JPH02307510A - Ozone decomposer - Google Patents

Ozone decomposer

Info

Publication number
JPH02307510A
JPH02307510A JP1127527A JP12752789A JPH02307510A JP H02307510 A JPH02307510 A JP H02307510A JP 1127527 A JP1127527 A JP 1127527A JP 12752789 A JP12752789 A JP 12752789A JP H02307510 A JPH02307510 A JP H02307510A
Authority
JP
Japan
Prior art keywords
ozone
catalyst
base material
decomposer
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1127527A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Kimihiko Yoshida
公彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1127527A priority Critical patent/JPH02307510A/en
Priority to US07/525,596 priority patent/US5158654A/en
Priority to DE69019229T priority patent/DE69019229T2/en
Priority to EP90305508A priority patent/EP0398766B1/en
Publication of JPH02307510A publication Critical patent/JPH02307510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently decompose ozone by sticking both a catalyst for decomposing ozone and a conductive material on an air-permeable base material to form a catalytic layer and fitting this catalytic layer to the inside of a casing. CONSTITUTION:An ozone decomposer is formed by parallel providing a plurality of catalytic layers 2 at a certain interval along the direction of flow of exhaust gas contg. ozone to the inside of a cylindrical casing 1. Exhaust gas is forcedly passed vertically for the surfaces of the respective catalytic layers 2. The electrodes 5 are fitted to both ends of the main body 4 of an air-permeable base material 3 and the conductors 6 are connected thereto. The amount of a catalyst carried on the base material is regulated to about 50-250%. Graphite, carbon fiber and silicon carbide, etc., are utilized as the conductive material. The heat evolution temp. of the heating base material is regulated to about 30 deg.C or more preferably about 50 deg.C or more. Thereby the decomposition efficiency of ozone can be enhanced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、気体等に含まれるオゾンを分解するためのオ
ゾン分解器に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ozone decomposer for decomposing ozone contained in gas or the like.

〈従来の技術〉 気体中に含まれるオゾンは不快臭を発し、喉や肺の粘膜
を刺激するなどして健康にも悪影響を与えるため、環境
衛生上の見地から、これを除去することが求められてい
る。
<Prior art> Ozone contained in gas emits an unpleasant odor and has a negative impact on health by irritating the mucous membranes of the throat and lungs, so it is necessary to remove it from an environmental hygiene perspective. It is being

オゾンの除去方法としては、従来より活性炭、ゼオライ
ト等の多孔性物質を用いる吸着法、M n 02等の触
媒を用いる酸化分解法等が用いられていた。
Conventionally, methods for removing ozone include adsorption methods using porous substances such as activated carbon and zeolite, and oxidative decomposition methods using catalysts such as Mn02.

〈発明が解決しようとする課題〉 しかしながら、従来のオゾンの除去方法はいずれも満足
しうるちのではなかった。
<Problems to be Solved by the Invention> However, none of the conventional ozone removal methods was satisfactory.

すなわち、吸着法の場合は、吸着剤が飽和するたびに再
生、交換等を要し、メンテナンスに多大の労力と費用が
必要であった。
That is, in the case of the adsorption method, it is necessary to regenerate, replace, etc. each time the adsorbent becomes saturated, and a great deal of labor and cost is required for maintenance.

また、酸化分解法では、吸着法の場合のような問題はな
いものの、従来使用されていたオゾン分解用触媒では十
分にオゾンを酸化分解することができないか、あるいは
高負荷条件下(高濃度、高SV)において触媒が劣化す
るという問題があった。
In addition, although the oxidative decomposition method does not have the same problems as the adsorption method, the ozone decomposition catalysts used in the past may not be able to oxidize or decompose ozone sufficiently or under high load conditions (high concentration, There was a problem that the catalyst deteriorated at high SV).

これらの問題を解消させるために、オゾン含有排ガスの
温度を上げることが考えられるが、昇温コストが高くな
るため実用的ではない。
In order to solve these problems, it is possible to raise the temperature of the ozone-containing exhaust gas, but this is not practical because the cost of raising the temperature increases.

