JPH02306980A - Production of alpha,omega-dihydrogen organopolysiloxane - Google Patents

Production of alpha,omega-dihydrogen organopolysiloxane

Info

Publication number
JPH02306980A
JPH02306980A JP1125964A JP12596489A JPH02306980A JP H02306980 A JPH02306980 A JP H02306980A JP 1125964 A JP1125964 A JP 1125964A JP 12596489 A JP12596489 A JP 12596489A JP H02306980 A JPH02306980 A JP H02306980A
Authority
JP
Japan
Prior art keywords
formula
water
inorganic solid
compound
chlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125964A
Other languages
Japanese (ja)
Other versions
JP2585099B2 (en
Inventor
Koji Yoshino
浩二 吉野
Akira Kawamata
章 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1125964A priority Critical patent/JP2585099B2/en
Publication of JPH02306980A publication Critical patent/JPH02306980A/en
Application granted granted Critical
Publication of JP2585099B2 publication Critical patent/JP2585099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the title compound useful as a raw material for silicone rubber, surface treating agent, etc., having fixed chain length free from distribution of siloxane unit in high selectivity by reacting a specific cyclic silicone with a chlorosilane and water in the presence of an inorganic solid compound. CONSTITUTION:A cyclic silicone shown by formula I (R<1> and R<2> may be the same or different and H, alkyl, alkenyl, aryl or halogenated alkyl; n is 3-10) is reacted with a chlorosilane shown by formula II and water in the presence of an inorganic solid compound (preferably silica gel) to give a compound shown by formula III. Hexamethylcyclotrisiloxane, etc., may be cited as the compound shown by formula I and dimethylchlorosilane, etc., as the compound shown by formula II. The amount of the compound shown by formula II used is preferably 2-4mols based on 1mol compound shown by formula I. The amount of the inorganic solid compound used is preferably 1-50wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα、ω−ジハイドロジェンオルガノボリシロキ
サンの製造法、更に詳細には、シロキサン単位に分布が
なく、一定のシロキサン鎖長を有するα、ω−ジハイド
ロジェンオルカ′ノボリシロキサンの製造法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing α,ω-dihydrogenorganoborisiloxane, and more specifically, a method for producing α,ω-dihydrogenorganoborisiloxane, which has no distribution in siloxane units and has a constant siloxane chain length. This invention relates to a method for producing α,ω-dihydrogenorka'novolisiloxane.

〔従来の技術及びその課題〕[Conventional technology and its problems]

ポリシロキサン鎖の両末端に5i−H基を有するα、ω
−ジハイド口ジェンオルガノボリシロキサンはシリコー
ンゴム、変性シリコーンの原料あるいは表面処理剤等と
して広範囲な産業分野において利用されている。従来、
α1 ω−ジハイドロジエンオルガノポリシロキサンの
製造法としては例えば、(I)テトラメチルジシロキサ
ンとオクタメチルシクロテトラシロキサンを開環重合す
る方法、(2)ジアルキルジクロロシランの加水分解に
よりα。
α, ω having 5i-H groups at both ends of the polysiloxane chain
-Dihydrogen organoborisiloxane is used in a wide range of industrial fields as a raw material for silicone rubber and modified silicone, or as a surface treatment agent. Conventionally,
Examples of the method for producing α1 ω-dihydrodiene organopolysiloxane include (I) ring-opening polymerization of tetramethyldisiloxane and octamethylcyclotetrasiloxane, and (2) hydrolysis of dialkyldichlorosilane.

ω−ジクロロオルガノポリシロキサンを得たのちリチウ
ムアルミニウムハイドライドにより還元する方法〔ボリ
ッシュジャーナルオブケミストリ−(Po1ish J
ournal or Chemist’ry )、53
巻6号1363ページ、1979年〕、(3)テトラメ
チルジシロキサンとクロロシランの不均化により得る方
法〔西ドイツ特許第2630744号〕が知られている
A method of obtaining ω-dichloroorganopolysiloxane and then reducing it with lithium aluminum hydride [Bolish Journal of Chemistry (Polish J
internal or Chemist'ry), 53
Vol. 6, p. 1363, 1979], and (3) a method of obtaining it by disproportionation of tetramethyldisiloxane and chlorosilane [West German Patent No. 2,630,744].

