JPH02308203A - Production of distributed refractive index type synthetic resin rod lens array - Google Patents

Production of distributed refractive index type synthetic resin rod lens array

Info

Publication number
JPH02308203A
JPH02308203A JP12882989A JP12882989A JPH02308203A JP H02308203 A JPH02308203 A JP H02308203A JP 12882989 A JP12882989 A JP 12882989A JP 12882989 A JP12882989 A JP 12882989A JP H02308203 A JPH02308203 A JP H02308203A
Authority
JP
Japan
Prior art keywords
refractive index
gel substrate
lens array
rod lens
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12882989A
Other languages
Japanese (ja)
Inventor
Kuniyuki Eguchi
州志 江口
Masaji Ogata
正次 尾形
Tokuyuki Kaneshiro
徳幸 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12882989A priority Critical patent/JPH02308203A/en
Publication of JPH02308203A publication Critical patent/JPH02308203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rod lens array which has less fluctuating optical characteristics and allows the easy formation to small lens diameters by irradiating a transparent gel substrate having a high refractive index with light through a photomask having plural parallel rectilinear patterns to form plural rectilinear parts, then forming a polymer having the refractive index lower than the refractive index of the gel substrate in these rectilinear parts. CONSTITUTION:The gel substrate 1 is produced by partly polymerizing the monomer forming the polymer having the refractive index N1 and thereafter, the photomask 2 having plural pieces of the rectilinear patterns having the same width and inter- pattern distance in parallel is stuck to the gel substrate. The substrate is then irradiat ed with UV rays to form the parts 3 where the polymn. is selectively progressed from the front surface in the gel substrate down to the base. The transparent gel substrate is then immersed for a specified period of time into the monomer 4 forming the polymer having the refractive index N2 lower than N1 and is thereby subjected to the diffusion treatment of the low-refractive index monomer. The distributed index shape is thereafter immobilized by heating or irradiation with light. As a result, the plastic rod lens array 7 having lens bodies 5 of parabolic distributed index shapes 6 in the parts where the polymn. progresses selectively is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はファクシミリの作像用光学系、または、光ファ
イバと半導体レーザ・発光ダイオードとの光結合等の光
情報処理や光通信分野に用いる屈折率分布型の合成樹脂
ロッドレンズアレーの勝運方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to optical information processing and optical communication fields such as optical systems for facsimile imaging or optical coupling between optical fibers and semiconductor lasers and light emitting diodes. This article relates to a winning method for a refractive index distribution type synthetic resin rod lens array.

〔従来の技術〕[Conventional technology]

近年、電子複写機の小型化に伴い、第8図に示すような
、多数のロンド状屈折率分布型集光レンズ11のアレー
化によるロンドレンズアレー12が作像用光学系として
使用されている。また、光フアイバ通信分野においても
半導体レーザ(LD)や発光ダイオード(LED)と多
数本の光ファイバとの光結合を効率良く結合させるため
、第9図に示すようなロッドレンズアレーが検討される
ようになってきた。
In recent years, with the miniaturization of electronic copying machines, a rondo lens array 12, which is an array of a large number of rondo-shaped gradient index condensing lenses 11, as shown in FIG. 8, is being used as an imaging optical system. . Additionally, in the field of optical fiber communications, a rod lens array as shown in Figure 9 is being considered in order to efficiently couple semiconductor lasers (LDs) or light emitting diodes (LEDs) with multiple optical fibers. It's starting to look like this.

これらの屈折率分布型ロッドレンズアレーにはガラスを
基材とするものと、合成樹脂を基材とするものがあるが
、特開昭61−26002号公報に記載されているよう
なガラスを基材とするレンズアレーは一般に製造工程が
煩雑であり、屈折率分布形成にも長時間を要する。一方
、合成樹脂では主に。
These gradient index rod lens arrays include those that are based on glass and those that are based on synthetic resin. The manufacturing process for lens arrays used as materials is generally complicated, and it takes a long time to form a refractive index distribution. On the other hand, mainly for synthetic resins.

特開昭56−37521号公報等の方法によって、まず
、−個の屈折率分布型ロンドを作製した後、それを多数
個寄せ集めて、新たにロッドレンズアレーを作製するこ
とが行なわれている。また、別の製造方法として、透明
なプラスチック基板にレンズ径とは、はぼ、同等の孔を
多数個形成した後、重合速度と共重合比の異なる多元系
の単量体を注入し、加熱等によって屈折率分布を形成す
る界面ゲル不均一共重合法が提案されている〔アプライ
ド・オプティクス、27  (1988年)第486頁
から第491頁(Applied 0ptics、 2
7 (1988)pp486−491)。
According to a method such as that disclosed in Japanese Patent Application Laid-Open No. 56-37521, - number of refractive index distribution type ronds are first produced, and then a large number of them are assembled to produce a new rod lens array. . Another manufacturing method is to form a large number of holes with the same lens diameter on a transparent plastic substrate, then inject multi-component monomers with different polymerization rates and copolymerization ratios, and heat them. [Applied Optics, 27 (1988) pp. 486-491 (Applied Optics, 27 (1988), pp. 486-491) has been proposed by et al.
7 (1988) pp486-491).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はロッドレンズをアレー化するための複雑
な工程が必要となるため、多大な労力と費用とを要する
。また、多元系単量体の不均一ゲル共重合法では、反応
および屈折率分布制御を安定して行うことが極めて困難
であった。さらに。
The above-mentioned conventional technology requires a complicated process for forming an array of rod lenses, and thus requires a great deal of labor and cost. Furthermore, in the heterogeneous gel copolymerization method of multi-component monomers, it is extremely difficult to stably control the reaction and refractive index distribution. moreover.

合成樹脂では、一般に、II!!+1以下の径をもつロ
ッドレンズを作製することは加工精度の点で難しくなる
ため、その利用範囲が限定されるという問題があった。
For synthetic resins, generally II! ! Since it is difficult to manufacture a rod lens having a diameter of +1 or less in terms of processing accuracy, there is a problem that the range of its use is limited.

