JPH02107338A - Catalyst for decomposing contaminated gas and its usage - Google Patents

Catalyst for decomposing contaminated gas and its usage

Info

Publication number
JPH02107338A
JPH02107338A JP63257104A JP25710488A JPH02107338A JP H02107338 A JPH02107338 A JP H02107338A JP 63257104 A JP63257104 A JP 63257104A JP 25710488 A JP25710488 A JP 25710488A JP H02107338 A JPH02107338 A JP H02107338A
Authority
JP
Japan
Prior art keywords
gas
catalyst
pollutant
polluted
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63257104A
Other languages
Japanese (ja)
Inventor
Akira Kato
明 加藤
Hiroshi Kawagoe
川越 博
Hisao Yamashita
寿生 山下
Akio Honchi
章夫 本地
Noriko Watanabe
紀子 渡辺
Takahiro Tate
隆広 舘
Yuichi Kamo
友一 加茂
Reiji Naka
礼司 中
Teruo Tsunoda
角田 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63257104A priority Critical patent/JPH02107338A/en
Publication of JPH02107338A publication Critical patent/JPH02107338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To decontaminate gases easily, accurately and efficiently by depositing catalytic components capable of photodecomposing and/or heat decomposing contaminated gases on a carrier capable of being heated to thereby prepare a catalyst for decomposing the contaminated gases. CONSTITUTION:The catalitic components capable of photodecomposing and/or heat decomposing contaminated gases are deposited on a carrier cable of being heated by a heat source such as SiC, BaTiO3, stabilized zirconia, various perovskite oxides and Ni-Cr to thereby prepare a catalyst for decomposing the contaminated gas. By way of example, active carbon is available as the catalystic component capable of adsorbing the contaminated gas and titanium oxide as the catalitic component capable of photodecomposing the same. The catalyst so formed is irradiated with light and heated upon regeneration, whereby the adsorbed contaminants can be decomposed and removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は汚染ガス除去用設備に係わシ、特に冷R庫、空
気調節機等の空気循環系の脱臭に好適な空気浄化用触媒
体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to equipment for removing pollutant gases, and in particular to an air purifying catalyst body suitable for deodorizing air circulation systems such as refrigerators and air conditioners. Regarding.

〔従来の技術〕[Conventional technology]

従来、冷蔵庫及び空気調節機等の脱臭方法としては活性
炭等の脱臭剤を用いる方法が一般的に行われていた。ま
た各S製造工場等から排出される汚染ガス、すなわち悪
臭、有害ガスに関しては活性炭等の吸着剤による方法以
外に、酸化触媒層を通してこれらの有害成分を分解する
方法も用いられている。この場合、処理の対象となる排
ガスの温度を触媒が有効に作用する温度以上に加熱する
必要があるが、触媒層のハニカム状発熱体を用いて触媒
コンバーター自体を通電加熱して効率を上げる方法(%
開昭55−22890号)も提案されている。また、酸
化チタン若しくは酸化亜鉛の存在下で窒素酸化物を含む
気体に紫外線を照射することにより有害ガスの処理を行
う方法(%開昭61155125号)も提案されている
e、また、オゾンを用いて悪臭成分を酸化分解する方法
(特開昭54−60289号)も提案されている。
Conventionally, as a method of deodorizing refrigerators, air conditioners, etc., a method using a deodorizing agent such as activated carbon has been generally performed. In addition to the method of using adsorbents such as activated carbon, methods of decomposing these harmful components through an oxidation catalyst layer are also used for polluting gases, ie, bad smells and harmful gases discharged from each S manufacturing factory. In this case, it is necessary to heat the exhaust gas to be treated above the temperature at which the catalyst works effectively, but there is a method to increase efficiency by heating the catalytic converter itself with electricity using a honeycomb-shaped heating element in the catalyst layer. (%
No. 55-22890) has also been proposed. In addition, a method has been proposed in which harmful gases are treated by irradiating a gas containing nitrogen oxides with ultraviolet rays in the presence of titanium oxide or zinc oxide (%KAI No. 61155125). A method of oxidatively decomposing malodorous components (Japanese Patent Application Laid-open No. 60289/1983) has also been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はそれぞれ利点はめるものの悪臭成分の除
去効率が不充分である、電気エネルギーの消費が多すぎ
る、装置が大炎シになるなどの欠点がめった。
Although each of the above-mentioned conventional techniques has advantages, they often have drawbacks such as insufficient removal efficiency of malodorous components, excessive consumption of electrical energy, and large flames in the apparatus.