本発明は以上の事情に鑑みてなされたものであって、高
負荷条件下(高濃度、高SV)においても高い反応速度
でオゾンを酸化分解することができ、しかも経済的なる
オゾン分解器を提供することを目的とする。
The present invention was made in view of the above circumstances, and provides an economical ozone decomposer that can oxidize and decompose ozone at a high reaction rate even under high load conditions (high concentration, high SV). The purpose is to provide.

く課題を解決するための手段〉 本発明のオゾン分解器は、オゾン分解用触媒および導電
性材料を通気性基材に付着させた触媒層をケーシング内
に装着し、この触媒層の両端に導電線を接続したもので
ある。
Means for Solving the Problems> The ozone decomposer of the present invention has a catalyst layer in which an ozone decomposition catalyst and a conductive material are attached to a breathable base material installed in a casing, and a conductive layer is attached to both ends of the catalyst layer. It is made by connecting lines.

すなわち、本発明は、オゾン分解用触媒および導電性材
料を付着させた通気性基材に導電線から通電することに
より、前記導電性材料が抵抗体となって発熱し、これに
よって通気性基材に担持された触媒が加熱されることを
利用したものであって、触媒の加熱により触媒表面での
オゾンの分解が効率よく行われ、高負荷条件下でも触媒
の劣化が防止され、長期間にわたって効果を持続させる
ことができる。しかも、ガス自体を昇温させるものでは
ないため、経済的である。
That is, in the present invention, by applying electricity from a conductive wire to a breathable base material to which an ozone decomposition catalyst and a conductive material are attached, the conductive material becomes a resistor and generates heat, thereby reducing the temperature of the breathable base material. This technology takes advantage of the heating of a catalyst supported on the catalyst.Heating the catalyst efficiently decomposes ozone on the catalyst surface, preventing deterioration of the catalyst even under high load conditions, and providing long-term use. The effect can be sustained. Moreover, it is economical because it does not raise the temperature of the gas itself.

本発明において使用される通気性基材としては、例えば
ポリエステル等の有機繊維、シリカ繊維、ガラス繊維な
どから作つた織布、さらにポリエステルm維、セラミッ
クファイバー、カーボンファイバー等の不織布があげら
れる。これらの基材は100℃以上、好ましくは150
℃以上の耐熱性を有しているのが好ましい。また、波形
、蛇腹形等の任意の形状で使用するために折り曲げ等の
機械的加工性にすぐれたものであるのが好ましい。
Examples of the breathable base material used in the present invention include woven fabrics made from organic fibers such as polyester, silica fibers, glass fibers, etc., and nonwoven fabrics such as polyester m fibers, ceramic fibers, and carbon fibers. These base materials have a temperature of 100°C or higher, preferably 150°C
It is preferable that the material has heat resistance of ℃ or more. Further, it is preferable that the material has excellent mechanical workability such as bending so that it can be used in any shape such as a wave shape or a bellows shape.

さらに、このものは触媒や導電性材料の担持能力にすぐ
れていることが条件とされる。
Furthermore, this material must have an excellent ability to support catalysts and conductive materials.

また、基材の有する通気性は、反応性および圧力損失の
上から重要であり、通気度が1000C4・S〜50 
fl 4−s s空隙率が85%以上であるのが好まし
い。通気度が前記範囲より小なるときは、反応性は増大
するが、圧力損失が大きくなるため好ましくない。一方
、通気度が過度に大きい場合は、圧力損失はなくなるが
、反応性が低下する傾向にある。
In addition, the air permeability of the base material is important from the viewpoint of reactivity and pressure loss.
It is preferable that the fl 4-s s porosity is 85% or more. When the air permeability is smaller than the above range, the reactivity increases, but pressure loss also increases, which is not preferable. On the other hand, if the air permeability is excessively high, there will be no pressure loss, but the reactivity will tend to decrease.