本発明の目的は、安価で、光学特性のばらつきが小さく
、しかも、小さなレンズ径を容易に形成することが可能
な屈折率分布型の合成樹脂ロッドレンズアレーの製造方
法を提供することにある。
An object of the present invention is to provide a method for manufacturing a refractive index gradient synthetic resin rod lens array that is inexpensive, has small variations in optical properties, and can easily form a small lens diameter.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、高屈折率の透明ゲル基板に、複数の平行な
直線パターンをもつフォトマスクを通して光照射を行う
ことによって、!!択的に重合を進めた複数の直線部分
を形成した後、ゲル基板よりも低屈折率の重合体を形成
する単量体を液体、気体、又は、#1滴状態でゲル基板
中に拡散させ、加熱、または、光照射等によって重合を
完結させ、選択的に重合を進めた複数の直線部分に屈折
率分布を形成、固定化してレンズアレー化することによ
り達成される。
The above purpose can be achieved by irradiating light onto a transparent gel substrate with a high refractive index through a photomask having multiple parallel linear patterns! ! After forming a plurality of linear sections that are selectively polymerized, a monomer that forms a polymer with a lower refractive index than the gel substrate is diffused into the gel substrate in the form of a liquid, gas, or #1 drop. This is accomplished by completing the polymerization by heating, light irradiation, etc., forming and fixing a refractive index distribution in a plurality of linear portions where polymerization has proceeded selectively, and forming a lens array.

〔作用〕[Effect]

本発明は、透明ゲル基板にフォトマスクを通して光照射
することによって、光照射部分が未照射部分と比べて、
選択的に重合の進行した箇所となる。これらの重合進行
度の違いは、ゲル基板を形成しているそれぞれの部分の
密度の違いを生むために、低屈折率の単量体をゲル基板
へ内部拡散させる時に1両者の部分で拡散速度が異なっ
てくる。
In the present invention, by irradiating a transparent gel substrate with light through a photomask, the irradiated area is compared with the unirradiated area.
This is the location where polymerization has selectively progressed. These differences in polymerization progress result in differences in the density of each part forming the gel substrate, so when a monomer with a low refractive index is internally diffused into the gel substrate, the diffusion rate in both parts increases. It will be different.

すなわち、光照射部分では未照射部分よりも相対的に拡
散速度が遅くなるため、この差違を含浸。
In other words, the diffusion rate is relatively slower in the irradiated area than in the unirradiated area, so this difference is compensated for by impregnation.

拡散、屈折率分布の固定化の条件で調整することによっ
て、ゲル基板中の光照射部分に屈折率分布を形成するこ
とができる。ここで、ゲル基板中に一本の直線のみの光
照射部を形成すれば、この部分に均一の屈折率分布型ロ
ッドレンズを形成できる。本発明は、ゲル基板中に複数
の直線からなる光照射部を形成した後、低屈折率単量体
の内部拡散、屈折率分布形状の固定化処理を行うことに
よって、屈折率分布型のロッドレンズアレーを作製する
ことを特徴とする。また、本発明では光照射によってレ
ンズ径を規定できるため、径が1何以下の微小ロッドレ
ンズアレーを形成することが容易となる。
By adjusting the conditions of diffusion and fixation of the refractive index distribution, it is possible to form a refractive index distribution in the light irradiated portion of the gel substrate. Here, if a light irradiation part having only one straight line is formed in the gel substrate, a uniform gradient index rod lens can be formed in this part. In the present invention, after forming a light irradiation part consisting of a plurality of straight lines in a gel substrate, internal diffusion of a low refractive index monomer and fixing treatment of the refractive index distribution shape are performed, thereby forming a refractive index distribution type rod. It is characterized by producing a lens array. Further, in the present invention, since the lens diameter can be defined by light irradiation, it becomes easy to form a micro rod lens array with a diameter of 1 or less.

本発明において、この光照射部はロッドレンズ部に対応
するため、レンズ径に応じて数μm〜数田に及ぶ幅と厚
さが必要となる。そのため、大口径のレンズアレーを作
製する場合には光照射によ    ′つて選択的に重合
を進めた部分をゲル基板の表面のみならず、その内部ま
で一様に形成することを行う。
In the present invention, since this light irradiation part corresponds to the rod lens part, it needs a width and thickness ranging from several μm to several meters depending on the lens diameter. Therefore, when producing a large-diameter lens array, the portions that are selectively polymerized by light irradiation are uniformly formed not only on the surface of the gel substrate but also inside the gel substrate.

以下、本発明を第1図以下の図面を参照して具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings from FIG.

まず、第1図の断面図で示すように、屈折率Nlの重合
体を形成する単量体(単量体混合物を含む)を室温〜1
00℃の条件で一部重合させてゲル基板1を作製した(
a)後、同じ幅とパターン間距離をもつ直線パターンを
平行に複数個もつフォトマスク2をゲル基板に付着させ
て光照射、特に、取り扱い易さや経済性を考慮して好ま
しくは紫外線照射を行い、ゲル基板中の上面から底面に
至るまで選択的に重合を進めた部分3を形成する(b)
。この重合進行部分は紫外線照射部分に対応する。この
場合、フォトマスク2とゲル基板との粘着、または、接
着を防止するために、両者の間に非粘着、または、非接
着性の透明フィルムを介在しても良い。
First, as shown in the cross-sectional view of FIG.
Gel substrate 1 was prepared by partially polymerizing at 00°C (
After a), a photomask 2 having a plurality of parallel straight patterns with the same width and distance between patterns is attached to the gel substrate and irradiated with light, preferably ultraviolet rays in consideration of ease of handling and economical efficiency. , forming a portion 3 in which polymerization is selectively progressed from the top surface to the bottom surface of the gel substrate (b)
. This polymerization progressing portion corresponds to the ultraviolet irradiation portion. In this case, in order to prevent adhesion or adhesion between the photomask 2 and the gel substrate, a non-adhesive or non-adhesive transparent film may be interposed between the two.