本発明の目的は、上記した従来技術の欠点を改良し、簡
単に確実に効率良く汚染ガスを除去できる汚染ガス分解
用触媒体及びその用途を提供することにある。
An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a catalyst for decomposing polluted gas that can easily, reliably, and efficiently remove polluted gas, and its uses.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明は汚染ガス分
解用触媒体に関する発明でアシ、発熱可能な基体上に、
汚染ガスを光分解する能力を有する触媒及び/又は汚染
ガスを加熱分解する能力を有する触媒が担持されている
ことを特徴とする。
To summarize the present invention, the first invention of the present invention relates to a catalyst for decomposing pollutant gas, and the present invention relates to a catalyst body for decomposing pollutant gas, in which
It is characterized in that a catalyst capable of photolyzing pollutant gas and/or a catalyst capable of thermally decomposing pollutant gas is supported.

第2の発明は汚染ガス除去装置に関する発明であって、
上記した触媒体に、汚染ガスを吸着する能力を有する材
料が担持されていることを特徴とする。
The second invention is an invention related to a contaminated gas removal device,
The catalyst is characterized in that a material having the ability to adsorb pollutant gas is supported on the above-mentioned catalyst body.

第5の発明は、他の汚染ガス除去装置に関する発明であ
って、汚染ガス含有流中に設置される汚染ガス除去装置
において、該装置が、該含有流の上流側に配置した汚染
ガスを吸着する能力を有する材料と、下流側に配置した
該第1の発明の触媒体との組合せからなることを特徴と
する。
A fifth invention is an invention relating to another contaminated gas removal device, in which the device adsorbs contaminated gas disposed upstream of the contaminated gas-containing stream. It is characterized in that it is made of a combination of a material having the ability to

第4の発明は、汚染ガスの除去を必要とする機器に関す
る発明であって、当該機器において汚染ガス含有流の流
通する箇所に、上記第2又は第5の発明の汚染ガス除去
装置が設置され−〔いることを特徴とする。
A fourth invention is an invention relating to equipment that requires the removal of polluted gas, and in which the polluted gas removal device of the second or fifth invention is installed at a location in the equipment where a stream containing polluted gas flows. −[Characterized by being.

第5の発明は、前記の汚染ガス除去装置の使用方法に関
する発明であって、 汚染ガス含有流を第2又は第3の発明の汚染ガス除去装
置に所定時間流通させて汚染ガスを吸着させ、その後吸
着体を加熱して吸着された汚染ガスを遊離させると共に
、該第1の発明の触媒体を光照射及び/又は加熱して前
記の遊離した汚染ガスを所定時間分解して再生を行うこ
とを特徴とする。
A fifth invention relates to a method of using the polluted gas removal device, comprising: passing a stream containing polluted gas through the polluting gas removal device of the second or third invention for a predetermined period of time to adsorb polluted gas; Thereafter, the adsorbent is heated to liberate the adsorbed pollutant gas, and the catalyst body of the first invention is irradiated with light and/or heated to decompose the liberated pollutant gas for a predetermined period of time for regeneration. It is characterized by

本発明における基体としては、例えば加熱により発熱す
る材料からなる発熱可能なものが用いられ、その典型的
なものとして、通常知られているハニカム構造や網目状
構造や板の積層構造を持つセラミックス及び/又は金属
体が用いられる。材質は特に限定されないが本発明の目
的を達成するためには熱源等、例えば通電により発熱す
ることが必要で、例えばSiC%BaTi0m、安定化
ジルコニア、各種ペロブスカイト型酸化物、 Ni−C
rなどが使用できる。
The substrate used in the present invention is, for example, a heat-generating material made of a material that generates heat when heated. Typical examples include ceramics having a commonly known honeycomb structure, mesh structure, or laminated structure of plates. /or a metal body is used. The material is not particularly limited, but in order to achieve the purpose of the present invention, a heat source or the like, such as one that generates heat by electricity, is required, such as SiC%BaTi0m, stabilized zirconia, various perovskite oxides, Ni-C.
r etc. can be used.

また、本発明においては触媒体の加熱及び/又は光照射
は連続的に行う必要はなく、吸着剤への汚染成分の吸着
により吸着能力が低下した後、あるいは低下する直前な
る所足時間後に実施すれば良く間欠的に行うことで充分
目的を達成することができる。
In addition, in the present invention, the heating and/or light irradiation of the catalyst body does not need to be performed continuously, but is performed after a sufficient period of time after the adsorption capacity has decreased due to adsorption of contaminant components to the adsorbent, or just before the adsorption capacity decreases. If you do it intermittently, you can achieve your goal.

本発明で使用する汚染ガスの吸着能を有する材料の例に
は活性炭があシ、光分解能を有する触媒の例には、酸化
チタンがある。これらの成分はお互いに良く混合してい
る方が効果が大きい。性能を上げるために更に各種の金
属酸化物、例えばMOo、、WOh8nO1、ZnO1
硫化物、例えばzns 。
An example of the material having the ability to adsorb pollutant gases used in the present invention is activated carbon, and an example of the catalyst having the photodecomposition ability is titanium oxide. The effect is greater when these components are mixed well with each other. In order to improve the performance, various metal oxides such as MOo, WOh8nO1, ZnO1
Sulfides, e.g. zns.

