to increase the error correction ability, the generation matrix on the transmitting side becomes longer, and the EX-O for forward replicas becomes longer.
Even if the number of R increases, the internal processing time can be made faster.

又内部符号部3で、時刻りにて生成する後方レプリカは
、1クロツク前の時刻t−1において生成した前方レプ
リカと、その時パス探索部2にて求めた確からしいデー
タに、送信部の生成符号のnビット目の係数a、に相当
するl又はOを乗算器で乗算したものとの排他的論理和
をとったものと等しい点に着目し、前方レプリカを生成
した時後方レプリカを生成し、後方レプリカをレプリカ
メモリ5に蓄え、該レプリカメモリ5より蓄えた後方レ
プリカを読み出し該内部符号部3を介してパス探索部2
に与えることで、誤り訂正能力を上げる為に送信側の生
成行列が長くなっても内部処理時間を高速に出来るよう
にしている。
Also, the backward replica generated at the internal code section 3 at the time is based on the forward replica generated at time t-1, one clock earlier, and the probable data obtained by the path search section 2 at that time. Focusing on the point that it is equal to the exclusive OR of the coefficient a corresponding to the n-th bit of the code multiplied by l or O by a multiplier, when a forward replica is generated, a backward replica is generated. , the backward replica is stored in the replica memory 5, and the stored backward replica is read out from the replica memory 5 and sent to the path search section 2 via the internal code section 3.
By giving , the internal processing time can be increased even if the generation matrix on the transmitting side becomes long in order to improve the error correction ability.

即ち、送信側の生成行列を長くし、ファノ型逐次復号器
の誤り訂正能力を増大することが出来る。
That is, it is possible to lengthen the generation matrix on the transmitting side and increase the error correction capability of the Fano-type sequential decoder.

〔実施例〕〔Example〕

第2図は本発明の実施例のファノ型逐次復号器の構成を
示すブロック図、第3図は本発明の実施例の第1の内部
符号部のブロック図、第4図は本発明の実施例の第2の
内部符号部のブロック図、第5図は本発明の実施例の第
3の内部符号部のブロック図、第6図は本発明の実施例
の第4の内部符号部のブロック図である。
FIG. 2 is a block diagram showing the configuration of a Fano sequential decoder according to an embodiment of the present invention, FIG. 3 is a block diagram of a first internal code section according to an embodiment of the present invention, and FIG. 4 is an implementation of the present invention. FIG. 5 is a block diagram of the second internal code section of the example, FIG. 5 is a block diagram of the third internal code section of the embodiment of the present invention, and FIG. 6 is a block diagram of the fourth internal code section of the embodiment of the present invention. It is a diagram.

第2図は第1図に示す原理ブロック図の、パスメモリ4
とレプリカメモリ5を1つのメモリ7に設けるようにし
たもので、レプリカメモリとパスメモリはデータの読み
書きするタイミングが同じであるので、2ビット幅のR
AMで実現したちのであり、制御部6は各部の制御を行
うもので、内部符号部3以外は、既に、従来例のところ
で説明した動作とかわりないので動作の説明は省略する
Figure 2 shows the path memory 4 of the principle block diagram shown in Figure 1.
The replica memory 5 and the replica memory 5 are provided in one memory 7. Since the replica memory and the path memory read and write data at the same timing, the 2-bit wide R
The control section 6 controls each section, and the operations other than the internal code section 3 are the same as those already explained in the conventional example, so a description of the operations will be omitted.

レプリカメモリ5を設けることにより内部符号部3の構
成は従来と変わり、マツシイ型符号器とウォンゼンクラ
フト型符号器とを基本としたものが考えられるので、以
下第3図〜第6図を用いて内部符号部3について説明す
る。
By providing the replica memory 5, the configuration of the internal code section 3 is changed from the conventional one, and it is conceivable that the configuration is based on a Matsushi type encoder and a Wonzencraft type encoder. The internal code section 3 will be explained below.

第3図、第4図はマツシイ型符号器を基として構成した
ものであり、第5図、第6図はウォンゼンクラフト型符
号器を基として構成したものである。
3 and 4 are constructed based on a Matsushi type encoder, and FIGS. 5 and 6 are constructed based on a Wonzencraft type encoder.