使用される触媒としては、従来よりオゾンの分解能を有
するものとして公知である触媒、例えばM n O2、
Cu Os F e z O3、A g 20 % N
 10、Co304 、P t、Pd等の1種または2
種以上を組み合わせたもの、さらに本発明者らがすでに
出願しているMn02−TiO2、Mn02−アルカリ
金属および/またはアルカリ土類金属酸化物、酸化物生
成エンタルピーが100kcal/g酸素原子以下の金
属を担持したゼオライト触媒をあげることができる。
The catalyst used is a catalyst that is conventionally known as having an ability to decompose ozone, such as M n O2,
Cu Os F ez O3, A g 20% N
10, one or two of Co304, Pt, Pd, etc.
In addition, Mn02-TiO2, Mn02-alkali metal and/or alkaline earth metal oxides, which the present inventors have already applied for, and metals with an oxide formation enthalpy of 100 kcal/g oxygen atom or less. Examples include supported zeolite catalysts.

ここで、触媒の基材への担持量は約50〜250%であ
るのが好ましい。担持率がこの範囲よりも大なるときは
それに見合うオゾン分解効率の改善がなく、経済的に不
利であり、また担持率がこの範囲よりも小なるときは充
分な窒素酸化物除去効果が得られない。
Here, the amount of catalyst supported on the base material is preferably about 50 to 250%. When the loading rate is higher than this range, there is no commensurate improvement in ozone decomposition efficiency, which is economically disadvantageous, and when the loading rate is lower than this range, a sufficient nitrogen oxide removal effect cannot be obtained. do not have.

また、導電性材料としては、例えばグラファイト、カー
ボンファイバー、炭化ケイ素、銀、ニッケルクロム合金
、クロムアルミニウム合金、ステンレス等があげられる
。導電性材料の形状は特に制限されるものではなく、粉
体、ウィスカー状、短繊維等の種々の形状で使用するこ
とができる。
Examples of the conductive material include graphite, carbon fiber, silicon carbide, silver, nickel-chromium alloy, chromium-aluminum alloy, stainless steel, and the like. The shape of the conductive material is not particularly limited, and various shapes such as powder, whisker shape, and short fibers can be used.

導電性材料の付着量は約20〜60%であるの好ましく
、これよりも付着量が少ないと、導電性が得られないの
で、十分な発熱が得られず、またこれよりも大なるとき
は触媒とオゾンとの接触を阻害するおそれがある。
The amount of the conductive material deposited is preferably about 20 to 60%; if the amount is less than this, conductivity cannot be obtained and sufficient heat generation cannot be obtained. Contact between the catalyst and ozone may be inhibited.

前記触媒や導電性材料の付着方法としては、これらの成
分を含有したスラリーに前記基材を浸漬−して付着させ
る方法、不織布基材を用いる場合はその抄成時に前記成
分を含有させる方法等があげられる。
Examples of methods for attaching the catalyst and conductive material include a method in which the base material is immersed in a slurry containing these components, and when a nonwoven fabric base material is used, a method in which the above components are incorporated during papermaking. can be given.

第1図に本発明のオゾン分解器の一例を示す。FIG. 1 shows an example of the ozone decomposer of the present invention.

第1図のオゾン分解器は、筒形のケーシング1内に、オ
ゾンを含む排ガスの流れ方向(矢印で示す)に沿って複
数の触媒層2を一定間隔で並設したものであり、排ガス
は各触媒層2の面に対して垂直に強制通過される。
The ozone decomposer shown in Fig. 1 has a plurality of catalyst layers 2 arranged in parallel at regular intervals along the flow direction (indicated by arrows) of exhaust gas containing ozone in a cylindrical casing 1. It is forced to pass perpendicularly to the surface of each catalyst layer 2.

第2図は第1図で使用した通気性基材3を示す平面図で
あり、同図ではその本体4の両端に電極5を取付け、こ
れに導電線6が接続される。
FIG. 2 is a plan view showing the air-permeable base material 3 used in FIG. 1, and in this figure, electrodes 5 are attached to both ends of the main body 4, to which conductive wires 6 are connected.

第3図は排ガスとの接触効率を高めるために波形の触媒
層2′を使用したほかは第1図に示したオゾン分解器と
同様である。
FIG. 3 is similar to the ozone decomposer shown in FIG. 1, except that a corrugated catalyst layer 2' is used to increase the efficiency of contact with exhaust gas.