CaS 、又は貴金属、例えばpt%P(L、 Ruな
どを加えるのも良い。また基体の貫通孔内壁にアルミナ
、シリカ等の高い比表面積を有する物質をコーティング
した後、触媒成分をコーティングする方法も良い。
It is also good to add CaS or a noble metal, such as pt%P(L, Ru, etc.).Also, a method of coating the inner wall of the through hole of the base with a substance having a high specific surface area such as alumina or silica, and then coating the catalyst component is also possible. good.

また1本発明においては、触媒体の再生時の加熱による
汚染成分、特に悪臭成分の加熱分解、例えば加熱酸化分
解機能を上げるために、各種の加熱分解触媒成分、例え
ばpt、paなどの貴金属、酸化マンガン、酸化コバル
ト、酸化ニッケル、酸化鉄、各種のペロブスカイトなど
を触媒体に加えるのも良い。これらの添加成分を加えた
触媒体では吸着能力が低下した場合の再生を通電加熱の
みで、光照射を省くこともめる程度可能である。
In addition, in the present invention, various thermal decomposition catalyst components, such as noble metals such as PT and PA, are used to improve thermal decomposition of polluting components, especially malodorous components, such as thermal oxidative decomposition by heating during regeneration of the catalyst body. It is also good to add manganese oxide, cobalt oxide, nickel oxide, iron oxide, various perovskites, etc. to the catalyst. When the adsorption capacity of a catalyst body containing these additive components decreases, it is possible to regenerate the catalyst by simply applying electric current and heating, and may even omit light irradiation.

また、触媒体の再生時には空気などのガスを流しながら
行うことも可能であるし、低濃度の悪臭成分を含むガス
を流しながら行うこともできる。
Further, when regenerating the catalyst, it is possible to perform the regeneration while flowing a gas such as air, or it can be performed while a gas containing a low concentration of malodorous components is being flowed.

もちろん、ガスを流さないで行うことも可能である。ま
た触媒活性の強い場合には、光照射と加熱の一方のみで
もよい。
Of course, it is also possible to perform this without flowing gas. Furthermore, if the catalyst activity is strong, only one of light irradiation and heating may be used.

〔作 用〕[For production]

本発明においては、汚染成分、例えば悪臭成分(例えば
炭化水素、硫黄化合物、。窒素化合物など)はまず触媒
体中の吸着剤に吸着除去される。この吸着剤成分の1つ
としては活性炭が好ましい。吸着剤への汚染成分の吸着
が飽和してしまうと機能が失われ、取替え、又は再生が
必要となる。本発明においては吸着剤成分と同時に又は
後続して汚染成分の光分解活性又は加熱分解活性を持つ
触媒成分が触媒体に含まれているため、再生時に元、好
ましくは紫外光を触媒体に照射することにより及び/又
は加熱により吸着剤に吸着された汚染成分が分解除去さ
れる。したがって、触媒体(又は吸着剤)の吸着能が回
復し、繰返し汚染成分の除去に使用することができる。
In the present invention, contaminant components, such as malodorous components (eg, hydrocarbons, sulfur compounds, nitrogen compounds, etc.), are first adsorbed and removed by an adsorbent in the catalyst body. Activated carbon is preferred as one of the adsorbent components. When the adsorption of contaminant components to the adsorbent becomes saturated, the adsorbent loses its function and needs to be replaced or regenerated. In the present invention, since the catalyst component which has the photodecomposition activity or thermal decomposition activity of the pollutant component is contained in the catalyst body simultaneously with or subsequently to the adsorbent component, the catalyst body is irradiated with UV light, preferably ultraviolet light, at the time of regeneration. By doing so and/or by heating, the contaminant components adsorbed on the adsorbent are decomposed and removed. Therefore, the adsorption capacity of the catalyst body (or adsorbent) is restored and it can be used repeatedly to remove contaminant components.

この場合触媒体が吸着剤のみから成っている場合には上
記したように、ある一定量の汚染成分を吸着除去した後
は浄化作用が失われる。
In this case, if the catalyst body consists only of an adsorbent, the purifying effect is lost after a certain amount of contaminant components have been adsorbed and removed, as described above.

また光触媒成分のみでは、処理ガス流通時に絶えず光を
照射しておかないと汚染成分が分解されないため効率が
悪いが、本発明の方法では光照射は間欠的で良いため、
エネルギー効率が良い。
Furthermore, with only the photocatalyst component, the efficiency is poor because the contaminant components are not decomposed unless light is constantly irradiated during the process gas flow, but in the method of the present invention, the light irradiation only needs to be done intermittently.
Energy efficient.