尚第3図、第5図の場合の送信側の符号器の生成行列は
、A (x) =3o +alx +azx”+ ・・
・a、x’で拘束長はn+1であり、第4図、第6図の
場合の送信側の符号器の生成行列は、A(x ) −1
+x”+x’+x’+x’+x’+x”で拘束長は9で
あり、原則的には、第3図、第5図の場合と同じである
ので、以下の説明は第3図、第5図について説明する。
The generation matrix of the encoder on the transmitting side in the cases of FIGS. 3 and 5 is A (x) = 3o + alx + azx"+ .
・The constraint length is n+1 for a and x', and the generation matrix of the encoder on the transmitting side in the cases of FIGS. 4 and 6 is A(x) −1
+x"+x'+x'+x'+x'+x" and the constraint length is 9, which is basically the same as in Figures 3 and 5, so the following explanation will be based on Figures 3 and 5. The diagram will be explained.

又図中30.31〜35,60.61は第8図(A)に
示す双方向FF、50.51〜54は送信側の符号器の
生成行列の係数に対応して1又は0を乗算する乗算器、
40.41〜44,90゜95はEX−OR,47,4
8,64,65はFF、45.46,62.63はセレ
クタで前方に進む時はA側を選択し、後方に進む時はB
側を選択する。
Also, in the figure, 30.31 to 35 and 60.61 are bidirectional FFs shown in FIG. multiplier,
40.41~44,90°95 is EX-OR,47,4
8, 64, 65 are FF, 45.46, 62.63 are selectors, select side A when moving forward, and select side B when moving backwards.
Choose a side.

第3図、第4図の場合は、乗算器10.80の出力との
排他的論理和をとるEX−〇R90,95を双方向FF
60の間に設け、1クロツクの間に1つのEX−ORの
処理を行えばよいようにして内部処理時間を短く出来る
ようにしている。
In the case of FIGS. 3 and 4, EX-R90, 95, which takes the exclusive OR with the output of the multiplier 10.80, is used as a bidirectional FF.
60, so that one EX-OR process only needs to be performed during one clock, thereby shortening the internal processing time.

そして、双方向FF60と、乗算器70.EX−OR9
0を用いて前方レプリカを生成し、セレクタ62を介し
てパス探索部2に与え、又その時、更に乗算器71とE
X−OR90を用いて後方レプリカを生成し、セレクタ
63を介してパス探索部2に与え、又双方向FF60を
介してレプリカメモリ5に書き込むようにしている。
A bidirectional FF 60 and a multiplier 70. EX-OR9
0 is used to generate a forward replica, and it is given to the path search unit 2 via the selector 62, and at that time, the multiplier 71 and E
A backward replica is generated using the X-OR 90, provided to the path search unit 2 via the selector 63, and written to the replica memory 5 via the bidirectional FF 60.

そしてレプリカメモリ5より読み出した後方レプリカは
双方向FF60.FF65.セレクタ63を介してパス
探索部2に与え、この時は乗算器80(係数80相当)
の出力に乗算器81にて1又は0を乗算し、この乗算し
た値と、後方レプリカとの排他的論理和をEX−OR9
5にて求め、前方レプリカとして双方向FF60.FF
64.セレクタ62を介してパス探索部2に与えるよう
にしている。
The rear replica read from the replica memory 5 is the bidirectional FF 60. FF65. It is given to the path search unit 2 via the selector 63, and at this time it is sent to the multiplier 80 (equivalent to a coefficient of 80).
The output of is multiplied by 1 or 0 in the multiplier 81, and the exclusive OR of this multiplied value and the backward replica is performed by EX-OR9.
5, and bidirectional FF60. as a forward replica. FF
64. It is provided to the path search unit 2 via the selector 62.

尚、この内部符号部では、乗算器80(係数a0相当)
の出力が、パス探索部2へ逆に送る場合の復号データと
なっている。
Note that in this internal code section, the multiplier 80 (corresponding to coefficient a0)
The output is the decoded data to be sent reversely to the path search unit 2.

