JPH02307073A - Characteristic measuring instrument for dielectric material - Google Patents

Characteristic measuring instrument for dielectric material

Info

Publication number
JPH02307073A
JPH02307073A JP12852989A JP12852989A JPH02307073A JP H02307073 A JPH02307073 A JP H02307073A JP 12852989 A JP12852989 A JP 12852989A JP 12852989 A JP12852989 A JP 12852989A JP H02307073 A JPH02307073 A JP H02307073A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric material
case
resonator
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12852989A
Other languages
Japanese (ja)
Inventor
Toshio Nishikawa
敏夫 西川
Hiroaki Tanaka
裕明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP12852989A priority Critical patent/JPH02307073A/en
Publication of JPH02307073A publication Critical patent/JPH02307073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure material constants such as the specific dielectric constant and dielectric tangent of a dielectric material in the milliwave band by providing a columnar resonator made of the dielectric material to be measured in a cylindrical case and constituting a rotationally symmetrical resonance system. CONSTITUTION:The upper part 1 and lower part 2 of the case are joined vertically, a columnar space is formed at the upper part in the case lower part 2 and two coupling holes 3 and 4 are formed opposite the side part. The columnar dielectric resonator 5 made of the dielectric material to be measured is held by a holding base 6 and installed at the center part in the columnar space of the case lower part 2. Further, the flange parts of waveguides 7 and 8 which are sectioned rectangularly are fitted with screws 9 while the upper part 1 and lower part 2 of the case are joined together. Then, the resonator 5 is arranged in the columnar space to obtain the rotationally symmetrical resonance system and the coupling holes 3 and 4 can be connected to an external network analyzer, etc., through the waveguides 7 and 8, so the resonance frequency and non-load Q of the resonator 5 can be measured without using any coaxial connector.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は、被測定用誘電体材料により誘電体共振器を
構成し、誘電体材料の電気的特性を測定する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Al Industrial Field of Application) The present invention relates to an apparatus for constructing a dielectric resonator using a dielectric material to be measured and measuring electrical characteristics of the dielectric material.

fbl従来の技術 誘電体材料の比誘電率(εr)や誘電正接(【an“δ
)などの材料定数を測定する場合、被測定用誘電体材料
により誘電体共振器を構成して、その共振周波数と無負
荷Qを測定することによって比誘電率と誘電正接が求め
られている。
fbl Conventional technology The relative dielectric constant (εr) and dielectric loss tangent ([an"δ
), etc., the dielectric constant and dielectric loss tangent are determined by constructing a dielectric resonator using the dielectric material to be measured and measuring its resonant frequency and no-load Q.

第3図はその例を示す測定装置の断面図であり、金属ケ
ース19と金属カバー20からなるシールドケース内に
保持台6を介して被測定用誘電体材料からなる誘電体共
振器5が設置されている。
FIG. 3 is a sectional view of a measuring device showing an example of this, in which a dielectric resonator 5 made of a dielectric material to be measured is installed via a holding table 6 in a shield case consisting of a metal case 19 and a metal cover 20. has been done.

このシールドケースには同軸コネクタ16.17が設け
られ、結合棒によって誘電体共振器5と結合されている
This shield case is provided with coaxial connectors 16 and 17, which are coupled to the dielectric resonator 5 by a coupling rod.

(C1発明が解決しようとする課題 ところが、このように同軸コネクタによって信号の入出
力を行う測定装置では、20GHz以上の周波数になる
と、同軸コネクタの特性(特に反射特性)が劣化するた
め、誘電体材料の電気的特性を正しく求めることができ
ない。
(Problem to be solved by the C1 invention) However, in measurement devices that input and output signals using coaxial connectors, the characteristics of the coaxial connector (especially the reflection characteristics) deteriorate when the frequency exceeds 20 GHz. It is not possible to accurately determine the electrical properties of materials.

そこで、同軸コネクタを用いない測定装置として、例え
ば第4図に示すように遮断導波管内に被測定用誘電体材
料からなる誘電体共振器を設置して測定することが考え
られる。第4図において18は遮断導波管、5は被測定
用誘電体材料からなる誘電体共振器、6はその保持台で
ある。
Therefore, as a measuring device that does not use a coaxial connector, it is conceivable to install a dielectric resonator made of a dielectric material to be measured in a cut-off waveguide, as shown in FIG. 4, for example. In FIG. 4, 18 is a cut-off waveguide, 5 is a dielectric resonator made of a dielectric material to be measured, and 6 is a holder thereof.