しかしながら、これらの方法はいずれも、基本的に平衡
化反応を利用しているため生成物のシロキサン単位に分
布が生じてしまい、ある特定の鎖長を有するものを収率
よく製造することはできないという問題を有していた。
However, all of these methods basically utilize an equilibration reaction, resulting in a distribution of siloxane units in the product, making it impossible to produce products with a specific chain length in good yield. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

斯かる実情において、本発明者らは、上記問題転を解決
すべく種々検討を行った結果、特定の環状シリコーン、
クロロシラン及び水を無機固体化合物の存在下に反応さ
せれば、原料環状シリコーンに対応する一定の鎖長を有
し、シロキサン単位に分布のないα、ω−ジハイドロジ
エンオルガノボリシロキサンが高選択的に得られること
を見出し、本発明を完成した。
Under such circumstances, the present inventors conducted various studies to solve the above problems, and as a result, a specific cyclic silicone,
When chlorosilane and water are reacted in the presence of an inorganic solid compound, a highly selective α,ω-dihydrodiene organoborisiloxane with a certain chain length corresponding to the raw material cyclic silicone and no distribution in siloxane units is produced. The present invention has been completed based on the discovery that this can be obtained.

すなわち、本発明は次の一般式(n) (R’ll”SiO)l、(II ) 〔式中、R’及びR2は同一でも異なっていてもよい水
素原子、アルキル基、アルケニル基、アリール基または
ハロゲン化アルキル基を示し、nは3〜10の整数を示
す〕 で表わされる環状シリコーン、次の一般式(III )
R’R’5i)l[j!        (III )
〔式中、R’及びR2は前記と同じ意味を有する]で表
わされるクロロシラン及び水を無機固体化合物の存在下
で反応させるこきを特徴とする次の一般式(I) 11R’R,’5iO(R’R”5iO)、、SiR’
l”ll        (I)〔式中、R’、R’及
びnは前記と同じ意味を有する〕 で表わされるα、ω−ジハイドロジェンオルガノポリシ
ロキサンの製造法を提供するものである。
That is, the present invention relates to the following general formula (n) (R'll''SiO)l, (II) [wherein R' and R2 may be the same or different, a hydrogen atom, an alkyl group, an alkenyl group, an aryl group] or a halogenated alkyl group, and n is an integer of 3 to 10], a cyclic silicone represented by the following general formula (III)
R'R'5i)l[j! (III)
The following general formula (I) 11R'R,'5iO characterized by reacting chlorosilane represented by [wherein R' and R2 have the same meanings as above] and water in the presence of an inorganic solid compound. (R'R''5iO),,SiR'
The present invention provides a method for producing an α,ω-dihydrogenorganopolysiloxane represented by the following formula: l''ll (I) [wherein R', R' and n have the same meanings as above].

本発明製造法における反応は基本的には環状シリコーン
(II)とクロロシラン(nl)とからなる相と水相と
の2相反応であり、無機固体化合物を触媒として下記の
反応式に従って進行するものと考えられる。
The reaction in the production method of the present invention is basically a two-phase reaction between a phase consisting of cyclic silicone (II) and chlorosilane (NL) and an aqueous phase, and proceeds according to the following reaction formula using an inorganic solid compound as a catalyst. it is conceivable that.

・・・・・・ (2) (■)+(V)→tlR’R25io(R’R’5iO
)。SiR’R”ll・・・・・・ (3) すなわち、まずクロロシラン(III)が加水分解を受
は対応するシラノール([V)と塩化水素が生ずる(反
応式(I))。この塩化水素の触媒作用によって環状シ
リコーン(II)とクロロシラン(I)が反応しα−ク
ロロω−ハイドロジエンオルガノポリシロキサン(V)
を与える(反応式(2))。次いでα−クロロω−ハイ
ドロジェンオルカ′ノボリシロキサン(V)がシラノー
ル(IV)と脱塩酸反応を起こしα、ω−ジハイド口ジ
ェンオルガノボリシロキサンを与える(反応式(3))
...... (2) (■) + (V) → tlR'R25io (R'R'5iO
). SiR'R"ll... (3) That is, first, chlorosilane (III) undergoes hydrolysis to generate the corresponding silanol ([V) and hydrogen chloride (reaction formula (I)). This hydrogen chloride Cyclic silicone (II) and chlorosilane (I) react by the catalytic action of
(Reaction formula (2)). Next, α-chloroω-hydrogen-organoborisiloxane (V) undergoes a dehydrochlorination reaction with silanol (IV) to give α,ω-dihydrogen-organoborisiloxane (reaction formula (3)).
.