更に本発明の1例においては、これら吸着−光分解用触
媒の基体にセラミックス及び/又は金属からなる通電に
より発熱する材料を用いるところに特徴がめる。再生時
には光照射以外に通電により基体を加熱し触媒体の温度
を上昇させることにより、吸着剤成分に吸着された汚染
成分が脱離し光分解触媒成分の方へ移動し分解され易く
なると共に、熱による分解も起こシ易くなるため効率が
良い。
Furthermore, one embodiment of the present invention is characterized in that the substrate of these adsorption-photodecomposition catalysts is made of a material made of ceramics and/or metal that generates heat when energized. During regeneration, in addition to light irradiation, the substrate is heated by electricity to raise the temperature of the catalyst, so that the contaminant components adsorbed to the adsorbent component are desorbed and moved toward the photolysis catalyst component, making them more likely to be decomposed. Efficiency is good because decomposition due to oxidation is more likely to occur.

この場合、加熱は光照射と同じく触媒体の再生時のみで
良いため、従来のような処理ガスを流しながら絶えず通
電加熱により触媒体で汚染成分を分解する方法と比べて
も、電力消費が少なくて済み経済的である。また冷蔵庫
のように加熱が好ましくない装置、器具への適用も可能
でるる。
In this case, as with light irradiation, heating is required only when the catalyst is regenerated, so the power consumption is lower than the conventional method of decomposing pollutants in the catalyst by constant electrical heating while flowing process gas. It is economical. It can also be applied to devices and appliances where heating is not desirable, such as refrigerators.

本発明の汚染ガス除去装置を利用するのが好適な機器の
例としては、冷蔵庫、空気調節機、空気浄化器及び排ガ
ス浄化器などが挙けられる。
Examples of devices suitable for using the pollutant gas removal device of the present invention include refrigerators, air conditioners, air purifiers, and exhaust gas purifiers.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定さ゛れない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 一体型基体としてBaT103  を素材とした20m
×20■、長さ20■、セル数〜40個/crn”のハ
ニカムを用意した。このハニカム状基体を活性炭と酸化
チタンを1=1で含有するスラリーに浸漬し、過剰のス
ラリーを切った後、150℃で2時間乾燥し、その後空
気中、500℃で2時間焼成した。このときのコーテイ
ング量は基体に対しtデぼ20重量%である。この触媒
を箱型の反応槽に設置し、悪臭ガス成分の代衣例として
ここではジメチルスルフィド1100pp、残空気の模
擬ガスを2t/分の割合で流し、入口側と出口側のジメ
チルスルフィドを分析した。始めは出口側のジメチルス
ルフィド濃度は検出限界以下であったが、約60分で出
口側にジメチルスルフィドの流出が起こシ始めたので、
飽和吸着に達したことがわかった。そこでキセノンラン
プで250 nmの紫外光をハニカム表面に照射すると
共に、ハニカム表面に通電し、基体を200〜500℃
に10分間加熱した。このようにして触媒に吸着したジ
メチルスルフィドを脱離、分解した後、再び模擬ガスを
流して、ジメチルスルフィドの吸着試験を繰返した。そ
の結果、2回目以降は最初の試験時の吸着量の約85%
を示しており、触媒体は、光照射及び通電加熱によりほ
ぼ再生されており、繰返し使用が可能であることがわか
った。
Example 1 20m integrated base made of BaT103
A honeycomb with a size of 20 cm, a length of 20 cm, and a cell count of ~40 cells/crn was prepared. This honeycomb-like substrate was immersed in a slurry containing activated carbon and titanium oxide in a ratio of 1=1, and the excess slurry was removed. After that, it was dried at 150°C for 2 hours, and then calcined in air at 500°C for 2 hours.The amount of coating at this time was approximately 20% by weight based on the substrate.The catalyst was placed in a box-shaped reaction tank. However, as a substitute example for malodorous gas components, dimethyl sulfide at 1100 pp and a simulated gas of residual air were flowed at a rate of 2 t/min, and dimethyl sulfide was analyzed on the inlet and outlet sides.At first, the dimethyl sulfide concentration on the outlet side was analyzed. was below the detection limit, but dimethyl sulfide began to flow out to the outlet after about 60 minutes.
It was found that saturated adsorption was reached. Therefore, the honeycomb surface was irradiated with 250 nm ultraviolet light using a xenon lamp, and electricity was applied to the honeycomb surface to heat the substrate to 200 to 500°C.
was heated for 10 minutes. After the dimethyl sulfide adsorbed on the catalyst was desorbed and decomposed in this way, the simulated gas was flowed again and the dimethyl sulfide adsorption test was repeated. As a result, the amount of adsorption from the second time onwards was approximately 85% of the amount adsorbed during the first test.
It was found that the catalyst body was almost regenerated by light irradiation and electrical heating, and that it could be used repeatedly.