このようにすれば、1クロツクの間に前方レプリカの1
つのEX−ORの処理を行えばよいので、生成行列が長
くなっても、内部処理時間を高速に出来、又後方レプリ
カはレプリカメモリ5より読み出せばよいので生成行列
が長くなっても、内部処理時間を高速に出来、送信部の
符号部の生成行列を長く出来るので、誤り訂正能力を増
大することが出来る。
In this way, one of the forward replicas will be
Since only one EX-OR process has to be performed, even if the generation matrix becomes long, the internal processing time can be reduced.Also, since the backward replica only needs to be read from the replica memory 5, even if the generation matrix becomes long, the internal processing time can be increased. Since the processing time can be made faster and the generation matrix of the code section of the transmitter can be made longer, the error correction capability can be increased.

第5図、第6図では、1クロツクでの前方レプリカのE
X−ORによる処理時間を短くかくする為に、時間t0
において、双方向FF30及び、乗算器50.EX−O
R40を用い、A (x) =a、 +a、x +az
x”十−−°a n−2X   sA (x ) −1
+x2+x’+x’+x”の演算を行い、時間t、にお
いて、双方向FF31.乗算器51.EX−OR41を
用い、 B(x) =A (x) +a 、、−、xn−1、B
 (x) =A(x)+x’の演算を行い、前方レプリ
カとしてセレクタ45を介してパス探索部2に与え、時
間t2において、双方向FF32.乗算器52.EX−
OR42を用いG (x)=B (x)+anx”、G
 (x) =B (x) +x’の演算を行い後方レプ
リカとしてパス探索部2に与え、又時間t、にて双方向
FF33にて後方レプリカとしてレプリカメモリ5に書
き込む。
In Figures 5 and 6, E of the forward replica in one clock is shown.
In order to shorten the processing time by X-OR, the time t0
In the bidirectional FF 30 and the multiplier 50. EX-O
Using R40, A (x) = a, + a, x + az
x"10--°a n-2X sA (x) -1
+x2+x'+x'+x", and at time t, using bidirectional FF 31. Multiplier 51. EX-OR 41, B(x) = A (x) +a , -, xn-1, B
(x)=A(x)+x' is calculated and provided to the path search unit 2 as a forward replica via the selector 45, and at time t2, the bidirectional FF 32. Multiplier 52. EX-
Using OR42, G (x)=B (x)+anx”, G
(x) =B (x) +x' is calculated and given to the path search unit 2 as a backward replica, and is also written to the replica memory 5 as a backward replica by the bidirectional FF 33 at time t.

又レプリカメモリ5より読み出した時は、双方向FF3
3.FF4B、セレクタ46を介して後方レプリカとし
てパス探索部2に与え、この時は、双方向FF30 (
FF、−z)の後方出力に、乗算器53にて1又は0を
乗算し、この乗算した値と出力33の後方出力との排他
的論理和をEX−OR43にて求めたデータをFF47
.セレクタ45を介して前方レプリカとしてパス探索部
2に与えるようにしている。
Also, when reading from replica memory 5, bidirectional FF3
3. The FF4B is given to the path search unit 2 as a backward replica via the selector 46, and at this time, the bidirectional FF30 (
The rear output of FF, -z) is multiplied by 1 or 0 in the multiplier 53, and the EX-OR 43 calculates the exclusive OR of this multiplied value and the rear output of the output 33.
.. It is provided to the path search unit 2 via the selector 45 as a forward replica.

このようにすれば、1クロツタの間で、前方レプリカを
生成する為のEX−ORは、双方向FF31と32の間
にEX−OR41を設けた分掛なくなり、第3図の場合
程ではないが、内部処理時間を高速にすることが出来る
In this way, the EX-OR required to generate a forward replica between one cross is no longer required because the EX-OR 41 is provided between the two-way FFs 31 and 32, and it is not as much as in the case of Fig. 3. However, it is possible to speed up the internal processing time.

後方レプリカに関しては第3図の場合と同様に、レプリ
カメモリ5より読み出せばよいので内部処理時間を高速
にすることが出来、送信部の符号部の生成行列を長く出
来るので、誤り訂正能力を増大することが出来る。
As for the backward replica, as in the case of FIG. 3, it is only necessary to read it from the replica memory 5, so the internal processing time can be increased, and the generation matrix of the code section of the transmitter can be lengthened, so the error correction ability can be improved. It can be increased.