本発明製造法において、α、ω−ジハイドロジエンオル
ガノボリシロキサン(f)製造゛のための出発原料であ
る環状シリコーン(■)としては、例えばヘキサメチル
シクロトリシロキサン、ヘキサエチルシクロトリシロキ
サン、ヘキサエチルシクロトリシロキサン、トリノチル
トリビニルシクロトリシロキサン、トリノチルトリフェ
ニルシクロトリシロキサン、オクタメチルシクロテトラ
シロキサン、オクタエチルシクロテトラシロキサン、オ
クタフェニルシクロテトラシロキサン、テトラメチルテ
トラフェニルシクロテトラシロキtン、テトラメチルテ
トラビニルシクロテトラシロキサン、テトラ (トリフ
ルオロプロピル)テトラメチルシクロテトラシロキサン
、テ゛カメチルシクロペンタシロキサン、ドデカメチル
シクロヘキサシロキサン等が挙げられる。
In the production method of the present invention, the cyclic silicone (■) which is the starting material for the production of α,ω-dihydrodieneorganoborisiloxane (f) is, for example, hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaethylcyclotrisiloxane, Ethylcyclotrisiloxane, trinotyltrivinylcyclotrisiloxane, trinotyltriphenylcyclotrisiloxane, octamethylcyclotetrasiloxane, octaethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, tetramethyltetraphenylcyclotetrasiloxane, tetra Examples include methyltetravinylcyclotetrasiloxane, tetra(trifluoropropyl)tetramethylcyclotetrasiloxane, dicamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.

また、他方の原料であるクロロシラン(III )とし
ては、例えばジメチルクロロシラン、ジエチルクロロシ
ラン、ジフェニルクロロシラン、ジビニルクロロシラン
等が挙げられる。
Examples of the other raw material, chlorosilane (III), include dimethylchlorosilane, diethylchlorosilane, diphenylchlorosilane, and divinylchlorosilane.

更に、本発明製造法で触媒として用いる無機固体化合物
としては、反応溶液に不溶性で、かつ均一に分散するも
のが好ましく、例えばシリカゲル、二酸化チタン、シリ
カ・アルミナ等が挙げられる。
Furthermore, the inorganic solid compound used as a catalyst in the production method of the present invention is preferably one that is insoluble and uniformly dispersed in the reaction solution, such as silica gel, titanium dioxide, silica/alumina, and the like.

これらのうち、特にシリカゲルが好ましく用いられる。Among these, silica gel is particularly preferably used.

ここでシリカゲルとは無定型珪酸重合物を言い、本発明
ではいかなる種類のものも用い得るが、粒度の小さいも
のの方が、少ない使用量において反応速度を速めること
ができるため好ましい。
Here, silica gel refers to an amorphous silicic acid polymer, and although any type of silica gel can be used in the present invention, it is preferable to use one with a small particle size because the reaction rate can be accelerated with a small amount used.

本発明製造法により、α、ω−ジノ1イドロジエンオル
カ′ノボリシロキサン(I)を製造するには上記環状シ
リコーン(■)、無機固体化合物及び水の混合物中に上
記クロロシラン(■I)を添加するのが好ましい。
In order to produce α,ω-dino-hydrodienolka'novolisiloxane (I) by the production method of the present invention, the above chlorosilane (■I) is added to a mixture of the above cyclic silicone (■), an inorganic solid compound, and water. It is preferable to do so.

反応に用いられるクロロシラン(I)の量は、環状シリ
コーン(II)に対し、2〜10倍モル、さらに2〜4
倍モル、特に3倍モル程度が好ましい。
The amount of chlorosilane (I) used in the reaction is 2 to 10 times the mole of the cyclic silicone (II), and further 2 to 4 times the mole of the cyclic silicone (II).
It is preferably about twice the molar amount, especially about 3 times the molar amount.