第4図は第3図で使用した通気性基材8を示す平面図で
あり、同図ではその本体70両端に電極5を取付け、こ
れに導電線6が接続される。
FIG. 4 is a plan view showing the breathable base material 8 used in FIG. 3, and in the figure, electrodes 5 are attached to both ends of the main body 70, and conductive wires 6 are connected to these.

第5図は触媒層11を矢印で示す排ガスの流れ方向に対
して垂直な方向に一定間隔で並設したものであり、排ガ
スは各触媒層11の面に対して平行に強制通過される。
In FIG. 5, catalyst layers 11 are arranged side by side at regular intervals in a direction perpendicular to the flow direction of exhaust gas indicated by arrows, and exhaust gas is forced to pass through parallel to the surface of each catalyst layer 11.

ここで使用する触媒層11は第1図に示した触媒層2と
同じものが使用可能である。
The catalyst layer 11 used here can be the same as the catalyst layer 2 shown in FIG.

さらに、第6図は1枚の触媒層9を蛇腹状に折り畳んで
枠形のケーシング10内に収容したものであり、矢印は
オゾン含有排ガスの流れ方向を示している。触媒層9は
前記と同様に発熱基材の片面または両面にフィルタが重
ね合わされている。
Further, FIG. 6 shows one catalyst layer 9 folded into a bellows shape and housed in a frame-shaped casing 10, and the arrow indicates the flow direction of the ozone-containing exhaust gas. In the catalyst layer 9, filters are superimposed on one or both sides of a heat generating base material in the same manner as described above.

また、発熱基材の両端には図示しない電極が取付けられ
、これにリード線が接続されて、発熱基材を発熱させる
ように構成されている。触媒層9を装着したケーシング
10はそのままオゾン排出口(図示せず)に取付けられ
るほか、複数個を並設してオゾン含を排ガスが順次通過
するようにしてもよい。
Moreover, electrodes (not shown) are attached to both ends of the heat generating base material, and lead wires are connected to these electrodes so that the heat generating base material generates heat. The casing 10 equipped with the catalyst layer 9 may be attached as it is to an ozone exhaust port (not shown), or a plurality of casings 10 may be arranged in parallel so that the exhaust gas sequentially passes through the ozone layer.

触媒を担持する発熱基材の発熱温度は30℃以上、好ま
しくは40℃以上、より好ましくは50℃以上であるの
が適当である。触媒温度が30℃を下回ると、オゾンが
触媒と反応し、生成する高原子価酸化物が分解されず、
触媒中に酸素が蓄積するので、分解サイクル速度が徐々
に低下し、その結果分解反応速度(分解活性)が低下す
るため、好ましくない。
The exothermic temperature of the exothermic substrate supporting the catalyst is suitably 30°C or higher, preferably 40°C or higher, and more preferably 50°C or higher. When the catalyst temperature is below 30℃, ozone reacts with the catalyst and the high valence oxides produced are not decomposed.
Since oxygen accumulates in the catalyst, the decomposition cycle rate gradually decreases, resulting in a decrease in the decomposition reaction rate (decomposition activity), which is undesirable.

また、これらの反応速度が低下しない温度は、触媒活性
成分および単位触媒量へのオゾンの負荷量(単位時間あ
たりのオゾン量)によって決まる。
Further, the temperature at which the rate of these reactions does not decrease is determined by the catalyst active component and the amount of ozone applied to a unit amount of catalyst (the amount of ozone per unit time).