しかしながらこのように遮断導波管を用いた場合には遮
断導波管の断面が矩形であり、系が回転対称でないため
、比誘電率と誘電正接の解析が困難となる。したがって
共振周波数と無負荷Qから直ちに比誘電率と誘電正接を
求めることができないとい・)問題があった。
However, when a cutoff waveguide is used in this way, the cross section of the cutoff waveguide is rectangular and the system is not rotationally symmetrical, making it difficult to analyze the relative dielectric constant and dielectric loss tangent. Therefore, there was a problem in that the dielectric constant and dielectric loss tangent could not be immediately determined from the resonant frequency and the no-load Q.

この発明の目的は導波管を用い、且つ誘電体共振器の共
振系を回転対称とすることによってミリ波帯における誘
電体材料の電気的特性を測定できるようにした測定装置
を堤供することにある。
The purpose of this invention is to provide a measuring device that can measure the electrical characteristics of dielectric materials in the millimeter wave band by using a waveguide and making the resonance system of a dielectric resonator rotationally symmetrical. be.

(d1課題を解決するための手段 この発明の誘電体材料の特性測定装置は、外部に接続さ
れる導波管との間で電磁結合する結合孔を有し、内部に
被測定用誘電体材料からなる円柱状の共振器が設置され
る円筒状のケースと、この・5゛−スに導波管を接続し
て前記結合孔によって電651結合させたことを特徴と
している。
(Means for Solving Problem d1) The dielectric material characteristic measuring device of the present invention has a coupling hole for electromagnetic coupling with a waveguide connected to the outside, and has a dielectric material to be measured inside. The present invention is characterized in that a cylindrical case is installed in which a cylindrical resonator consisting of a cylindrical resonator is installed, and a waveguide is connected to this 5° space and electrically coupled through the coupling hole.

fe)作用 この発明の誘電体材料の特性測定装置においては、円筒
状ケース内に被測定用誘電体材料からなる円柱状の共振
器が設置されることにより回転対称の共振系が得られ、
結合孔によって外部に接続される導波管に結合される。
fe) Function In the dielectric material characteristic measuring device of the present invention, a rotationally symmetrical resonant system is obtained by installing a cylindrical resonator made of the dielectric material to be measured in a cylindrical case.
It is coupled to a waveguide connected to the outside by a coupling hole.

したがってネットワークアナライザなどに対してこの導
波管を直接接続することによって、同軸コネクタを用い
ることなく誘電体共振器の共振周波数や無負荷Qを測定
することができるため、ミリ波帯での比誘電率や誘電正
接などの電気的特性を容易に求めることができる。
Therefore, by directly connecting this waveguide to a network analyzer, etc., it is possible to measure the resonant frequency and no-load Q of the dielectric resonator without using a coaxial connector. Electrical properties such as coefficient and dielectric loss tangent can be easily determined.

(fl実施例 この発明の第1の実施例である誘電体材料の特性測定装
置の構造を第1図(A)、(B)に示す、第1図(A)
は縦断面図、第1図(B)は同図(A)におけるA−A
部分の横断面図である。
(fl Example) The structure of a dielectric material characteristic measuring device which is a first example of the present invention is shown in FIGS. 1(A) and 1(B).
is a vertical cross-sectional view, and Figure 1 (B) is a line taken along A-A in Figure 1 (A).
FIG.

第1図(A)、  (B)において、■はケース上部、
2はケース下部であり、両者が上下方向に接合されてい
る。ケース下部2の上方には内部に円柱状空間ををし、
側部に対向して2つの結合孔3.4を形成している。5
は彼ヨ1)定用誘電体材料からなる円柱状の誘電体共振
器、6は保持台であり、ケース下部2の円柱状空間内の
中心部に設置している。また、7,8はそれぞれ断面方
形状の導波管であり、ケース上部lとケース下部2とを
接合した状態で導波管7,8のフランジ部をビス9によ
って取り付けている。
In Figures 1 (A) and (B), ■ indicates the upper part of the case,
2 is the lower part of the case, and both are joined in the vertical direction. There is a cylindrical space inside the upper part of the case lower part 2,
Two coupling holes 3.4 are formed opposite to each other on the sides. 5
1) A cylindrical dielectric resonator made of a regular dielectric material, 6 a holding stand, and installed in the center of the cylindrical space in the lower part 2 of the case. Further, 7 and 8 are waveguides each having a rectangular cross section, and the flange portions of the waveguides 7 and 8 are attached with screws 9 while the case upper part l and the case lower part 2 are joined.