無機固体化合物の使用量は環状シリコーン(II)ふよ
びクロロシラン(III)の反応性に応じて適宜選択さ
れるが、環状シリコーンDI>に対して1〜50重量%
の範囲であることが好ましい。
The amount of the inorganic solid compound to be used is appropriately selected depending on the reactivity of the cyclic silicone (II) and chlorosilane (III), but is 1 to 50% by weight based on the cyclic silicone DI>.
It is preferable that it is in the range of .

また水は原則として化学量論的過剰量使用される。すな
わち環状シリコーン(II)に対して1〜500倍モル
、好ましくは5〜20倍モルの範囲で用いることが好ま
しい。
Also, as a rule, water is used in a stoichiometric excess. That is, it is preferably used in an amount of 1 to 500 times, preferably 5 to 20 times, the amount of cyclic silicone (II).

反応溶媒は使用してもしなくてもよいが、環状シリコー
ンとして常温で固体であるヘキサメチルシクロトリシロ
キサンを用いる際には反応を円滑にすすめるために用い
てもよい。用いられる溶媒としては、ペンタン、ヘキサ
ン、ヘプタン、ベンゼン、トルエン等の水と混じり合わ
ない炭化水累系溶媒が挙げられる。
A reaction solvent may or may not be used, but when hexamethylcyclotrisiloxane, which is solid at room temperature, is used as the cyclic silicone, it may be used to facilitate the reaction. Examples of the solvent used include hydrocarbon series solvents that are immiscible with water, such as pentane, hexane, heptane, benzene, and toluene.

本発明製造法における反応は、環状シリコーン(■)の
反応性によっても異なるが、通常、クロロシラン(i[
I)添加後は室温条件下で1〜5時間で終了する。得ら
れた反応液は常圧下、好ましくは減圧下において蒸留す
ることにより、混在する未反応環状シリコーン及びクロ
ロシランを容易に分離でき、α、ω−ジハイドロジェン
オルカ゛ノボリシロキサンが得られる。尚、ここで回収
された環状シリコーン及びクロロシランは本発明の反応
に再び使用することができるものである。
The reaction in the production method of the present invention varies depending on the reactivity of the cyclic silicone (■), but usually chlorosilane (i [
I) The addition is completed in 1 to 5 hours under room temperature conditions. By distilling the obtained reaction solution under normal pressure, preferably under reduced pressure, the unreacted cyclic silicone and chlorosilane present can be easily separated, and α,ω-dihydrogenocarinopolysiloxane can be obtained. Incidentally, the cyclic silicone and chlorosilane recovered here can be used again in the reaction of the present invention.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳しく説明するが、本
発明はこれら実施例に限定されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 z、9−シハイトロジェンテ゛カメチルペンタシロキサ
ンの合成〔一般式(I)中、lI’=R’=[11,、
n=3]  : 滴下ロートを備えた11フラスコにヘキサメチルシクロ
トリシロキサン100g、ヘキサン100g、水81g
1シリカゲル(メルク社製キーゼルゲル60.250〜
400メツシユ)5.0gを装入する。十分な攪拌を行
いながらジメチルクロロシラン127.7gを30分か
けて滴下する。
Example 1 Synthesis of z,9-cyhydrogentecamethylpentasiloxane [In general formula (I), lI'=R'=[11,,
n=3]: 100 g of hexamethylcyclotrisiloxane, 100 g of hexane, and 81 g of water in a No. 11 flask equipped with a dropping funnel.
1 Silica gel (Merck Kieselgel 60.250~
400 mesh) 5.0g is charged. 127.7 g of dimethylchlorosilane was added dropwise over 30 minutes with sufficient stirring.

30分後フラスコを室温にもどし撹拌を継続する。After 30 minutes, return the flask to room temperature and continue stirring.

1時間後攪拌を停止しキーゼルゲルを濾過する。After 1 hour, the stirring is stopped and the Kieselgel is filtered.