これらを表す量として、本発明者らは、面積速度(AV
Sarea  verocity  m’4IIHr・
・・反応量(N m’ / H)を単位容積の触媒あた
りのガス接触面積(r+t’4?)で除した値である)
と入口オゾン濃度(ppm)との積(以下、CAという
)を用いて表した。例えばCAがtoooooのとき、
M n 02触媒では、60℃であり、MnOz−Ag
20触媒(Mn0280重量%、Agz 020重量%
)では55℃、MnOz−Ag20−T i 02触媒
(Mn0270重量%、Agz010重量%、Ti0z
20重量%)では40℃である。また、CAが1000
のとき、上記各触媒でそれぞれ55℃、50℃および3
5℃である。
As a quantity expressing these, the present inventors used areal velocity (AV
Sarea velocity m'4IIHr・
...It is the value obtained by dividing the reaction amount (N m' / H) by the gas contact area per unit volume of catalyst (r + t'4?)
and the inlet ozone concentration (ppm) (hereinafter referred to as CA). For example, when CA is toooooo,
For Mn02 catalyst, it is 60 °C and MnOz-Ag
20 catalyst (Mn0280wt%, Agz020wt%
) at 55°C, MnOz-Ag20-T i 02 catalyst (Mn0270 wt%, Agz010 wt%, Ti0z
20% by weight), the temperature is 40°C. Also, CA is 1000
55°C, 50°C and 3°C for each of the above catalysts, respectively.
The temperature is 5°C.

また、オゾン分解率は、同一温度、同一オゾン濃度条件
下ではAVによって規定されるが、使用した基材の孔の
大きさや触媒層中での触媒の担持状態等によって変化す
る。
Further, the ozone decomposition rate is defined by AV under the same temperature and ozone concentration conditions, but it changes depending on the pore size of the base material used, the state of catalyst support in the catalyst layer, etc.

〈実施例〉 次に、実施例をあげて本発明のオゾン分解器を詳細に説
明する。ただし、本発明はこれらの実施例のみに限定さ
れるものではない。
<Example> Next, the ozone decomposer of the present invention will be described in detail by giving examples. However, the present invention is not limited only to these examples.

実施例1 比表面積32m’/g−平均粒子径50μであるMn0
z −Agz 0−TiO2(MnOz 80重量%、
Agz010重量%、TiozlO重量%)の50gと
、5i02ゾル(日産化学■製のスノーテックスO)の
100gと、グラファイト粉末50g(和光純薬製の導
電性材料)と、水とを充分に混合して濃度100 g/
Nのスラリーを調製した。このスラリーに、ガラスクロ
ス(ユニチカエムグラス社製、Ls s F t 10
0(1、通気度3014・81寸法30ssX 35m
m)を浸漬し、引き上げた後、ドライヤーにて熱風乾燥
して触媒層を得た。このとき、担持率は146%であっ
た。ついで、35m5辺側に銅電極を取付けた。得られ
た触媒層の抵抗は210Ωであった。
Example 1 Mn0 with a specific surface area of 32 m'/g and an average particle size of 50 μ
z -Agz 0-TiO2 (MnOz 80% by weight,
Thoroughly mix 50 g of 5i02 sol (Snowtex O manufactured by Nissan Chemical ■), 50 g of graphite powder (conductive material manufactured by Wako Pure Chemical Industries, Ltd.), and water. concentration 100 g/
A slurry of N was prepared. Glass cloth (manufactured by Unitika M Glass Co., Ltd., Ls s F t 10) was added to this slurry.
0 (1, Air permeability 3014/81 Dimensions 30ssX 35m
m) was immersed, pulled up, and then dried with hot air using a dryer to obtain a catalyst layer. At this time, the loading rate was 146%. Next, copper electrodes were attached to the 5th side of 35m. The resistance of the obtained catalyst layer was 210Ω.

このものを、第1図に示すようにしてケーシング1内に
1〜7層となるように並設した。このとき、ガラスクロ
スはガスの流れ方向に対して金網の前面に配置した。1
〜7層までの長さは70+amとした。このオゾン分解
器の単一容積あたりのガス接触面積は100m’4であ
った。
These were arranged side by side in the casing 1 in 1 to 7 layers as shown in FIG. At this time, the glass cloth was placed in front of the wire mesh with respect to the gas flow direction. 1
The length up to 7 layers was 70+am. The gas contact area per single volume of this ozone decomposer was 100 m'4.