(発明の効果] 以上詳細に説明せる如く本発明によれば、前方レプリカ
用EX−ORを双方向FF0間に設は又、レプリカメモ
リ5を設は後方レプリカは該レプリカメモリ5に蓄積し
ておき、これを読み出すようにしているので、内部処理
時間を高速に出来、送信側の生成行列を長く出来るので
、誤り訂正能力を増大出来る効果がある。
(Effects of the Invention) As explained in detail above, according to the present invention, if the EX-OR for the forward replica is provided between the two-way FF0 and the replica memory 5 is provided, the backward replicas are stored in the replica memory 5. Since the internal processing time can be increased and the generation matrix on the transmitting side can be made longer, the error correction capability can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例のファノ型逐次復号器の構成を
示すブロック図、 第3図は本発明の実施例の第1の内部符号部のブロック
図、 第4図は本発明の実施例の第2の内部符号部のブロック
図、 第5図は本発明の実施例の第3の内部符号部のブロック
図、 第6図は本発明の実施例の第4の内部符号部のブロック
図、 第7図は従来例のファノ型逐次復号器のブロック図、 第8図は従来例の内部符号部のブロック図である。 図において、 1はシンボルメモリ、 2はバス探索部、 3は内部符号部、 4はパスメモリ、 5はレプリカメモリ、 6は制御部、 7はメモリ、 10.30.31〜35,60.61は双方向フリップ
フロップ、 13.14,50.51〜54は乗算器、11.12,
40.41〜44,90.95は排他的論理和回路、 47.48,64.65はフリップフロップ、45、.
46,62.63はセレクタを示す。 :I hl。
FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a block diagram showing the configuration of a Fano sequential decoder according to an embodiment of the present invention, and FIG. 3 is a block diagram of the first internal code section of an embodiment of the present invention. Block diagram: FIG. 4 is a block diagram of the second internal code section of the embodiment of the present invention; FIG. 5 is a block diagram of the third internal code section of the embodiment of the present invention; FIG. 6 is a block diagram of the third internal code section of the embodiment of the present invention. FIG. 7 is a block diagram of a conventional Fano sequential decoder; FIG. 8 is a block diagram of a conventional internal code section. In the figure, 1 is symbol memory, 2 is bus search section, 3 is internal code section, 4 is path memory, 5 is replica memory, 6 is control section, 7 is memory, 10.30.31 to 35, 60.61 is a bidirectional flip-flop, 13.14, 50. 51 to 54 are multipliers, 11.12,
40.41 to 44, 90.95 are exclusive OR circuits, 47.48, 64.65 are flip-flops, 45, .
46, 62, and 63 indicate selectors. :I hl.

Claims (1)