得られた浦波を蒸留して過剰なジメチルクロロシランを
留去する。得られた溶液を分液ロートに移し200mj
?の水で2回、飽和炭酸水素す) IJウム水溶液20
0m1さらに200mj7の水で2回分液する。ベンゼ
ンとの共沸により溶液中の水を完全に除去した後、減圧
蒸留すると1.9−ジハイドロジエンデ力メチルベンタ
シロキザンが137.3g(収率85.5%)得られる
。原料のヘキ→)゛、メチルシクロトリシロキサンはす
べて反応していた。
The obtained Uranami is distilled to remove excess dimethylchlorosilane. Transfer the obtained solution to a separating funnel and add 200mj
? (twice with saturated hydrogen carbonate) IJum aqueous solution 20
Separate the solution twice with 0ml and 200mj7 of water. After the water in the solution is completely removed by azeotroping with benzene, it is distilled under reduced pressure to obtain 137.3 g (yield: 85.5%) of 1,9-dihydrodiene demethylbentasiloxane. All of the raw materials hex→)゛ and methylcyclotrisiloxane had reacted.

Me  Me  Me  Me  Meb#、   5
7℃/ 0.5 rnra 11gM5   355(
M”  −1)、  34HM”  −15)IR21
28c+a−’  (5i−II  )”5i−N&l
R; ppta (δ)(重ベンゼン中、 T14S基
準)−6,73(Iおよび9−3i) −19,78(3および?−5i) −21,57(5−3i) ’ tl−Hll ; ppm (δ)(重ベンゼン中
、C,I+、、δ=7.15基準)0、16  (I8
11,s) 0、18  (I211,d、 311z)4.96〜
5.00  (211,bs)実施例2 1.11−ジハイドロジエンドデ力メチルヘキサシロキ
サンの合成〔一般式(I)中、It’=R”=C11,
、n=4): 滴下ロートを備えた2Eフラスコにオクタメチルシクロ
テトラシロキサン500g、水304.2g。
Me Me Me Me Me Me Me Me Me Me Me Me #, 5
7℃/0.5 rnra 11gM5 355 (
M"-1), 34HM"-15)IR21
28c+a-'(5i-II)"5i-N&l
R; ppta (δ) (in heavy benzene, T14S standard) -6,73 (I and 9-3i) -19,78 (3 and ?-5i) -21,57 (5-3i)'tl-Hll; ppm (δ) (in heavy benzene, C, I+, δ = 7.15 standard) 0, 16 (I8
11,s) 0,18 (I211,d, 311z) 4.96~
5.00 (211, bs) Example 2 Synthesis of 1.11-dihydrodiendomethylhexasiloxane [In general formula (I), It'=R''=C11,
, n=4): 500 g of octamethylcyclotetrasiloxane, 304.2 g of water in a 2E flask equipped with a dropping funnel.

シリカゲル(メルク社製キーゼルゲル60.250〜4
00メツシユ>50.5gを装入する。
Silica gel (Merck Kieselgel 60.250-4
Charge 00 mesh >50.5g.

十分な攪拌を行いながらジメチルクロロシラン479、
6 gを30分かけて滴下する。30分後フラスコを室
温にもどし攪拌を継続する。4時間後攪拌を停止しキー
ゼルゲルを濾過する。得られた濾液を蒸留して過剰なジ
メチルクロロシランを留去する。得られた溶液を分液ロ
ートに移し5001I11の水で2回、飽和炭酸水素す
) +Jウム水溶液500m17さらに500m1の水
で2回分液する。
dimethylchlorosilane 479 while stirring thoroughly,
6 g was added dropwise over 30 minutes. After 30 minutes, return the flask to room temperature and continue stirring. After 4 hours, stirring is stopped and the Kieselgel is filtered. The obtained filtrate is distilled to remove excess dimethylchlorosilane. The obtained solution was transferred to a separatory funnel and separated twice with 5001I11 of water, 500ml of saturated hydrogen carbonate aqueous solution, and then twice with 500ml of water.

ベンゼンとの共沸により溶液中の水を完全に除去した後
、減圧蒸留すると1. II−ジハイドロジェンドデ力
メチルヘキサシロキサンが341g(収率47%)得ら
れる。原料のすフタメチルシクロテトラシロキサンは1
98.5g(39,7%)回収された。反応したオクタ
メチルシクロテトラシロキサンを基に算出した収率は7
8%である。
After completely removing water in the solution by azeotroping with benzene, distillation under reduced pressure results in 1. 341 g (yield 47%) of II-dihydrogen methylhexasiloxane are obtained. The raw material suphtamethylcyclotetrasiloxane is 1
98.5g (39.7%) recovered. The yield calculated based on the reacted octamethylcyclotetrasiloxane is 7
It is 8%.

