JPH02308576A - Photocoupler - Google Patents

Photocoupler

Info

Publication number
JPH02308576A
JPH02308576A JP1130929A JP13092989A JPH02308576A JP H02308576 A JPH02308576 A JP H02308576A JP 1130929 A JP1130929 A JP 1130929A JP 13092989 A JP13092989 A JP 13092989A JP H02308576 A JPH02308576 A JP H02308576A
Authority
JP
Japan
Prior art keywords
light
photodiode
photodiodes
receiving element
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1130929A
Other languages
Japanese (ja)
Inventor
Minoru Kaneiwa
兼岩 実
Tetsuhiro Okuno
哲啓 奥野
Toshihiro Machida
智弘 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1130929A priority Critical patent/JPH02308576A/en
Publication of JPH02308576A publication Critical patent/JPH02308576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To increase an output by uniformizing the amount of light detected by a photodetector element irrespective of a distance from a light emitting element. CONSTITUTION:Areas of respective photodetector elements 1-3, 1-1-1-3 such that the amounts of incident lights from a LED located at a position A onto photodiodes 1-3 and photodiodes 1-1-1-3 disposed symmetrically to the formers are equal to each other.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発光素子と受光素子との間の光結合の効率を
向上させるフォトカプラの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a photocoupler structure that improves the efficiency of optical coupling between a light emitting element and a light receiving element.

(従来の技術) 7オトカプラの受光素子であるフォトダイオードはその
感度を向上させるために、複数個を直列に接続して使用
することがあるが、従来その個々のフォトダイオードの
面積は同一であり、発光素子(例えばLED )からの
距離の遠近による強度分布は考慮されていなかった。こ
れは受光素子全体の面積が小さく、個々のフォトダイオ
ードの入射光は概ね均一であると想定されるからである
(Prior art) A plurality of photodiodes, which are the light-receiving elements of a 7-otocoupler, are sometimes connected in series to improve their sensitivity, but conventionally the area of each photodiode is the same. However, the intensity distribution depending on the distance from the light emitting element (for example, LED) was not considered. This is because the area of the entire light receiving element is small, and it is assumed that the incident light on each photodiode is generally uniform.

受光素子に直接入射しなかった光を利用し光結合の効率
を向上する方法としては、発光素子と受光素子との周囲
を白色の樹脂でモールドし、受光素子に直接入射しなか
った光を乱反射させて、できるだけ多くの光を受光素子
に入射させることが行われていた。
A method of improving the efficiency of optical coupling by using light that did not directly enter the light receiving element is to mold the area around the light emitting element and the light receiving element with white resin, and diffusely reflect the light that did not directly enter the light receiving element. The conventional technique is to allow as much light as possible to enter the light receiving element.

(発明が解決しようとする課題) LEDの光は、狭い面積から放射線状に発光するため、
フォトダイオードの個々の面積が同一のとき、それぞれ
の光量はLEDからの距離によって異なるから、フォト
ダイオードが直列に接続されていると、出力が小さいフ
ォトダイオードによって受光素子全体の出力が制限され
、エネルギーの損失が生じていた。これはフォトダイオ
ードの数が多い程顕著になる。前述の白色の樹脂でモー
ルドし、乱反射を利用することによっても解決されない
(Problem to be solved by the invention) Since LED light emits radiation from a narrow area,
When the area of each photodiode is the same, the amount of light from each photodiode differs depending on the distance from the LED. Therefore, when photodiodes are connected in series, the output of the entire light receiving element is limited by the photodiode with a small output, and the energy losses had occurred. This becomes more noticeable as the number of photodiodes increases. The problem cannot be solved even by molding with the above-mentioned white resin and utilizing diffused reflection.

(課題を解決するための手段) 本発明においては、前述の欠点を除くため、発光素子か
らの距離に応じて個々の受光素子の受光量を均一化させ
た。
(Means for Solving the Problems) In the present invention, in order to eliminate the above-mentioned drawbacks, the amount of light received by each light receiving element is made uniform according to the distance from the light emitting element.

(作用) 発光素子からの距離の大きい受光素子の面積を大きく、
近い受光素子の面積を小さくすることにより、あるいは
反射板を利用して各受光素子の光電流は均一化される。
(Function) Increase the area of the light-receiving element that is located at a large distance from the light-emitting element.
The photocurrent of each light receiving element can be made uniform by reducing the area of nearby light receiving elements or by using a reflector.

(実施例) 発光素子としてはLED、EL等が使用され、受光素子
としてはフォトダイオード、フォトトランジスタ等が使
用されるが、以下の実施例は、発光素子としてはLED
、受光素子としては複数のフォトダイオードを使用した
場合について説明する。
(Example) LEDs, ELs, etc. are used as light-emitting elements, and photodiodes, phototransistors, etc. are used as light-receiving elements, but in the following examples, LEDs are used as light-emitting elements.
, a case where a plurality of photodiodes are used as the light receiving element will be explained.