次に、透明ゲル基板をN1よりも低屈折率Nzをもつ重
合体を形成する単量体中4に室温〜100°Cの条件で
一定時間浸漬させ、低屈折率単量体の拡散処理を行う(
C)。その後、加熱、または、光照射によって屈折率分
布形状を固定化させる(d)。この時、低屈折率単量体
の揮散を防止するため、基板両面に他のプラスチックフ
ィルム、または、プラスチック板を密着させて加熱、ま
たは、光照射しても差し支えない。低屈折率単量体の拡
散は紫外線照射部で遅く、未照射部では速くなるため、
照射部、すなわち、選択的に重合の進んだ部分に第2図
に示すような放物線形の屈折率分布形状6をもつレンズ
体5をアレー状に形成し、屈折率分布型のプラスチック
ロッドレンズアレー7を得ることができる。
Next, the transparent gel substrate is immersed in monomer 4 forming a polymer with a lower refractive index Nz than N1 for a certain period of time at room temperature to 100°C to perform a diffusion treatment of the low refractive index monomer. conduct(
C). Thereafter, the refractive index distribution shape is fixed by heating or light irradiation (d). At this time, in order to prevent volatilization of the low refractive index monomer, other plastic films or plastic plates may be brought into close contact with both surfaces of the substrate and heated or irradiated with light. Diffusion of low refractive index monomers is slow in the UV irradiated areas and faster in the non-irradiated areas.
Lens bodies 5 having a parabolic refractive index distribution shape 6 as shown in FIG. 2 are formed in an array in the irradiated part, that is, the part where polymerization has progressed selectively, to form a refractive index distribution type plastic rod lens array. You can get 7.

このロッドレンズアレーの径は、ゲル基板の厚さとフォ
トマスク2の各直線パターンの幅とパターン間距離に大
きく依存するが、一般に、形成されるレンズ径はパター
ン幅よりも若干大きくなる傾向にある。そのため、例え
ば、1m前後の径のレンズを作製する場合には、ゲル基
板の厚さを1〜2III11、直線パターン幅0 、3
〜1 、 Orrn、パターン間距離0.3〜1.0m
にすれば、はぼ円形で1m径のレンズアレーが得られる
。その他、屈折率分布型アナモルフィックレンズとなり
うる楕円レンズを得るためには、ゲル基板を薄くシ、パ
ターン幅とパターン間距離の同じものを用いれば容易に
作製できる。
The diameter of this rod lens array largely depends on the thickness of the gel substrate, the width of each linear pattern on the photomask 2, and the distance between the patterns, but in general, the diameter of the formed lens tends to be slightly larger than the pattern width. . Therefore, for example, when producing a lens with a diameter of around 1 m, the thickness of the gel substrate should be 1 to 2 III, and the linear pattern width should be 0 to 3.
~1, Orrn, distance between patterns 0.3~1.0m
If we do this, we can obtain a nearly circular lens array with a diameter of 1 m. In addition, in order to obtain an elliptical lens that can be used as a gradient index anamorphic lens, it can be easily manufactured by using a thin gel substrate and using one having the same pattern width and distance between patterns.

また、屈折率分布形状6は、含浸、拡散、屈折率分布固
定化処理条件によって決まるが、レンズ性能は放物線曲
線をもつ分布形状が最も優れている。
Further, the refractive index distribution shape 6 is determined by impregnation, diffusion, and refractive index distribution fixing processing conditions, but a distribution shape having a parabolic curve has the best lens performance.

以上のようにして得られた屈折率分布型のロッドレンズ
アレー7を作像用光学や光結合系に用いる時には、レン
ズアレーを所定のピッチに切削後、端面を光学研磨して
使用できる。
When the gradient index rod lens array 7 obtained as described above is used for imaging optics or a light coupling system, the lens array can be cut to a predetermined pitch and then the end faces are optically polished.

第3図と第4図は本発明による別の製造方法の断面図で
ある6第3図は紫外線照射によって形成される選択的に
重合の進んだ部分3が、ゲル基板の表面から内部に向け
て一定距離の部分だけ形成されるレンズアレーの製造方
法である。また、本方法によれば、第4図に示すように
、基板の両面から紫外線を同時に照射することによって
、屈折率分布形のレンズアレーを二列平行に形成するこ
とができる。レンズアレーの配列方法は、フォトマスク
の位置を変えることによって、各レンズ体の中心軸が二
列とも一致したもの8と異なるもの9を作製することが
できる。また、第4図に示す作製方法において、ゲル基
板のほぼ中央部に遮光用のプラスチック、金属、セラミ
ックのフィルム。
Figures 3 and 4 are cross-sectional views of another manufacturing method according to the present invention. 6 Figure 3 shows that the selectively polymerized portion 3 formed by ultraviolet irradiation is directed inward from the surface of the gel substrate. This is a method of manufacturing a lens array in which only a portion of a certain distance is formed. Furthermore, according to this method, as shown in FIG. 4, two parallel rows of refractive index gradient lens arrays can be formed by simultaneously irradiating ultraviolet rays from both sides of the substrate. As for the method of arranging the lens array, by changing the position of the photomask, it is possible to produce an arrangement 8 in which the center axes of each lens body are coincident in both rows, and an arrangement 9 in which the center axes of the lens bodies are different from each other. In addition, in the manufacturing method shown in FIG. 4, a light-shielding plastic, metal, or ceramic film is provided approximately in the center of the gel substrate.

または、薄板を介在させることによって、ゲル基板の両
面における光照射をお互いに干渉しないようにすること
もできる。
Alternatively, by interposing a thin plate, the light irradiation on both sides of the gel substrate can be prevented from interfering with each other.

第5図は、低屈折率単量体をゲル基板に含浸後、透明、
又は、不透明のプラスチック薄板10をゲル基板両面に
密着させ、加熱時における低屈折率単量体の揮散を防い
で屈折率分布形状を固定させるといつロッドレンズアレ
ーの別の製造方法による断面図である。プラスチック薄
板はゲル基板にそのまま接着すれば、レンズ切削、研磨
加工時の補強板、ならびに、レンズそのものの保護材と
しても使用することができる。
Figure 5 shows that after impregnating the gel substrate with a low refractive index monomer, the transparent
Alternatively, if the opaque plastic thin plate 10 is closely attached to both sides of the gel substrate to prevent the low refractive index monomer from volatilizing during heating and to fix the refractive index distribution shape, a cross-sectional view of the rod lens array according to another manufacturing method is shown. be. If the plastic thin plate is directly adhered to the gel substrate, it can be used as a reinforcing plate during lens cutting and polishing, and as a protective material for the lens itself.