【特許請求の範囲】 送信側のデータ及び、該データを符号器により生成行列
とした信号を受信し蓄えておくシンボルメモリ(1)と
、 該シンボルメモリ(1)から読み出した受信信号と、内
部符号部(3)で生成した前方レプリカ又は後方レプリ
カで演算を行い最も確からしい復号データを求め1ビッ
トづつ該内部符号部(3)に与えるパス探索部(2)と
、 該パス探索部(2)で求めた復号データの、送信側の生
成行列により定まるnビットを、前方、後方に方向変換
出来る双方向フリップフロップよりなるシフトレジスタ
に蓄積し、係数乗算器及び排他的論理和回路を用いて符
号化し前方レプリカ及び後方レプリカとして該パス探索
部2に与え又蓄積したnビットの復号データを1ビット
づつ順次パスメモリ(4)に与える内部符号部(3)と
、該内部符号部(3)よりの復号データを蓄えておき順
次出力する該パスメモリ(4)よりなるファノ型逐次復
号器において、 レプリカメモリ(5)を設け、又該内部符号部(3)の
前方レプリカ生成回路を、前方レプリカ用の排他的論理
和回路を上記双方向フリップフロップの間に設けたもの
とし、 該内部符号部(3)にて前方レプリカを生成する時に其
の時の後方レプリカを生成して該レプリカメモリ(5)
に蓄えておき、該レプリカメモリ(5)より蓄えた後方
レプリカを読み出し該内部符号部(3)に入力するよう
にし、該内部符号部(3)より前方レプリカと後方レプ
リカを該パス探索部(2)に与えるようにしたことを特
徴とするファノ型逐次復号器。
[Claims] A symbol memory (1) that receives and stores data on the transmitting side and a signal in which the data is generated as a generation matrix by an encoder; a received signal read from the symbol memory (1); a path search unit (2) that performs calculations on the forward replica or backward replica generated by the code unit (3) to obtain the most probable decoded data and supplies it bit by bit to the internal code unit (3); ) The n bits of the decoded data determined by the generation matrix on the transmitting side are stored in a shift register consisting of a bidirectional flip-flop that can change direction forward and backward, and are processed using a coefficient multiplier and an exclusive OR circuit. an internal code unit (3) that sequentially supplies the encoded n-bit decoded data to the path search unit 2 as a forward replica and a backward replica, and sequentially supplies the accumulated n-bit decoded data bit by bit to the path memory (4); and the internal code unit (3) In a Fano sequential decoder consisting of the path memory (4) which stores and sequentially outputs the decoded data of the An exclusive OR circuit for replicas is provided between the bidirectional flip-flops, and when a forward replica is generated in the internal code section (3), a backward replica is generated at that time and stored in the replica memory. (5)
The stored backward replica is read out from the replica memory (5) and inputted to the internal code section (3), and the forward replica and backward replica are sent from the internal code section (3) to the path search section ( 2) A Fano-type sequential decoder is characterized in that the following is applied.
JP13215589A 1989-05-25 1989-05-25 Fano type successive decoder Pending JPH02309821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215589A JPH02309821A (en) 1989-05-25 1989-05-25 Fano type successive decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215589A JPH02309821A (en) 1989-05-25 1989-05-25 Fano type successive decoder

Publications (1)

Publication Number Publication Date
JPH02309821A true JPH02309821A (en) 1990-12-25

Family

ID=15074649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215589A Pending JPH02309821A (en) 1989-05-25 1989-05-25 Fano type successive decoder

Country Status (1)

Country Link
JP (1) JPH02309821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253123A (en) * 1990-03-02 1991-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Decoding system for error correcting code
CN109324920A (en) * 2018-10-09 2019-02-12 上海兔小二科技有限公司 A kind of pair of byte arrays carry out verifying modified method and smart machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253123A (en) * 1990-03-02 1991-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Decoding system for error correcting code
CN109324920A (en) * 2018-10-09 2019-02-12 上海兔小二科技有限公司 A kind of pair of byte arrays carry out verifying modified method and smart machine
CN109324920B (en) * 2018-10-09 2022-03-04 杭州兔小二科技实业有限公司 Method for checking and correcting byte array and intelligent equipment

Similar Documents

Publication Publication Date Title
Kautz Fibonacci codes for synchronization control
JP2717032B2 (en) Viterbi decoder
US7581160B2 (en) ACS circuit and Viterbi decoder with the circuit
JPH10107651A (en) Viterbi decoder
US5446746A (en) Path memory apparatus of a viterbi decoder
US5559837A (en) Efficient utilization of present state/next state registers
JPH09507117A (en) Reed-Solomon decoder
JPS5827238A (en) Run length control symbol generator
JPS6037833A (en) Code ward decoder and reader
CN110741557A (en) Low delay polar encoding and decoding by combining stages of polar code patterns
JPS59157811A (en) Data interpolating circuit
Chan et al. IC design of an adaptive Viterbi decoder
US5619514A (en) In-place present state/next state registers
US5761265A (en) Parallel architecture for generating pseudo-random sequences
JPH0563582A (en) Coding/decoding method and device in dictionary edition manner
JPS63161731A (en) Sequential error correction decoding device
JPH02309821A (en) Fano type successive decoder
Abbaszadeh et al. VLSI implementation of a maximum-likelihood decoder for the Golay (24, 12) code
JP3753822B2 (en) Viterbi decoding method and apparatus
JP3063180B2 (en) Variable length code decoding circuit
JPH07245567A (en) Viterbi decoding arithmetic unit
JP2571384B2 (en) Sequential decoder
JPS63203019A (en) Sequential decoder
JP2503988B2 (en) Image coding device
TWI228654B (en) Non-binary Viterbi data processing system and method