第1図は、それぞれ面積の異なるフォトダイオード1,
2.8及びこれらと対称のフォトダイオード1−1.1
−2.1−8等からなるフォトダイオードアレイ10の
対称軸y軸のy=Qの点に垂直にtだけ離れた位置AV
CLEDがある状態を示す説明図である。対称軸をy軸
、これと直角にフォトダイオードアレイ10の中心を通
る軸をX軸とする。計算を簡単にするために、LEDを
点光源とすると、斜線部で示されるフォトダイオード2
の光量は、幅がxlからx2までであり、長さが−Yか
らYまでであるとすると、この範囲の受光量lは次の(
1)式によって求められる。
Figure 1 shows photodiodes 1, each having a different area.
2.8 and photodiodes 1-1.1 symmetrical to these
A position AV perpendicular to the point y=Q on the symmetry axis y axis of the photodiode array 10 consisting of -2.1-8 etc.
It is an explanatory view showing a state where a CLED is present. The axis of symmetry is the y-axis, and the axis passing through the center of the photodiode array 10 at right angles to this is the x-axis. To simplify calculations, if the LED is a point light source, the photodiode 2 shown in the shaded area
Assuming that the width is from xl to x2 and the length is from -Y to Y, the amount of light received in this range l is as follows (
1) It is determined by the formula.

ただし、A、Bは定数であり、Bは乱反射によってフォ
トダイオード2に入射された光に関するものである。乱
反射によってフォトダイオードに入射した光は、フォト
ダイオードの全表面にわたり略々均一と見なされる。
However, A and B are constants, and B relates to light incident on the photodiode 2 due to diffuse reflection. Light incident on the photodiode due to diffuse reflection is considered to be substantially uniform over the entire surface of the photodiode.

個々の7肴トダイオードに対し、(1)式で求められる
受光量!が等しくなるように1個々のフォトダイオード
のxl及びx2を決定すれば、各受光素子の受光量が均
一化し、延いては光電流も均一化し、受光素子内でエネ
ルギーの損失を生ずることがない。フォトダイオードと
しては単結晶及び多結晶シリコンが望ましいが、容易に
集積化が可能な非晶質シリコン系のフォトダイオードを
用いることもできる。
The amount of light received by each of the seven diode diodes is determined by formula (1)! If xl and x2 of each photodiode are determined such that . Single-crystal and polycrystalline silicon are desirable as photodiodes, but amorphous silicon-based photodiodes that can be easily integrated can also be used.

第2図は発光素子と受光素子とが対向しておらず、反射
を利用する場合のものである。逐次に幅を広くしたフォ
トダイオード2−1 、2−2 、2−13 。
FIG. 2 shows a case where the light emitting element and the light receiving element are not opposed to each other and reflection is used. Photodiodes 2-1, 2-2, 2-13 whose widths are sequentially increased.

・・・等よりなる7オトダイオードアレイ20の中心線
をX軸とし、x = 00点A−1にLEDが置かれ、
X軸に垂直にy軸があり、これらに垂直に距離がt1離
れている場所に平行な反射板6が置かれている。この場
合、斜線で示されているフォトダイオード2−8の受光
量は、その幅がx8からxatでであり、長さが−Y1
からY!までであるとすると、この範囲の受光量!lは
次の(2)式によって求められる。
..., etc. The center line of the 7-otodiode array 20 is set as the X axis, and the LED is placed at x = 00 point A-1,
There is a y-axis perpendicular to the X-axis, and a parallel reflecting plate 6 is placed perpendicularly to the y-axis at a distance t1. In this case, the amount of light received by the photodiode 2-8 indicated by diagonal lines has a width of x8 to xat and a length of -Y1.
From Y! If the amount of light received is within this range! l is determined by the following equation (2).

・・・(2] 九だしAl、Blは定数であり、B1は前述の(1)式
と同様に乱反射によってフォトダイオード2−8に入射
された光に関するものである。この場合も個々のフォト
ダイオードについてx3及びx4を決定すれば、各受光
素子の受光量を均一化することができる。
...(2) In the equation, Al and Bl are constants, and B1 is related to the light incident on the photodiode 2-8 due to diffuse reflection, as in the above equation (1).In this case, the individual photo By determining x3 and x4 for the diodes, it is possible to equalize the amount of light received by each light receiving element.