第6図は、第1図に示す方法で得られるロッドレンズア
レーを二枚重ねたレンズアレーの断面図である。これは
、第1図の(d)の工程で得られるレンズアレーを接着
剤等によって二枚貼り合せて作製することができる。ま
た、(c)で得られる含浸後のゲル基板を二枚重ね合わ
せた後、加熱、又は、光照射によって屈折率分布形状を
固定化することによっても作製できる。第7図は、第5
図の(c)で得られた含浸後のゲル基板を二枚重ね合す
せた後、それらの上面と下面に透明、又は、不透明のプ
ラスチック薄板を密着させて、加熱、又は、光照射によ
って屈折率分布形状を固定化して得られるロッドアレー
の断面図である。このように、本発明による方法はaラ
ドレンズアレーの複数個を、順次、重ね合わせていけば
、二次元的な屈折率分布型ロッドレンズアレーを製造す
ることが可能である。
FIG. 6 is a sectional view of a lens array obtained by stacking two rod lens arrays obtained by the method shown in FIG. This can be produced by bonding two lens arrays obtained in the step (d) of FIG. 1 with an adhesive or the like. Alternatively, it can be produced by stacking two impregnated gel substrates obtained in (c) and then fixing the refractive index distribution shape by heating or light irradiation. Figure 7 shows the fifth
After overlapping two gel substrates after impregnation obtained in (c) of the figure, a transparent or opaque thin plastic plate is brought into close contact with their upper and lower surfaces, and the refractive index is determined by heating or light irradiation. FIG. 3 is a cross-sectional view of a rod array obtained by fixing the distribution shape. As described above, the method according to the present invention makes it possible to manufacture a two-dimensional gradient index rod lens array by sequentially overlapping a plurality of a-rad lens arrays.

本発明において、ゲル基板を形成する単量体は、透明な
重合体を形成する単量体、および、単量体混合物であれ
ば良いが、低屈折率単量体のゲル基板内への含浸がスム
ーズに行われるようなものが好ましい。そのために、ゲ
ル基板が部分的に架橋構造を形成するような単量体を用
いることが、ゲル基板の溶解や変形を小さくできること
、含浸後。
In the present invention, the monomer forming the gel substrate may be a monomer forming a transparent polymer or a monomer mixture, but impregnation of a low refractive index monomer into the gel substrate is sufficient. It is preferable that the process be carried out smoothly. For this reason, using a monomer that causes the gel substrate to partially form a crosslinked structure can reduce dissolution and deformation of the gel substrate after impregnation.

低屈折率単量体と共重合しても透明性が損われないこと
などの利点があるため、好適である。これらの単量体は
、ビニル基、アクリル基、メタクリル基、アリル基など
の重合性二重結合やエポキシ基、水酸基、カルボキシル
基、イソシアナート基などの反応性基を複数種もった化
合物が用いられる。また、これらの共有結合によるもの
だけでなく1例えば、金属イオン結合による架橋構造を
形成する単量体を用いることもできる3例を挙げれば、
アクリル酸ビニル、メタクリル酸ビニル、フタル酸ビニ
ル、フタル酸ジビニル、イソフタル酸ジビニル、ジビニ
ルベンゼン、ジビニルナフタレン、エチレングリコール
ジビニルエーテル、α−ナフトエ酸ビニル、β−ナフト
エ酸ビニル、フタル酸ジアリル、イソフタル酸ジアリル
、アクリル酸アリル、メタクリル酸アリル、メタクリル
酸β−メタリル、ジエチレングリコールビスアリルエー
テル、ジエチレングリコールビスアリルカーボネート、
テ1−ラエチレングリコールジメタクリレ一ト、ビスフ
ェノールAジメタクリレート、トリメリット酸アリル、
リン酸トリアリル、亜リン酸トリアリル、ジフェニルジ
アリルシラン、ジフェニルジビニルシラン、トリアリル
イソシアネート。
It is suitable because it has the advantage that transparency is not impaired even when copolymerized with a low refractive index monomer. These monomers are compounds with multiple types of polymerizable double bonds such as vinyl groups, acrylic groups, methacrylic groups, and allyl groups, and reactive groups such as epoxy groups, hydroxyl groups, carboxyl groups, and isocyanate groups. It will be done. In addition, in addition to these covalent bonds, for example, monomers that form a crosslinked structure due to metal ion bonds can also be used.To give three examples,
Vinyl acrylate, vinyl methacrylate, vinyl phthalate, divinyl phthalate, divinyl isophthalate, divinylbenzene, divinylnaphthalene, ethylene glycol divinyl ether, α-vinyl naphthoate, β-vinyl naphthoate, diallyl phthalate, diallyl isophthalate , allyl acrylate, allyl methacrylate, β-methacrylate, diethylene glycol bisallyl ether, diethylene glycol bisallyl carbonate,
tera-ethylene glycol dimethacrylate, bisphenol A dimethacrylate, allyl trimellitate,
Triallyl phosphate, triallyl phosphite, diphenyldiallylsilane, diphenyldivinylsilane, triallyl isocyanate.

トリアリルシアネート、グリシジルメタクリレート、ヒ
ドロキシエチルメタクリレ―ト、ヒドロキシエチルアク
リレート、特開昭60−181107号公報による重金
属と芳香環を含む単量体組成物などである。これらの単
量体は、単独、もしくは複数種で用いる。また、スチレ
ンおよびその誘導体、メタクリル酸エステル、アクリル
酸エステルなどの通常の単官能単量体と併用することも
可能である。
These include triallylcyanate, glycidyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, and a monomer composition containing a heavy metal and an aromatic ring as disclosed in JP-A-60-181107. These monomers may be used alone or in combination. It is also possible to use it in combination with common monofunctional monomers such as styrene and its derivatives, methacrylic esters, and acrylic esters.