b、 13.  81’e / 0.16mm fig
MS    429(M”  −1)、  415(M
”  −15)JR2128cm−’  (5i−H)
”Si−NMR; ppm (δ)(重ベンゼン中、 
7MS基準)−6,74(Iおよび11Si) −19,81(3右よび9−5i) −21,62(5および7−3i) ’ II−NMR;ppi+ (δ)(重ベンゼン中、
C−116,δ=7.15基準)0.1.8  (I2
11,s) 0、1’9  (I211,d、 2.7Hz)0.2
1  (I2B、s) 5、00  (2H,5ept、 2.711z)実施
例3 1.13−ジハイドロジエンテトラデ力メチルヘブタシ
ロキサンの合成〔一般式(I)中、II’=I12−C
1fs 、n=5]  : 滴下ロートを備えた20On+j!フラスコにデカメチ
ルシクロペンタシロキサン92.5 g、水13、5 
g 、シリカゲル(メルク社製キーゼルゲル60.25
0〜400メツシユ) 15gを装入する。十分な攪拌
を行いながらジメチルクロロシラン70.9 gを30
分かけて滴下する。30分後フラスコを室温にもどし攪
拌を継続する。1.5時間後攪拌を停止しキーゼルゲル
を濾過する。得られた濾液を蒸留して過剰なジメチルク
ロロシランを留去する。得られた溶液を分液ロートに移
し100a+j!の水で2回、飽和炭酸水素ナトリウム
水溶液100mfさらに100m1の水で2回分液する
。ベンゼンとの共沸により溶液中の水を完全に除去した
後、減圧蒸留すると1.13−ジハイドロジエンテトラ
テ゛カメチルヘプタシロキサンが38.3g(収率30
%)得られる。原料のデカメチルシクロペンタシロキサ
ンは31.3g(33,7%)回収された。反応したデ
カメチルシクロペンタシロキサンを基に算出した収率は
45.2%である。
b, 13. 81'e / 0.16mm fig
MS 429 (M”-1), 415 (M
"-15) JR2128cm-' (5i-H)
"Si-NMR; ppm (δ) (in heavy benzene,
7MS standard) -6,74 (I and 11Si) -19,81 (3 right and 9-5i) -21,62 (5 and 7-3i)'II-NMR; ppi+ (δ) (in heavy benzene,
C-116, δ=7.15 standard) 0.1.8 (I2
11,s) 0,1'9 (I211,d, 2.7Hz)0.2
1 (I2B, s) 5,00 (2H, 5ept, 2.711z) Example 3 1.13-Dihydrodiene tetradeoxymethylhebutasiloxane synthesis [In general formula (I), II'=I12- C
1fs, n=5]: 20On+j with dropping funnel! 92.5 g of decamethylcyclopentasiloxane, 13.5 g of water in a flask
g, silica gel (Merck Kieselgel 60.25
0-400 mesh) Charge 15g. While stirring thoroughly, add 70.9 g of dimethylchlorosilane to 30
Drip over several minutes. After 30 minutes, return the flask to room temperature and continue stirring. After 1.5 hours, stirring is stopped and the Kieselgel is filtered. The obtained filtrate is distilled to remove excess dimethylchlorosilane. Transfer the obtained solution to a separating funnel and add 100a+j! The solution is separated twice with 100 mf of saturated sodium bicarbonate aqueous solution and then twice with 100 ml of water. After completely removing water in the solution by azeotroping with benzene, distillation under reduced pressure yielded 38.3 g of 1,13-dihydrodiene tetratecamethylheptasiloxane (yield: 30
%)can get. 31.3g (33.7%) of the raw material decamethylcyclopentasiloxane was recovered. The yield calculated based on the reacted decamethylcyclopentasiloxane is 45.2%.