比較例1 実施例1と同様の試験において、再生時に光照射のみで
通電加熱しない場合の性能を調べたところ吸着剤の再生
が充分でなく、2回目の吸着量は最初の時に比べ約50
%に低下していた。また、通電加熱のみでは、2回目の
吸着tけ最初の時の65%でsb、かなシ再生が行われ
ているものの、更に光照射も行ったものに比べて再生が
充分でない。
Comparative Example 1 In a test similar to Example 1, we investigated the performance of only light irradiation and no electrical heating during regeneration, and found that the regeneration of the adsorbent was insufficient, and the adsorption amount for the second time was about 50% less than the first time.
%. Moreover, although sb and kana were regenerated by 65% of the initial rate during the second adsorption using only electrical heating, the regeneration was not sufficient compared to when light irradiation was also performed.

実施例2 本実施例では、SiCを素材とした20■×20箇、長
さ20■、セル数40個/cry’のハニカムを用意し
た。このハニカム状基体を、活性炭と酸化チタンを1:
1で含有するスラリーに浸漬し、過剰のスラリーを切っ
た後、150℃で2時間乾燥し、その後空気中、500
℃で2時間焼成した。
Example 2 In this example, a honeycomb made of SiC and having 20 x 20 cells, 20 cm in length, and 40 cells/cry' was prepared. This honeycomb-like substrate is mixed with activated carbon and titanium oxide in a ratio of 1:1.
After soaking in the slurry contained in step 1 and cutting off excess slurry, drying at 150°C for 2 hours, then soaking in the air at 500°C.
It was baked at ℃ for 2 hours.

このときのコーテイング量は基体に対しほぼ10重it
チである。この触媒体の性能を実施例1と同様の方法で
試験した。その結果、飽和吸着後の通電による200〜
300℃の加熱及び紫外光の照射により容易に触媒体の
吸着能が回復しており、2回目以降〜10回目までの吸
着量も1回目のほぼ85%以上に達していた。
The amount of coating at this time is approximately 10 times the weight of the substrate.
It is Chi. The performance of this catalyst was tested in the same manner as in Example 1. As a result, 200 ~ by energization after saturated adsorption
The adsorption capacity of the catalyst was easily recovered by heating at 300° C. and irradiation with ultraviolet light, and the adsorption amount from the second to the tenth times reached approximately 85% or more of the first time.

比較例2 実施例2のSiCハニカム状基体に活性炭のみを10重
量外コーティングした触媒体を用意し、実施例1と同様
の方法でジメチルスルフィドの除去性能を試験した。そ
の結果、飽和吸着後の通電による200〜300℃の加
熱及び紫外光の照射による触媒体の吸着性能の回復は充
分ではなく、2回目の吸着1−Fi最初の時の45%・
に過ぎなかった。
Comparative Example 2 A catalyst body was prepared in which the SiC honeycomb substrate of Example 2 was coated with 10% of activated carbon alone, and the dimethyl sulfide removal performance was tested in the same manner as in Example 1. As a result, the recovery of the adsorption performance of the catalyst by heating at 200 to 300°C by energization and irradiation with ultraviolet light after saturated adsorption was not sufficient, and the second adsorption 1-Fi was only 45% of the first time.
It was nothing more than

したがって光触媒活性を持つ触媒成分も含有する必要が
あることがわかる。
Therefore, it can be seen that it is necessary to also contain a catalyst component having photocatalytic activity.

比較例5 実施例2のSl、Cハニカム状基体に酸化チタンのみを
10重量慢コーティングした触媒体を用意し、実施例1
と同様の方法でジメチルスルフィドの除去性能を試験し
7た。その結果約5分で出口側にジメチルスルフィドの
流出が起こった。この結果より酸化チタンのみでは悪臭
成分の吸着能力が低く実用的でないことがわかった。
Comparative Example 5 A catalyst body was prepared by coating the Sl, C honeycomb substrate of Example 2 with 10% of titanium oxide, and the catalyst body of Example 1 was prepared.
Dimethyl sulfide removal performance was tested in the same manner as in 7. As a result, dimethyl sulfide leaked out to the outlet side in about 5 minutes. These results revealed that titanium oxide alone has a low adsorption capacity for malodorous components and is not practical.