ゲル基板は、これらの単量体に過酸化ベンゾイル、過酸
化ラウロイル、ジシリスチルパーオキシジカーボネート
、アゾビスし一ブタン、アゾビスイソブチロニトリルな
どの熱重合開始剤とベンゾインエチルエーテル、ベンゾ
インメチルエーテルなどの光重合開始剤を加えた後、ガ
ラス板、又は、樹脂板二枚の間にガスケットを介在させ
た鋳型に注入し、室温〜100℃の条件で一部重合させ
て得る。熱重合開始剤又は光重合開始剤の配合量は単量
体の反応性に応じて、0.01〜5重量部の範囲で選ぶ
ことができるが、反応が速い場合は加えなくてもよい。
The gel substrate is made by combining these monomers with a thermal polymerization initiator such as benzoyl peroxide, lauroyl peroxide, disilysyl peroxydicarbonate, azobisisobutane, azobisisobutyronitrile, and benzoin ethyl ether, benzoin methyl. After adding a photopolymerization initiator such as ether, it is poured into a mold with a gasket interposed between two glass plates or resin plates, and partially polymerized at room temperature to 100°C. The amount of the thermal polymerization initiator or photopolymerization initiator can be selected in the range of 0.01 to 5 parts by weight depending on the reactivity of the monomer, but may not be added if the reaction is fast.

また、重合速度の速い単量体には溶媒やメルカプタン類
の連鎖移動剤を加えて重合速度を調整することもできる
Furthermore, the polymerization rate can be adjusted by adding a solvent or a chain transfer agent such as a mercaptan to a monomer having a high polymerization rate.

本発明で、ロンドレンズの屈折率分布は、ゲル基板が重
合体となった時の屈折率Nlだけではなく、それよりも
低屈折率N2をもつ重合体を形成する含浸用単量体の種
類によっても影響される。
In the present invention, the refractive index distribution of the Rondo lens is determined not only by the refractive index Nl when the gel substrate becomes a polymer, but also by the type of impregnating monomer that forms the polymer having a lower refractive index N2. It is also influenced by.

すなわち、NzとN2の差が大きくなる程、屈折率の差
の大きな分布を形成することが容易となる。
That is, the larger the difference between Nz and N2, the easier it becomes to form a distribution with a larger difference in refractive index.

そのため、本発明で使用できる拡散用単量体はビジル基
、アクリル基、メタクリル基、アリル基などの重合性二
重結合、又は、エポキシ基、カルボキシル基、水酸基な
どの反応性基を一種又は二種以上もち、しかも低屈折率
である化合物が好適である。これらの例を挙げれば、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
トリフロロエチル、メタクリル酸トリヒドロパークロロ
プロピル、アクリル酸メチル、アクリル酸エチル。
Therefore, the diffusion monomer that can be used in the present invention has one or two polymerizable double bonds such as vizyl, acrylic, methacrylic, and allyl groups, or reactive groups such as epoxy, carboxyl, and hydroxyl groups. Compounds that have more than one species and have a low refractive index are preferred. Examples of these are methyl methacrylate, ethyl methacrylate, trifluoroethyl methacrylate, trihydroperchloropropyl methacrylate, methyl acrylate, ethyl acrylate.

アクリル酸トリクロロエチル、メタクリル酸グリシジル
、メタクリル酸ヒドロキシエチル、アクリル酸ヒドロキ
シエチル、メタクリル酸、アクリル酸、アリルグリシジ
ルエーテルなどであり、これらの単量体は単独、もしく
は、二種以上を用いることができる。これらの単量体に
は含浸工程前に、あらかじめ熱重合開始剤、又は、光重
合開始剤を加える。また、本発明において、作像用光学
系のロッドレンズアレーを製造する場合は、レンズの色
収差が小さいことが要求される。そのため、ゲル基板作
製用の単量体、および、拡散用の単量体は、それぞれの
重合体のアツベ数(屈折率の波長依存性を示す)の近い
ものの組み合せを選択する方がより好適である。
These monomers include trichloroethyl acrylate, glycidyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, methacrylic acid, acrylic acid, allyl glycidyl ether, and these monomers can be used alone or in combination of two or more. . A thermal polymerization initiator or a photopolymerization initiator is added to these monomers in advance before the impregnation step. Further, in the present invention, when manufacturing a rod lens array for an imaging optical system, the lens is required to have small chromatic aberration. Therefore, it is more preferable to select a combination of monomers for producing a gel substrate and monomers for diffusion that have similar Atbe numbers (indicating the wavelength dependence of the refractive index) of the respective polymers. be.

本発明において、低屈折率を有する単量体をゲル基板に
拡散する方法としては、ゲル基板を前記単量体中に浸漬
させて、液体状態で拡散させる方法と、拡散用単量体を
加温して蒸気とした後、その蒸気雰囲気下にゲル基板を
設置して、気体状態。
In the present invention, the monomer having a low refractive index can be diffused into the gel substrate by immersing the gel substrate in the monomer and diffusing it in a liquid state, or by adding the monomer for diffusion. After heating it to steam, a gel substrate is placed in the steam atmosphere to create a gaseous state.

又は、霧滴状態で拡散させる方法がある。両者の方法の
中で、前者は拡散処置設置を簡便化することができ、拡
散用単量体の損失を後者と比べて小さくできるため好適
である。
Alternatively, there is a method of dispersing it in the form of mist droplets. Of the two methods, the former is preferred because it can simplify the installation of the diffusion treatment and reduce the loss of the diffusion monomer compared to the latter.

〔実施例〕〔Example〕

以下、実施例を用いて本発明を、更に、詳細に説明する
Hereinafter, the present invention will be explained in further detail using Examples.

〈実施例1〉 本実施例は第1図に示すように、まずジエチレングリコ
ールビスアリルカーボネート90重量部(以下、部と略
す)、アクリル酸メチル10部、及び、過酸化ベンゾイ
ル2部、ベンゾインエチルエーテル0.5 部からなる
混合液をシリコーン離型処理した120X120mmの
ガラス板、及び、約211n外径のフッ化ビニリデンと
3フツ化工チレン共重合体のチューブガスケットからな
る鋳型に流入し、70℃二時間加熱硬化し、厚さ1.7
m100X100anの透明のゲル基板を得た(a)。
<Example 1> As shown in FIG. 1, in this example, 90 parts by weight (hereinafter abbreviated as parts) of diethylene glycol bisallyl carbonate, 10 parts of methyl acrylate, 2 parts of benzoyl peroxide, and benzoin ethyl ether were prepared. A mixed solution of 0.5 parts was poured into a mold consisting of a 120 x 120 mm glass plate treated with silicone mold release and a tube gasket of vinylidene fluoride and trifluoroethylene copolymer with an outer diameter of about 211 nm, and heated at 70°C. Cured by heating for hours, thickness 1.7
A transparent gel substrate of 100 m x 100 m was obtained (a).