第1図に示した構造の測定装置では、ケース上部lとケ
ース下部2とを接合した状態で内部に円筒状ケースが構
成され、共振系が回転対称となる。また、導波管7,8
にはTE、。モードを基本モードとする電磁波が伝搬す
る。このとき磁力線(図中の破線番照)は導波管断面の
長手方向に走り、誘電体共振器5の軸が導波管断面の長
手方向と平行であるため、導波管を伝搬する電磁波のモ
ードと誘電体共振器のモードとが結合する。この結合の
強さは結合孔3.4の形状および大きさを変えることに
よって調整することができる。
In the measuring device having the structure shown in FIG. 1, a cylindrical case is formed inside with the case upper part l and the case lower part 2 joined together, and the resonance system is rotationally symmetrical. In addition, the waveguides 7 and 8
TE,. An electromagnetic wave whose fundamental mode is propagated. At this time, the magnetic lines of force (indicated by broken lines in the figure) run in the longitudinal direction of the waveguide cross section, and the axis of the dielectric resonator 5 is parallel to the longitudinal direction of the waveguide cross section, so electromagnetic waves propagate through the waveguide. mode and the mode of the dielectric resonator are coupled. The strength of this bond can be adjusted by changing the shape and size of the bonding holes 3.4.

この発明の第2の実施例である誘電体材料の特性測定装
置の構造を第2図(A)、  (B)に示す。第2図(
A)は装置の縦断面図、第2図(B)は同図(A)にお
け、るA−A部分の縦断面図である。
The structure of a dielectric material characteristic measuring device according to a second embodiment of the present invention is shown in FIGS. 2(A) and 2(B). Figure 2 (
A) is a longitudinal cross-sectional view of the device, and FIG. 2(B) is a longitudinal cross-sectional view of the A-A section in FIG. 2(A).

第2図において1)は導波管上部、12は導波管下部で
あり、両者をビス13によって接合した状態で円形導波
管となる。また上部導波管1)および下部導波管12に
は、それぞれ両者を接合した状態で中心軸部分に結合孔
14が形成される節1)、a、12aと中心部に結合孔
15が形成される節1)b、i2bを設けている。上部
導波管1)と下部導波管12を接合することによって1
)a、l’laおよびllb、12bからなる2つの節
によって円筒状ケースを構成している。この円筒状ケー
ス内に輪状支持枠10によって被測定用誘電体材料から
なる円柱状の誘電体共振器5を同芯軸上に支持している
In FIG. 2, 1) is the upper part of the waveguide, and 12 is the lower part of the waveguide, and when both are joined by screws 13, a circular waveguide is formed. In addition, in the upper waveguide 1) and the lower waveguide 12, a coupling hole 14 is formed in the central axis portion when both are joined, and a coupling hole 15 is formed in the center of the nodes 1), a, and 12a. Clauses 1) b and i2b are provided. 1 by joining the upper waveguide 1) and the lower waveguide 12.
) A cylindrical case is constituted by two nodes consisting of a, l'la and llb, 12b. Inside this cylindrical case, a cylindrical dielectric resonator 5 made of a dielectric material to be measured is supported on a concentric axis by a ring-shaped support frame 10.

第2図に示した測定装置では、円形導波管にi’EOI
モードで電磁波が伝搬し、結合孔14.15を介してT
 E o rモードの誘電体共振器5と結合する。この
結合の強さぽ結合孔i4.,15の形状および大きさを
変えhによりて?A整することができる。
In the measurement device shown in Fig. 2, i'EOI is applied to the circular waveguide.
The electromagnetic wave propagates in the T mode and passes through the coupling hole 14.15.
It is coupled to the E or mode dielectric resonator 5. The strength of this bond is the connection hole i4. , 15 by changing the shape and size of h? A can be adjusted.

fg)発明の効果 以上のようにこの発明によれば、被測定用誘電体材料か
らなる円柱状の誘電体共振器の共振系を回転対称とする
ことができ、しかも同軸コネクタを用いることなく信号
の入出力を行うことができるため、従来困難であった2
0GHz以上での誘電体材料の比誘電率やy、!正接な
どの材料定数を測定することが可能となる。
fg) Effects of the Invention As described above, according to the present invention, the resonance system of the cylindrical dielectric resonator made of the dielectric material to be measured can be made rotationally symmetrical, and the signal can be transmitted without using a coaxial connector. 2, which was difficult in the past.
Relative permittivity of dielectric material at 0 GHz or higher, y,! It becomes possible to measure material constants such as tangent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、  (B)はこの発明の第1の実施例で
ある誘電体材料の特性測定装置の構造を表す図、第2図
(A)、(B)はこの発明の第2の実施例に係る誘電体
材料の特性測定装置の構造を表す図である。第3図と第
4図は従来技術による誘電体材料の特性測定装置の例を
示す図である。 l−ケース上部、 2−ノグース下部、 3.4−結合孔、 5−誘電体共振器、 6−保持台、 7.8一方形導波管、 (1)+12)−円形導波管、 14.15−結合孔。
FIGS. 1(A) and (B) are diagrams showing the structure of a dielectric material characteristic measuring device according to the first embodiment of the present invention, and FIGS. FIG. 2 is a diagram showing the structure of a dielectric material characteristic measuring device according to an example. FIGS. 3 and 4 are diagrams showing an example of a conventional device for measuring characteristics of dielectric materials. 1-upper part of the case, 2-lower part of the nogoose, 3.4-coupling hole, 5-dielectric resonator, 6-holding stand, 7.8 one-sided waveguide, (1)+12)-circular waveguide, 14 .15-Binding pore.