実施例3 一体型基体としてNi−Cr板をベースとし表面にAt
 を溶射した基板を材料に20 m X 20■、長さ
20m、セル数40個/−のハニカムを用意した。この
ハニカム状基体を市販の活性アルミナを用いて調製した
スラリー中に浸漬、引上げた後00℃で2時間乾燥し、
その後500℃で2時間焼成した。この操作を4回繰返
したところ、アルミナは約20重′Ik%付着した。こ
のアルミナで被覆したハニカムを、実施例1で用いた活
性炭と酸化チタンを1:1で含有するスラリーに浸漬し
、過剰のスラリーを切った後、150℃で2時間乾燥し
、その後空気中、500℃で2時間焼成した。
Example 3 An integrated substrate is based on a Ni-Cr plate with At on the surface.
A honeycomb with a size of 20 m x 20 cm, a length of 20 m, and a number of cells of 40/- was prepared using a substrate onto which the material was thermally sprayed. This honeycomb-shaped substrate was immersed in a slurry prepared using commercially available activated alumina, pulled up, and then dried at 00°C for 2 hours.
Thereafter, it was fired at 500°C for 2 hours. When this operation was repeated four times, about 20 wt'Ik% of alumina was deposited. This alumina-coated honeycomb was immersed in the slurry containing activated carbon and titanium oxide in a 1:1 ratio used in Example 1, and after draining off the excess slurry, it was dried at 150°C for 2 hours, and then in air. It was baked at 500°C for 2 hours.

このときのコーテイング量は基体に対し約10重ii%
である。
The amount of coating at this time is approximately 10% by weight based on the base material.
It is.

この触媒体を実施例1と同様の方法で試験した。This catalyst body was tested in the same manner as in Example 1.

その結果、ジメチルスルフィドの流出が起こるまで約3
0分かか夛吸着量も充分にあることがわかった。また、
その後の通電による500〜400℃の加熱及び紫外光
の照射によりジメチルスルフイドの吸着除去性能もほぼ
回復し、2回目以降の吸着量も1回目の約85%を示し
、繰返し使用できることがわかった。
As a result, approximately 3
It was found that the adsorption amount was sufficient even after 0 minutes. Also,
By subsequent heating at 500 to 400°C by energization and irradiation with ultraviolet light, the adsorption and removal performance of dimethyl sulfide almost recovered, and the amount of adsorption after the second time was about 85% of the first time, indicating that it can be used repeatedly. Ta.

実施例4 実施例2で用いたSiC素材のハニカム状基体に活性炭
と酸化チタンと酸化亜鉛を50:40:10の割合で含
有するスラリーをコーテイング後、空気中、500℃で
2時間焼成した。このときのコ−ティングijkは基体
に対しほぼ10重tチである。
Example 4 The honeycomb-shaped substrate made of the SiC material used in Example 2 was coated with a slurry containing activated carbon, titanium oxide, and zinc oxide in a ratio of 50:40:10, and then fired in air at 500° C. for 2 hours. At this time, the coating ijk is approximately 10 times thicker than the substrate.

この触媒体の性能を実施例1と同様の方法で試験した。The performance of this catalyst was tested in the same manner as in Example 1.

その結果、飽和吸着後の通電による200〜300℃の
加熱及び紫外光の照射により容易に触媒体の吸着能が回
復しておシ、2回目以降の吸着量も1回目の90%以上
に達していた。
As a result, the adsorption capacity of the catalyst was easily recovered by heating at 200 to 300°C by energization after saturated adsorption and irradiation with ultraviolet light, and the adsorption amount after the second adsorption reached 90% or more of the first adsorption amount. was.

実施例5 本実施例では、悪臭成分としてジメチルスルフィドの代
シにメチルメルカプタンを用いて、他は実施例1と同様
の方法で試験した。その結果、メチルメルカプタンの場
合もジメチルスルフィドの場合とほぼ同じく効率良く吸
着除去が可能でかつ、通電加熱及び紫外光照射による再
生も可能であった。
Example 5 In this example, a test was conducted in the same manner as in Example 1 except that methyl mercaptan was used in place of dimethyl sulfide as the malodorous component. As a result, in the case of methyl mercaptan, it was possible to adsorb and remove it as efficiently as in the case of dimethyl sulfide, and it was also possible to regenerate it by heating with electricity and irradiating with ultraviolet light.

実施例6 実施例1で用いたものと同じ触媒体を、塩化白金酸、塩
化ルテニウムの水溶液中に各々浸漬し、引上げた後、1
50℃で2時間乾燥し、その後水素気流中で500℃2
時間処理した。白金、ルテニウムはそれぞれ金属換算で
1lL1重量%担持されている。この触媒体を実施例1
と同様の方法で性能を試験した。その結果、飽和吸着後
の通電加熱及び紫外光の照射による触媒体の吸着能の回
復は実施例1の場合よシも高く、2回目の吸着量Fi1
回目の吸着量の約90%を示した。
Example 6 The same catalyst body used in Example 1 was immersed in an aqueous solution of chloroplatinic acid and ruthenium chloride, and then pulled up.
Dry at 50℃ for 2 hours, then dry at 500℃2 in a hydrogen stream.
Time processed. Platinum and ruthenium were each supported in an amount of 1% by weight in terms of metal. This catalyst body was used in Example 1.
The performance was tested in the same manner. As a result, the recovery of the adsorption capacity of the catalyst by electrical heating and ultraviolet light irradiation after saturated adsorption was higher than in Example 1, and the second adsorption amount Fi1
The adsorption amount was approximately 90% of the adsorption amount for the first time.