次に、ガラス基板に幅Inn、長さ100m+nで、1
mの等間隔で40本の空白を残して残りがすべてクロム
蒸着されたフォトマスクをゲル基板の上に密着させ、照
射強度が6 m W / alの高圧水銀灯を用いて5
分間紫外線露光を行った(b)。その後、0.5 部の
過酸化ベンゾイルを含むメタクリル酸2.2.2−トリ
フロロエチル中に露光後のゲル基板を40℃で二時間浸
漬させた後(C)、この基板を厚さ2IIM!lのシリ
コーン樹脂ガスケットを介在したシリコーン離型済みの
二枚のガラス板ではさみ込み、全体をポリエチレンテレ
フタレートフィルムで覆った状態で70℃5時間、90
℃5時間後硬化を行った。得られた透明基板をガラス板
から離型した後、基板断面を厚さ約1nnに切削。
Next, on the glass substrate, 1
A photomask, in which 40 blanks were left at equal intervals of m, and the rest were all chromium-deposited, was placed tightly on the gel substrate, and exposed using a high-pressure mercury lamp with an irradiation intensity of 6 mW/al.
UV exposure was performed for a minute (b). Thereafter, the exposed gel substrate was immersed in 2.2.2-trifluoroethyl methacrylate containing 0.5 parts of benzoyl peroxide at 40° C. for 2 hours (C), and the substrate was diluted to a thickness of 2IIM. ! It was sandwiched between two silicone-released glass plates with a silicone resin gasket interposed in between and heated at 70°C for 5 hours at 90°C with the whole covered with a polyethylene terephthalate film.
Cure was carried out after 5 hours. After the obtained transparent substrate was released from the glass plate, the cross section of the substrate was cut to a thickness of approximately 1 nn.

研磨し、この断面をマツチングオイル中に浸漬して、干
渉顕微鏡で干渉縞を観測した。その結果、得られたロッ
ドレンズアレーは第1図の(d)に示すような形状で配
置されていた。各−個のロッドレンズ体は、半径が約0
.7画のほぼ円形の断面をもち、最大屈折率差は0.0
38 であった。
After polishing, the cross section was immersed in matching oil and interference fringes were observed using an interference microscope. As a result, the rod lens array obtained was arranged in the shape shown in FIG. 1(d). Each - rod lens body has a radius of approximately 0.
.. It has a nearly circular cross section with 7 strokes, and the maximum refractive index difference is 0.0.
It was 38.

また、ロッドレンズ間の中心からの距離は約2mであっ
た。屈折率分布形状は第2図の6に示すような放物曲線
を示しており、理想状態に近いものであった。
Further, the distance between the rod lenses from the center was about 2 m. The refractive index distribution shape showed a parabolic curve as shown in 6 in FIG. 2, which was close to an ideal state.

〈実施例2〉 アクリル酸33部、ケイ皮酸37部をベンゼンに溶解し
、室温で水酸化バリウム1水和塩(Ba(○H)Z・H
z○)30部を徐々に加えて反応を行わせた。この溶液
に含まれる水とベンゼンを減圧下で除いて単量体組成物
を得た。この単量体組成物50部、クロルスチレン50
部及びシミリスチルパーオキシジカーボネート0.2部
、ベンゾインエチルエーテル0.5部からなる混合液を
実施例1と同様の鋳型に注入し、60℃、一時間加熱硬
化し、第5図の(a)に示すような厚さ1.7mm、1
00 X 100mmの透明ゲル基板を得た。
<Example 2> 33 parts of acrylic acid and 37 parts of cinnamic acid were dissolved in benzene, and barium hydroxide monohydrate (Ba(○H)Z・H) was dissolved at room temperature.
30 parts of z○) were gradually added to carry out the reaction. Water and benzene contained in this solution were removed under reduced pressure to obtain a monomer composition. 50 parts of this monomer composition, 50 parts of chlorstyrene
A mixed solution consisting of 1 part, 0.2 parts of cimilistyl peroxydicarbonate, and 0.5 parts of benzoin ethyl ether was poured into the same mold as in Example 1, and heated and cured at 60°C for 1 hour. Thickness 1.7 mm, 1 as shown in a)
A transparent gel substrate measuring 0.00 x 100 mm was obtained.

次に、実施例1と同様のフォトマスクと条件を用いて、
高圧水銀灯によって5分間紫外線露光を行った(b)。
Next, using the same photomask and conditions as in Example 1,
Ultraviolet light exposure was performed for 5 minutes using a high-pressure mercury lamp (b).

その後、0.3部のシミリスチルパーオキシジカーボネ
ートを含むメタクリル酸20部。
Then 20 parts of methacrylic acid containing 0.3 parts of similystyl peroxydicarbonate.

アリルグリシジルエーテル44部、メタクリル酸グリシ
ジル36部の浸漬液中に露光後のゲル基板を25℃で二
時間浸漬させた後(C)、この基板を厚さ2Iffi+
のガスケットを介在した二枚の透明エポキシ樹脂板(1
,5t)ではさみ込み、40℃。
After immersing the exposed gel substrate in an immersion solution containing 44 parts of allyl glycidyl ether and 36 parts of glycidyl methacrylate at 25°C for 2 hours (C), the substrate was heated to a thickness of 2 Iffi+.
Two transparent epoxy resin plates (1
, 5t) and heated to 40°C.

一時間、70℃十時間で後硬化を行った。得られた透明
基板は第5図の(d)に示すようなサンドイッチ構造の
ロッドレンズアレーをもっていた。
Post-curing was performed at 70° C. for 1 hour and 10 hours. The obtained transparent substrate had a sandwich-structured rod lens array as shown in FIG. 5(d).