第1図、第2図はともに、それぞれのフォトダイオード
の受光面の形状が長方形の場合を示したが、これ以外の
形状のものについても、各受光素子の受光量が均一にな
るように設計することができる。また、第2図のように
反射板を利用するときは、反射面を曲面にして又は曲面
と併用して、各受光素子の受光量を均一化することがで
きる。
Although Figures 1 and 2 both show the case where the light-receiving surface of each photodiode is rectangular in shape, other shapes are also designed so that the amount of light received by each light-receiving element is uniform. can do. Further, when a reflecting plate is used as shown in FIG. 2, the amount of light received by each light-receiving element can be made uniform by making the reflecting surface a curved surface or by using it in combination with a curved surface.

さらに面光源の場合にも応用できる。Furthermore, it can be applied to a surface light source.

(発明の効果)′ 本発明によるときは、複数の受光素子のそれぞれの受光
量が均一化されるから、発光素子と受光素子との光結合
の効率を上げることができ、より高出力の7オトカブラ
を提供することができる。
(Effects of the Invention) According to the present invention, since the amount of light received by each of the plurality of light receiving elements is equalized, the efficiency of optical coupling between the light emitting element and the light receiving element can be increased, and a higher output 7 We can provide Otokabura.

【図面の簡単な説明】 第1図及び第2図は本発明の詳細な説明図である。 1 、2 、8 、1−1.1−2.1−8・・・フォ
トダイオード、2−1.2−2.2−3.2−4,2−
5.2−6・・・フォトダイオード、5・・・反射板、
10.20・・・フォトダイオードアレイ、A、A−1
−LEDの位置、t・ LEDと点X=Oとの距離、t
l・・・LEDと反射板との距離。 茜 ・事 ! 2 輩 I!12 図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are detailed illustrations of the present invention. 1, 2, 8, 1-1.1-2.1-8...photodiode, 2-1.2-2.2-3.2-4,2-
5.2-6...Photodiode, 5...Reflector,
10.20...Photodiode array, A, A-1
- LED position, t・Distance between LED and point X=O, t
l...Distance between the LED and the reflector. Akane・Things! 2 Senior I! 12 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、発光素子と、複数の直列に接続された受光素子とよ
りなり、各受光素子の受光量は発光素子からの距離に関
係なく均一化されていることを特徴とするフォトカプラ
1. A photocoupler consisting of a light-emitting element and a plurality of light-receiving elements connected in series, the amount of light received by each light-receiving element being equalized regardless of the distance from the light-emitting element.
JP1130929A 1989-05-23 1989-05-23 Photocoupler Pending JPH02308576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130929A JPH02308576A (en) 1989-05-23 1989-05-23 Photocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130929A JPH02308576A (en) 1989-05-23 1989-05-23 Photocoupler

Publications (1)

Publication Number Publication Date
JPH02308576A true JPH02308576A (en) 1990-12-21

Family

ID=15046020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130929A Pending JPH02308576A (en) 1989-05-23 1989-05-23 Photocoupler

Country Status (1)

Country Link
JP (1) JPH02308576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163977A (en) * 1992-11-18 1994-06-10 Nec Corp Photocoupler
JP2010258165A (en) * 2009-04-23 2010-11-11 Omron Corp Optical coupler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163977A (en) * 1992-11-18 1994-06-10 Nec Corp Photocoupler
JP2010258165A (en) * 2009-04-23 2010-11-11 Omron Corp Optical coupler

Similar Documents

Publication Publication Date Title
US4418238A (en) Photoelectric solar cell array
JPH034571A (en) Optoelectronic semiconductor device and manufacture thereof
EP2418694B1 (en) Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
DE60021775D1 (en) OPTICAL DISTANCE SENSOR
EP2418693A2 (en) Luminescent solar concentrator with distributed outcoupling structures and microoptical elements
JP3404365B2 (en) Concentrating solar power generator
KR101025929B1 (en) Solar cell module including optical wave guide
JPH02308576A (en) Photocoupler
WO2024021328A1 (en) Photoelectric detector, array, and terminal
TW201339679A (en) Photoelectric converter
JP2004525397A (en) Apparatus for transmitting optical signals through a planar light guide
JPS59217380A (en) Method of mounting light emitting element array
JPS6316682A (en) Resin-sealed light emitting module
CN102640296B (en) There is the optical texture of flat top
Nakamaru et al. Novel high-efficiency concentrator for optical fiber communication
JP3026396B2 (en) Optically coupled semiconductor device
JPH0525254Y2 (en)
SE0102071D0 (en) Light emitting elements
JPH05136446A (en) Semiconductor photodetector
TW202042491A (en) Solar module and brightness enhancement plate
JPH11266032A (en) Condenser, heat collector, photo-detector having diffracting surface and photo-electric converter of artificial beams
JPH0511524Y2 (en)
KR100334791B1 (en) Photodetector and fabrication method thereof for wavelength division multiplexing systems
JPS6461966A (en) Photocoupler
JPH0623003Y2 (en) Reflective photo sensor