b、p、   107  ℃/2.O鮒11gM5  
 489(「−15) IR2128cm−’  (5i−H)”Si−NMI
t ; ppm (δ)(重ベンゼン中、 Th1s基
準)=6.75 (lおよび13−5i) −19,83(3および1l−Si) −21,64(5,7および9−5i)’fl−NMR
; ppm (δ)(重ベンゼン中、TMS基準)0.
16  (I28,s) 0、19  (I211,d、 2.7tlz)0.2
0  (I2)1.s) 0、21  (6H,s) 4、96  (21(、5ept、 2.711z)実
施例4 ■、15−ジハイド口ジェンベンタデカメチルオクタシ
ロキサンの合成[一般式(I)中、R1=R2=CH3
、n=6 ]  : 滴下ロートを備えた21フラスコにドデカメチルシクロ
ヘキサシロキサン300g、水122.4g1シリカゲ
ル(メルク社製キーゼルゲル60.250〜400メツ
シユ) 30gを装入する。十分な攪拌を行いながらジ
メチルクロロシラン193gを30分かけて滴下する。
b, p, 107°C/2. Carp 11gM5
489 (“-15) IR2128cm-’ (5i-H)”Si-NMI
t; ppm (δ) (in heavy benzene, Th1s standard) = 6.75 (l and 13-5i) -19,83 (3 and 1l-Si) -21,64 (5,7 and 9-5i)'fl-NMR
; ppm (δ) (in heavy benzene, TMS standard) 0.
16 (I28,s) 0, 19 (I211,d, 2.7tlz) 0.2
0 (I2)1. s) 0,21 (6H,s) 4,96 (21(,5ept, 2.711z) Example 4 ■, Synthesis of 15-dihyde-bentadecamethyloctasiloxane [In general formula (I), R1= R2=CH3
, n=6 ]: 300 g of dodecamethylcyclohexasiloxane, 122.4 g of water, 1 g of silica gel (Merck Kieselgel 60.250-400 mesh) were charged into a 21 flask equipped with a dropping funnel. 193 g of dimethylchlorosilane was added dropwise over 30 minutes with sufficient stirring.

30分後2ラスコを室温にもどし攪拌を継続する。4時
間後攪拌を停止しキーゼルゲルを濾過する。得られた濾
液を蒸留して過剰なジメチルクロロシランを留去する。
After 30 minutes, the two flasks were returned to room temperature and stirring was continued. After 4 hours, stirring is stopped and the Kieselgel is filtered. The obtained filtrate is distilled to remove excess dimethylchlorosilane.

得られた溶液を分液ロートに移し20(]m1の水で2
回、飽和炭酸水崇ナトリウム水溶液200m1さらに2
00mA’の水で2回分液する。
Transfer the obtained solution to a separating funnel and dilute with 20 (] ml of water)
2 times, 200 ml of saturated sodium carbonate aqueous solution, and 2 times
Separate the solution twice with 00 mA' water.

ベンゼンとの共沸により溶液中の水を完全に除去した後
、減圧蒸留すると1,15−ジハイドロジエンペンタテ
゛カメチルオクタシロキサンが128g(収率32.8
%)得られる。原料のドデカメチルシクロヘキサシロキ
サンは153.4 g (51,1%)回収された。反
応したドデカメチルシクロヘキサシロキサンを基に算出
した収率は67%である。
After completely removing water in the solution by azeotroping with benzene, distillation under reduced pressure yielded 128 g of 1,15-dihydrodiene pentatecamethyloctasiloxane (yield: 32.8
%)can get. 153.4 g (51.1%) of the raw material dodecamethylcyclohexasiloxane was recovered. The yield calculated based on the reacted dodecamethylcyclohexasiloxane is 67%.

以下余白 す、p、105℃/ 0.14mm11gM5  56
3(M”−15) IR2132cm−’   (Si−If)”St−N
MIt:119m (δ) (重ベンゼン中、 7MS
基準)−6,68(Iおよび15−5i) −19,76(3および13−3i) −21,58(5および1l−5i) −21,60(7および9−5i) ’)l−NMR;Ilpm(δ)(重ベンゼン中、Cs
1la、δ=7.15基準)0、 l?  (I21t
、 s) 0、19  (I2H,d、 2.811z)0.21
  (I2Ls) 0.22  (I211,s) 4、97  (2H,5ept、 2.811z)〔発
明の効果〕 本発明製造法により得られたα、ω−ジノ1イドロジェ
ンオルガノボリシロキサンは、そのシロキサン単位に分
布がなく、一定の鎖長を有し、従来の製法で得られてい
た混合物とは全く異なった物性を有するものである。
Margin below, p, 105℃/0.14mm11gM5 56
3(M"-15) IR2132cm-'(Si-If)"St-N
MIt: 119m (δ) (7MS in heavy benzene
Standard) -6,68 (I and 15-5i) -19,76 (3 and 13-3i) -21,58 (5 and 1l-5i) -21,60 (7 and 9-5i) ')l- NMR; Ilpm (δ) (Cs in heavy benzene
1la, δ=7.15 standard) 0, l? (I21t
, s) 0, 19 (I2H, d, 2.811z) 0.21
(I2Ls) 0.22 (I211,s) 4,97 (2H,5ept, 2.811z) [Effects of the invention] The α,ω-dinohydrogenorganoborisiloxane obtained by the production method of the present invention has It has no distribution of siloxane units, has a constant chain length, and has physical properties that are completely different from mixtures obtained by conventional manufacturing methods.