この基板を厚さ約1++nに切削、研磨し、断面をマツ
チングオイル中に浸漬して、干渉顕微鏡で干渉縞を観測
した。その結果、各−個のロッドレンズ体は、半径が約
0.8mmのほぼ円形の断面をもっており、最大屈折率
差は、0.034  、屈折率分布形状は放物曲線を示
していた。
This substrate was cut and polished to a thickness of approximately 1++n, the cross section was immersed in matting oil, and interference fringes were observed using an interference microscope. As a result, each rod lens body had a substantially circular cross section with a radius of about 0.8 mm, the maximum refractive index difference was 0.034, and the refractive index distribution shape showed a parabolic curve.

〈実施例3〉 アクリル酸26部、ケイ皮酸45部をベンゼンに溶解し
、室温で水酸化バリウム1水和塩29部を徐々に加えて
反応を行わせた。この溶液に含まれる水とベンゼンを減
圧下で除いて単量体組成物を得た。この単量体組成物4
0部、クロルスチレン40部、メタクリル酸鉛10部、
及び、シミリスチルパーオキシジカーボネート0.2部
、ベンゾインエチルエーテル0.5部からなる混合液を
実施例1と同様の鋳型に注入し、60℃30分間硬化し
、厚さ1.7mm、100 X 100mmの透明ゲル
基板を得た。次に、実施例1と同様のフォトマスク条件
を用いて、高圧水銀灯によって5分間紫外線露光を行っ
た。その後、0.3部のシミリスチルパーオキシジカー
ボネートを含むメタクリル酸20部、アリルグリシジル
エーテル44部、メタクリル酸2,2.2トリフロロ工
チル36部からなる浸漬液中に露光後のゲル基板を25
0℃二時間浸漬させた。浸漬後のゲル基板を二枚重ね合
わせ、厚さ41mのガスケットを介在した二枚の透明エ
ポキシ樹脂板(1,5t)ではさみ込み、40℃、一時
間、70℃、十時間で後硬化を行った。
<Example 3> 26 parts of acrylic acid and 45 parts of cinnamic acid were dissolved in benzene, and 29 parts of barium hydroxide monohydrate was gradually added at room temperature to carry out the reaction. Water and benzene contained in this solution were removed under reduced pressure to obtain a monomer composition. This monomer composition 4
0 parts, 40 parts of chlorstyrene, 10 parts of lead methacrylate,
Then, a mixed solution consisting of 0.2 parts of similistilperoxydicarbonate and 0.5 parts of benzoin ethyl ether was poured into the same mold as in Example 1, and cured at 60°C for 30 minutes to form a mold with a thickness of 1.7 mm and a 100% A transparent gel substrate with a size of 100 mm was obtained. Next, using the same photomask conditions as in Example 1, UV exposure was performed for 5 minutes using a high-pressure mercury lamp. Thereafter, the exposed gel substrate was placed in an immersion solution consisting of 20 parts of methacrylic acid containing 0.3 parts of similisyl peroxydicarbonate, 44 parts of allyl glycidyl ether, and 36 parts of 2,2.2-trifluoromethacrylic acid. 25
It was immersed at 0°C for two hours. After dipping, the two gel substrates were stacked and sandwiched between two transparent epoxy resin plates (1.5 tons) with a 41 m thick gasket interposed, and post-cured at 40°C for 1 hour and at 70°C for 10 hours. .

得られた透明基板は第7図に示すような構造のロッドレ
ンズアレーをもっていた。この基板の断面の干渉縞を実
施例1と同様の方法で観測した。その結果、各−個のロ
ッドレンズ体は、半径が約0.8部mの、はぼ、円形の
断面をもっており、最大屈折率差は、0,039.屈折
率分布形状は放物曲線を示していた。
The obtained transparent substrate had a rod lens array having a structure as shown in FIG. Interference fringes on the cross section of this substrate were observed in the same manner as in Example 1. As a result, each rod lens body has a circular cross section with a radius of approximately 0.8 parts m, and the maximum refractive index difference is 0.039 mm. The refractive index distribution shape showed a parabolic curve.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、屈折率分布型合成樹脂ロッドレンズア
レーを一体化して製造することができるため、ロッドレ
ンズをアレー化する工程が不要となり、安価で、光学特
性のバラツキの小さなレンズアレーが得られる。さらに
、各ロッドレンズ径は、フォトマスクを通して光照射に
よって精度良く規定できるため1合成樹脂では困難であ
った小さなレンズ径の形成が容易となる。
According to the present invention, since the refractive index distribution type synthetic resin rod lens array can be manufactured in an integrated manner, the process of forming rod lenses into an array is unnecessary, and a lens array that is inexpensive and has small variations in optical properties can be obtained. It will be done. Furthermore, since the diameter of each rod lens can be defined with high accuracy by irradiating light through a photomask, it becomes easy to form small lenses with a diameter that is difficult to achieve with a single synthetic resin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の屈折率分布型合成樹脂ロッ
ドレンズアレーの製造方法を示す工程図。 第2図は本発明によって得られるロッドレンズアレーの
斜視図と屈折率分布形状図、第3図は本発明による屈折
率分布型合成樹脂ロッドレンズアレーの製造方法の他の
例を示す断面図、第4図は本発明によって基板の両面に
形成される屈折率分布型合成樹脂ロッドレンズアレーの
製造方法の一例を示す断面図、第5図は本発明によって
両面に基板が設けられた屈折率分布型合成樹脂ロッドレ
ンズアレーの製造方法の断面図、第6図と第7図は本発
明によって得られる二層重ね合せの屈折率分布型合成樹
脂ロッドレンズアレーの断面図、第8図は従来の屈折率
分布型ロッドレンズアレーの斜視図、第9図は半導体レ
ーザー、又は、発光ダイオード、および、光ファイバと
屈折率分布型ロッドレンズアレーの光結合方法の一例を
示す斜視図である。 1・・・ゲル基板、2・・・フォトマスク、3・・・選
択的に重合を進めた部分、4・・・低屈折率単量体、5
・・・レンズ体、6・・・屈折率分布、7,8.9・・
・ロッドレンズアレー、10・・・プラスチック薄板、
11・・・屈折率分布型集光レンズ、12・・・ロッド
レンズアレー、13・・・半導体レーザ又は発光ダイオ
ード、計1    名6図 (b)口■I■■    来1図 高9図
FIG. 1 is a process diagram showing a method of manufacturing a refractive index distribution type synthetic resin rod lens array according to an embodiment of the present invention. FIG. 2 is a perspective view and a refractive index distribution shape diagram of a rod lens array obtained by the present invention, and FIG. 3 is a sectional view showing another example of the method for manufacturing a refractive index distribution type synthetic resin rod lens array according to the present invention. FIG. 4 is a cross-sectional view showing an example of a method for manufacturing a refractive index distribution type synthetic resin rod lens array formed on both sides of a substrate according to the present invention, and FIG. 5 is a refractive index distribution with substrates provided on both sides according to the present invention FIGS. 6 and 7 are cross-sectional views of a two-layer superimposed refractive index gradient type synthetic resin rod lens array obtained by the present invention, and FIG. FIG. 9 is a perspective view of a gradient index rod lens array, and is a perspective view showing an example of a method for optically coupling a semiconductor laser or a light emitting diode, and an optical fiber to a gradient index rod lens array. DESCRIPTION OF SYMBOLS 1... Gel substrate, 2... Photomask, 3... Selectively polymerized portion, 4... Low refractive index monomer, 5
...Lens body, 6...Refractive index distribution, 7,8.9...
・Rod lens array, 10...plastic thin plate,
11...Gradient refractive index condenser lens, 12...Rod lens array, 13...Semiconductor laser or light emitting diode, total 1 person 6 figures (b) Mouth ■ I ■■ Next 1 figure High 9 figure