Claims (1)

【特許請求の範囲】[Claims] (1)外部に接続される導波管との間で電磁結合する結
合孔を有し、内部に被測定用誘電体材料からなる円柱状
の共振器が設置される円筒状ケースと、このケースに前
記導波管を接続してなる誘電体材料の特性測定装置。
(1) A cylindrical case that has a coupling hole for electromagnetic coupling with a waveguide connected to the outside, and in which a cylindrical resonator made of a dielectric material to be measured is installed, and this case. An apparatus for measuring characteristics of a dielectric material, which comprises connecting the waveguide to the waveguide.
JP12852989A 1989-05-22 1989-05-22 Characteristic measuring instrument for dielectric material Pending JPH02307073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12852989A JPH02307073A (en) 1989-05-22 1989-05-22 Characteristic measuring instrument for dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12852989A JPH02307073A (en) 1989-05-22 1989-05-22 Characteristic measuring instrument for dielectric material

Publications (1)

Publication Number Publication Date
JPH02307073A true JPH02307073A (en) 1990-12-20

Family

ID=14987006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12852989A Pending JPH02307073A (en) 1989-05-22 1989-05-22 Characteristic measuring instrument for dielectric material

Country Status (1)

Country Link
JP (1) JPH02307073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645638B1 (en) * 2000-09-16 2006-11-13 에스케이 주식회사 Dielectric spectrum measuring system using co-axial type lf/rf dielectric sensor with fixture
KR100645639B1 (en) * 2000-11-23 2006-11-13 에스케이 주식회사 Co-axial type lf/rf dielectric sensor and dielectric spectrum measuring system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645638B1 (en) * 2000-09-16 2006-11-13 에스케이 주식회사 Dielectric spectrum measuring system using co-axial type lf/rf dielectric sensor with fixture
KR100645639B1 (en) * 2000-11-23 2006-11-13 에스케이 주식회사 Co-axial type lf/rf dielectric sensor and dielectric spectrum measuring system using the same

Similar Documents

Publication Publication Date Title
Fiedziuszko Dual-mode dielectric resonator loaded cavity filters
Southworth Hyper‐frequency wave guides—general considerations and experimental results
US4642591A (en) TM-mode dielectric resonance apparatus
US3732508A (en) Strip line to waveguide transition
EP0734088B1 (en) Dielectric resonator and dielectric resonator device using same
JPS6221301A (en) Dielectric resonator filter
US4314204A (en) Resonator for electron spin resonance experiments
CN110658226B (en) Microwave resonant cavity and electron paramagnetic resonance probe using same
CN108414839B (en) FSS-based complex dielectric constant measurement system by resonance method
JPH02307073A (en) Characteristic measuring instrument for dielectric material
Muraguchi et al. A new type of isolator for millimeter-wave integrated circuits using a nonreciprocal traveling-wave resonator
Yabe et al. Dispersion characteristics of twisted rectangular waveguides
JPH08154008A (en) Waveguide coaxial transducer
JPH1114558A (en) Measuring method for surface resistance
JPS6126844B2 (en)
JPH0659001B2 (en) Dielectric resonator device
Caspers et al. Measurement of trapped modes in perforated waveguides
Bornemann et al. Metallic E-plane filter with cavities of different cutoff frequency
JP3956522B2 (en) Transmission line coupling structure, transmission line coupling amount adjusting method, filter, duplexer, communication device, antenna device
JPH036466A (en) Method for measuring intermodulation strain
JPH0652841B2 (en) Resonator device
Dillon et al. Triply-ridged circular waveguides
JPH0243801A (en) Structure of interdigital filter
JP2024129627A (en) Measurement device and harmonic resonator for measuring magnetic permeability and permittivity
Maeda et al. Bending loss in two dimensional photonic crystal waveguide