実施例7 本実施例では通電加熱による悪臭成分の酸化分解機能も
上げるために、実施例1と同様の触媒体に、それぞれ酸
化マンガン、酸化コバルト、酸化ニッケル、酸化鉄を5
重量慢担持した触媒体を調製した。その後実施例1と同
様の方法で性能を試験した。その結果、いずれの触媒体
においても、飽和吸着後の通電加熱及び紫外光の照射に
よる触媒体の吸着能の回復は良好で、2回目の吸着量は
1回目の85%以上を示した。またこれらの触媒体は悪
臭成分の酸化分解機能を高めたため、光照射なしの通電
加熱のみでもかなシ再生が進み、いずれの触媒体でも2
回目の吸着量は1回目の70〜75%を示した。
Example 7 In this example, in order to increase the ability to oxidize and decompose malodorous components by heating with electricity, 50% of each of manganese oxide, cobalt oxide, nickel oxide, and iron oxide were added to the same catalyst body as in Example 1.
A heavily loaded catalyst body was prepared. Thereafter, performance was tested in the same manner as in Example 1. As a result, in all the catalyst bodies, the adsorption capacity of the catalyst body was well recovered by electrical heating and ultraviolet light irradiation after saturated adsorption, and the adsorption amount in the second time was 85% or more of that in the first time. In addition, these catalyst bodies have enhanced oxidative decomposition function of malodorous components, so even with only electric heating without light irradiation, the regeneration of kana is progressed, and both catalyst bodies have 2
The amount of adsorption for the first time was 70 to 75% of that for the first time.

〔発明の効果〕〔Effect of the invention〕

本発明によればガス中の汚染成分、特に悪臭成分を効率
良く分解除去できる。特に触媒体(吸着剤)の再生を効
率良く行うことが可能である。
According to the present invention, contaminant components in gas, particularly malodorous components, can be efficiently decomposed and removed. In particular, it is possible to efficiently regenerate the catalyst body (adsorbent).

特許出願人 株式会社 日立製作所Patent applicant: Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、発熱可能な基体上に、汚染ガスを光分解する能力を
有する触媒及び/又は汚染ガスを加熱分解する能力を有
する触媒が担持されていることを特徴とする汚染ガス分
解用触媒体。 2、該基体が、加熱により発熱する材料からなるもので
ある請求項1記載の汚染ガス分解用触媒体。 3、該基体が、通電により発熱するセラミックス及び/
又は金属からなるものである請求項1記載の汚染ガス分
解用触媒体。 4、請求項1記載の触媒体に、汚染ガスを吸着する能力
を有する材料が担持されていることを特徴とする汚染ガ
ス除去装置。 5、汚染ガス含有流中に設置される汚染ガス除去装置に
おいて、該装置が、該含有流の上流側に配置した汚染ガ
スを吸着する能力を有する材料と、下流側に配置した請
求項1記載の触媒体との組合せからなることを特徴とす
る汚染ガス除去装置。 6、汚染ガスの除去を必要とする機器において、汚染ガ
ス含有流の流通する箇所に、請求項4又は5に記載の汚
染ガス除去装置が設置されていることを特徴とする機器
。 7、該機器が、冷蔵庫、空気調節機、空気浄化器又は排
ガス浄化器である請求項6記載の機器。 8、汚染ガス含有流を請求項4又は5記載の汚染ガス除
去装置に所定時間流通させて汚染ガスを吸着させ、その
後吸着体を加熱して吸着された汚染ガスを遊離させると
共に、請求項1記載の触媒体を光照射及び/又は加熱し
て前記の遊離した汚染ガスを所定時間分解して再生を行
うことを特徴とする汚染ガス除去装置の使用方法。 9、該加熱を、加熱ガス流及び/又は通電発熱により行
う請求項8記載の使用方法。
[Claims] 1. A polluted gas characterized in that a catalyst capable of photolyzing polluted gas and/or a catalyst capable of thermally decomposing polluted gas is supported on a heat-generating substrate. Catalyst for decomposition. 2. The catalyst for decomposing polluted gas according to claim 1, wherein the substrate is made of a material that generates heat when heated. 3. The base is made of ceramics and/or materials that generate heat when energized.
The catalyst for decomposing polluted gas according to claim 1, which is made of a metal or a metal. 4. A pollutant gas removal device, characterized in that the catalyst body according to claim 1 supports a material having the ability to adsorb pollutant gas. 5. A polluted gas removal device installed in a stream containing polluted gas, wherein the device comprises a material having the ability to adsorb polluted gas disposed upstream of the stream containing polluted gas, and a material disposed downstream of the stream containing polluted gas. A pollutant gas removal device characterized by comprising a combination of a catalyst body and a catalyst body. 6. A device that requires the removal of contaminated gas, characterized in that the contaminated gas removal device according to claim 4 or 5 is installed at a location where a stream containing contaminated gas flows. 7. The device according to claim 6, wherein the device is a refrigerator, an air conditioner, an air purifier, or an exhaust gas purifier. 8. The pollutant gas-containing stream is passed through the pollutant gas removal device according to claim 4 or 5 for a predetermined period of time to adsorb the pollutant gas, and then the adsorbent is heated to liberate the adsorbed pollutant gas, and the method of claim 1 A method of using a pollutant gas removal device, which comprises regenerating the liberated pollutant gas by irradiating the catalyst with light and/or heating it to decompose the released pollutant gas for a predetermined period of time. 9. The method of use according to claim 8, wherein the heating is performed by a heated gas flow and/or an electric current generating heat.
JP63257104A 1988-10-14 1988-10-14 Catalyst for decomposing contaminated gas and its usage Pending JPH02107338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257104A JPH02107338A (en) 1988-10-14 1988-10-14 Catalyst for decomposing contaminated gas and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257104A JPH02107338A (en) 1988-10-14 1988-10-14 Catalyst for decomposing contaminated gas and its usage