Claims (1)

【特許請求の範囲】 1、(a)屈折率N_1の重合体を形成する単量体を一
部重合させて、透明ゲル基板を形成する工程、 (b)複数の直線パターンを平行にもつフォトマスクを
通して、前記透明ゲル基板に光照射を行い、前記透明ゲ
ル基板中に選択的に重合を進めた複数の直線部分を形成
する工程、 (c)前記屈折率N_1よりも低い屈折率N_2の重合
体を形成する単量体を液体、気体又は霧滴状態で前記透
明ゲル基板に拡散させ、前記透明ゲル基板中の選択的に
重合を進めた部分に屈折率分布を形成する工程、 (d)加熱、または、光照射等により重合を完結させて
前記屈折率分布を固定化する工程を含むことを特徴とす
る屈折率分布型合成樹脂ロッドレンズアレーの製造方法
。 2、フォトマスクを通して前記透明ゲル基板に光照射を
行い、前記透明ゲル基板中に選択的に重合を進めた複数
の直線部分を形成する工程において、前記選択的に重合
する部分が前記透明ゲル基板の表面から内部まで一様に
形成されることを特徴とする請求項1に記載の屈折率分
布型合成樹脂ロッドレンズアレーの製造方法。
[Claims] 1. (a) A step of forming a transparent gel substrate by partially polymerizing a monomer forming a polymer with a refractive index of N_1; (b) A photoform having a plurality of parallel linear patterns. irradiating the transparent gel substrate with light through a mask to form a plurality of linear portions in which selective polymerization has proceeded in the transparent gel substrate; (c) a step of irradiating the transparent gel substrate with light through a mask; (d) diffusing the monomers forming the coalescence into the transparent gel substrate in a liquid, gas, or atomized state, and forming a refractive index distribution in the selectively polymerized portions of the transparent gel substrate; A method for manufacturing a refractive index distribution type synthetic resin rod lens array, comprising a step of fixing the refractive index distribution by completing polymerization by heating, light irradiation, or the like. 2. In the step of irradiating the transparent gel substrate with light through a photomask to form a plurality of linear portions that are selectively polymerized in the transparent gel substrate, the portions that are selectively polymerized are the same as those of the transparent gel substrate. 2. The method of manufacturing a gradient index synthetic resin rod lens array according to claim 1, wherein the lens array is formed uniformly from the surface to the inside.
JP12882989A 1989-05-24 1989-05-24 Production of distributed refractive index type synthetic resin rod lens array Pending JPH02308203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12882989A JPH02308203A (en) 1989-05-24 1989-05-24 Production of distributed refractive index type synthetic resin rod lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12882989A JPH02308203A (en) 1989-05-24 1989-05-24 Production of distributed refractive index type synthetic resin rod lens array

Publications (1)

Publication Number Publication Date
JPH02308203A true JPH02308203A (en) 1990-12-21

Family

ID=14994438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12882989A Pending JPH02308203A (en) 1989-05-24 1989-05-24 Production of distributed refractive index type synthetic resin rod lens array

Country Status (1)

Country Link
JP (1) JPH02308203A (en)

Similar Documents

Publication Publication Date Title
KR100415714B1 (en) Micro Relief Element and Manufacturing Method
EP0258994B1 (en) Process for the production of optical elements
JP3836127B2 (en) Polymer microstructures that facilitate the coupling of optical fibers to waveguides
US5998096A (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
EP0718646B1 (en) Method for producing a polymeric optical waveguide
JPH01163027A (en) Method and device for molding optical element
AU2004314440B2 (en) Method for making micro-lens array
KR100437628B1 (en) Optical guide
JPS5971830A (en) Manufacture of lens of refractive index distribution type
EP0575885B1 (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
JPH02308203A (en) Production of distributed refractive index type synthetic resin rod lens array
JP2002267805A (en) Lens film
JP3504683B2 (en) Method of forming lens region, lens and lens array plate
JPH0675105A (en) Lens array plate and its production
JPH02310501A (en) Production of flat plate microlens array made of synthetic resin
JPS59204519A (en) Preparation of synthetic resin plane lens
JPH01316710A (en) Novel optical device
JP2534994B2 (en) Polymer optical waveguide and method for manufacturing the same
JPS6153031A (en) Manufacture of refractive index distributed type micro lens
JPH0450804A (en) Manufacture of mirolens array
JP3504701B2 (en) Optical device and method of manufacturing the same
JP3490732B2 (en) Manufacturing method of plastic aspherical microlens
JPS60208701A (en) Method for producing plane plastic lens
JPS59131430A (en) Fabrication of self-condensing lens
JPS61204603A (en) High polymer optical waveguide and its preparation