実施例2 実施例1で用いたと同じスラリーにセラミックファイバ
ーベーパー(オリエンタルアスベスト社製、坪量90g
1厚さ5mm、寸法30麿■X 351mm)を浸漬し
、ドライヤーにて熱風乾燥して担持率125%の触媒層
を得たほかは実施例1と同様にしてオゾン分解器を得た
。ここで、得られた触媒層の抵抗は193Ωであった。
Example 2 Ceramic fiber vapor (manufactured by Oriental Asbestos Co., Ltd., basis weight 90 g) was added to the same slurry as used in Example 1.
An ozone decomposer was obtained in the same manner as in Example 1, except that a catalyst layer having a thickness of 5 mm and dimensions of 30 mm x 351 mm was immersed and dried with hot air using a dryer to obtain a catalyst layer with a support rate of 125%. Here, the resistance of the obtained catalyst layer was 193Ω.

オゾン分解試験 実施例1および2で得られた各オゾン分解器を用いてオ
ゾン分解試験を行った。すなわち、エアーをオゾン発生
器に通じて所定濃度のオゾンを含有させた後、オゾン分
解器に導入し、オゾン分解器を通過したエアー中のオゾ
ン濃度をオゾン分析計にて測定し、次式によりオゾン分
解率を求めた。
Ozone decomposition test An ozone decomposition test was conducted using each of the ozone decomposers obtained in Examples 1 and 2. That is, air is passed through an ozone generator to contain ozone at a predetermined concentration, then introduced into an ozone decomposer, and the ozone concentration in the air that has passed through the ozone decomposer is measured with an ozone analyzer. The ozone decomposition rate was determined.

その結果を次表に示す。The results are shown in the table below.

(CI −C2)/C+ X100 ただし、 CI・・・オゾン分解器の人口でのオゾン濃度C2・・
・オゾン分解器の出口でのオゾン濃度このとき、オゾン
分解器内の触媒層には電流を通じさせて次表に示す温度
に加熱した。その他の反応条件およびオゾン分解率も次
表に示す。なお、触媒層の温度およびガス出口温度はは
それぞれ測温抵抗体により測定した。
(CI - C2)/C+
- Ozone concentration at the outlet of the ozone decomposer At this time, an electric current was passed through the catalyst layer in the ozone decomposer to heat it to the temperature shown in the following table. Other reaction conditions and ozone decomposition rates are also shown in the table below. Note that the temperature of the catalyst layer and the gas outlet temperature were each measured using a resistance temperature detector.

また、表において、ガス出口温度および入口オゾン濃度
の出口1人口とはオゾン分解器の出口。
In addition, in the table, the outlet 1 population for the gas outlet temperature and inlet ozone concentration is the outlet of the ozone decomposer.

入口をそれぞれ意味している。Each signifies an entrance.

(以下余白) 表から、触媒層への通電により触媒層の温度を上げるほ
ど、オゾン分解率が高く、その効果が長期間にわたって
持続していることがわかる。
(Left space below) From the table, it can be seen that the higher the temperature of the catalyst layer by energizing it, the higher the ozone decomposition rate, and the effect lasts for a long time.

〈発明の効果〉 このように、本発明では、オゾン分解用触媒および導電
性材料を付着させた通気性基材に導電線から通電するこ
とにより、発熱体となって触媒が加熱され、その結果触
媒表面でのオゾンの分解が効率よく行われ、高負荷条件
下でも触媒の劣化力≧防止され、長期間にわたって効果
を持続させることができる。しかも、ガス自体を昇温さ
せるものではないため、経済的である。
<Effects of the Invention> As described above, in the present invention, by supplying electricity from a conductive wire to a breathable base material to which an ozone decomposition catalyst and a conductive material are attached, the catalyst becomes a heating element and is heated. Ozone decomposition on the catalyst surface is efficiently carried out, the deterioration of the catalyst is prevented even under high load conditions, and the effect can be sustained over a long period of time. Moreover, it is economical because it does not raise the temperature of the gas itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオゾン分解器の一例を示す概略断面図
、第2図は発熱基材の例を示す平面図、第3図は本発明
のオゾン分解器の他の例を示す概略断面図、第4図は第
3図のオゾン分解器に使用する発熱基材を示す概略斜視
図、第5図および第6図はそれぞれ本発明のオゾン分解
器のさらに他の例を示す概略斜視図である。
FIG. 1 is a schematic cross-sectional view showing an example of the ozone decomposer of the present invention, FIG. 2 is a plan view showing an example of the heat generating base material, and FIG. 3 is a schematic cross-sectional view showing another example of the ozone decomposer of the present invention. 4 is a schematic perspective view showing a heat generating base material used in the ozone decomposer of FIG. 3, and FIGS. 5 and 6 are schematic perspective views showing still other examples of the ozone decomposer of the present invention, respectively. It is.