Publications (1)

Publication Number Publication Date
JPH02107338A true JPH02107338A (en) 1990-04-19

Family

ID=17301788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257104A Pending JPH02107338A (en) 1988-10-14 1988-10-14 Catalyst for decomposing contaminated gas and its usage

Country Status (1)

Country Link
JP (1) JPH02107338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169039A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JPH02284629A (en) * 1989-04-26 1990-11-22 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst and deodorizing device with photocatalyst
EP0798143A1 (en) * 1996-03-22 1997-10-01 Kabushiki Kaisha Equos Research Method and apparatus for purifying air including adsorbent reactivation
WO1998046335A1 (en) * 1997-04-15 1998-10-22 The University Of Western Ontario Photocatalytic reactor and method for destruction of organic air-borne pollutants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169039A (en) * 1988-12-22 1990-06-29 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst
JPH02284629A (en) * 1989-04-26 1990-11-22 Matsushita Electric Ind Co Ltd Method for regenerating photocatalyst and deodorizing device with photocatalyst
JPH0644976B2 (en) * 1989-04-26 1994-06-15 松下電器産業株式会社 Photocatalyst regeneration method and photocatalyst deodorizing device
EP0798143A1 (en) * 1996-03-22 1997-10-01 Kabushiki Kaisha Equos Research Method and apparatus for purifying air including adsorbent reactivation
WO1998046335A1 (en) * 1997-04-15 1998-10-22 The University Of Western Ontario Photocatalytic reactor and method for destruction of organic air-borne pollutants

Similar Documents

Publication Publication Date Title
US5308457A (en) Self-contained system for controlling gaseous emissions from dilute organic sources and a process for using that system
EP2164812A1 (en) Purification of a fluid using ozone with an adsorbent and/or a particle filter
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
KR20140132940A (en) Air purifying device
JP2002238981A (en) Air cleaning device
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JPH02107338A (en) Catalyst for decomposing contaminated gas and its usage
JPH10238741A (en) Catalytic combustion type thermal storage exhaust gas treating apparatus
JPH1071331A (en) Zno-pd complex catalyst and preparation thereof
JPH02251226A (en) Air cleaning apparatus
JP3521748B2 (en) Air purification filter and air purifier
TWI361719B (en)
JPH06327967A (en) Honeycomb adsorbing body
JPH0975670A (en) Treatment of organic pollutant
JPH0824579A (en) Treatment of low concentration nox containing gas
TWI492783B (en) Regeneration method of waste gas filter
JP2005245811A (en) Deodorant and cleaner using it
JP2001254421A (en) Deodorizor for toilet
JP2001178803A (en) Air cleaner and method of cleaning air
JP2004024472A (en) Deodorizer and deodorizing method
JP2004322004A (en) Nitrogen oxide removal catalyst, and denitrification method and denitrification apparatus using the same
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPS63137733A (en) Gas cracking and deodorizing device
JP3576189B2 (en) Odor removal method and odor component adsorbent
JPH08323150A (en) Treatment of gas containing nitrogen oxides