Claims (1)

【特許請求の範囲】[Claims] 1、オゾン分解用触媒および導電性材料を通気性基材に
付着させた触媒層をケーシング内に装着し、この触媒層
の両端に導電線を接続したことを特徴とするオゾン分解
器。
1. An ozone decomposer characterized in that a catalyst layer in which an ozone decomposition catalyst and a conductive material are attached to a breathable base material is installed in a casing, and conductive wires are connected to both ends of the catalyst layer.
JP1127527A 1989-05-19 1989-05-19 Ozone decomposer Pending JPH02307510A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1127527A JPH02307510A (en) 1989-05-19 1989-05-19 Ozone decomposer
US07/525,596 US5158654A (en) 1989-05-19 1990-05-21 Ozone decomposing reactor and regeneration thereof
DE69019229T DE69019229T2 (en) 1989-05-19 1990-05-21 Ozone splitting.
EP90305508A EP0398766B1 (en) 1989-05-19 1990-05-21 Ozone decomposing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127527A JPH02307510A (en) 1989-05-19 1989-05-19 Ozone decomposer

Publications (1)

Publication Number Publication Date
JPH02307510A true JPH02307510A (en) 1990-12-20

Family

ID=14962222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127527A Pending JPH02307510A (en) 1989-05-19 1989-05-19 Ozone decomposer

Country Status (1)

Country Link
JP (1) JPH02307510A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314665A (en) * 1976-07-27 1978-02-09 Toyobo Co Ltd Ozone-removing method
JPS5881425A (en) * 1981-11-11 1983-05-16 Matsushita Electric Ind Co Ltd Apparatus for removing ozone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314665A (en) * 1976-07-27 1978-02-09 Toyobo Co Ltd Ozone-removing method
JPS5881425A (en) * 1981-11-11 1983-05-16 Matsushita Electric Ind Co Ltd Apparatus for removing ozone

Similar Documents

Publication Publication Date Title
EP0398766B1 (en) Ozone decomposing
JP2003535255A (en) Device for removing soot and nitrogen oxides from diesel engine exhaust gas
KR950003412B1 (en) Catalyst and useful method of using such a catalyst
JP2006507938A (en) Application of conductive adsorbents, activated carbon granules and carbon fibers as catalytic reaction substrates
JPS62201648A (en) Catalyst for decomposing ozone
EP0525761B1 (en) A catalytic composite for deodorizing odorous gases and a method for preparing the same
JP5503155B2 (en) Carbon monoxide removal filter
JPH02307510A (en) Ozone decomposer
EP0893128B1 (en) Composite space deodorizing filter
JPH02307509A (en) Ozone decomposer
JPH02251226A (en) Air cleaning apparatus
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JPH038414A (en) Method for regenerating catalyst
JPH11114421A (en) Catalyst for cleaning air and filter for purifying air
JPH03181319A (en) Ozone decomposing catalyst filter and ozone decomposing device
JP4779107B2 (en) Catalyst filter and air purification device
JPH0352625A (en) Deodorizing method
JPH0910555A (en) Removal of nitrogen oxide
JPH02307511A (en) Ozone decomposer
JPH08270929A (en) Deodorizing apparatus
JPH1085614A (en) Production of metal carrying catalyst
JPH02107338A (en) Catalyst for decomposing contaminated gas and its usage
JP2827627B2 (en) Deodorizing catalyst
JPH08173521A (en) Air cleaner
JP4145691B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, and air cleaning device