以  上that's all

Claims (1)

【特許請求の範囲】 1、次の一般式(II) (R^1R^2SiO)_n(II) [式中、R^1及びR^2は同一でも異なっていてもよ
い水素原子、アルキル基、アルケニル基、アリール基ま
たはハロゲン化アルキル基を示し、nは3〜10の整数
を示す] で表わされる環状シリコーン、次の一般式(III)R^
1R^2SiHCl(III) [式中、R^1及びR^2は前記と同じ意味を有する]
で表わされるクロロシラン及び水を無機固体化合物の存
在下で反応させることを特徴とする次の一般式( I ) HR^1R^2SiO(R^1R^2SiO)_nSi
R^1R^2H( I )[式中、R^1、R^2及びn
は前記と同じ意味を有する] で表わされるα、ω−ジハイドロジェンオルガノポリシ
ロキサンの製造法。 2、無機固体化合物がシリカゲルである請求項1記載の
α、ω−ジハイドロジェンオルガノポリシロキサンの製
造法。
[Claims] 1. The following general formula (II) (R^1R^2SiO)_n(II) [In the formula, R^1 and R^2 are hydrogen atoms or alkyl groups which may be the same or different. , alkenyl group, aryl group or halogenated alkyl group, and n is an integer of 3 to 10] Cyclic silicone represented by the following general formula (III) R^
1R^2SiHCl(III) [In the formula, R^1 and R^2 have the same meanings as above]
The following general formula (I) HR^1R^2SiO(R^1R^2SiO)_nSi is characterized by reacting chlorosilane represented by and water in the presence of an inorganic solid compound.
R^1R^2H (I) [where R^1, R^2 and n
has the same meaning as above] A method for producing an α,ω-dihydrogenorganopolysiloxane represented by the following. 2. The method for producing α,ω-dihydrogenorganopolysiloxane according to claim 1, wherein the inorganic solid compound is silica gel.
JP1125964A 1989-05-19 1989-05-19 Method for producing α, ω-dihydrogen organopolysiloxane Expired - Fee Related JP2585099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125964A JP2585099B2 (en) 1989-05-19 1989-05-19 Method for producing α, ω-dihydrogen organopolysiloxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125964A JP2585099B2 (en) 1989-05-19 1989-05-19 Method for producing α, ω-dihydrogen organopolysiloxane

Publications (2)

Publication Number Publication Date
JPH02306980A true JPH02306980A (en) 1990-12-20
JP2585099B2 JP2585099B2 (en) 1997-02-26

Family

ID=14923338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125964A Expired - Fee Related JP2585099B2 (en) 1989-05-19 1989-05-19 Method for producing α, ω-dihydrogen organopolysiloxane

Country Status (1)

Country Link
JP (1) JP2585099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010928A (en) * 2022-08-01 2022-09-06 汕头市深泰新材料科技发展有限公司 Method for preparing linear polysiloxane by ring opening of cyclic siloxane
US11535751B2 (en) 2015-07-20 2022-12-27 Momentive Performance Materials Gmbh Asymmetrically substituted polyorganosiloxane derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535751B2 (en) 2015-07-20 2022-12-27 Momentive Performance Materials Gmbh Asymmetrically substituted polyorganosiloxane derivatives
CN115010928A (en) * 2022-08-01 2022-09-06 汕头市深泰新材料科技发展有限公司 Method for preparing linear polysiloxane by ring opening of cyclic siloxane

Also Published As

Publication number Publication date
JP2585099B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
Lickiss The synthesis and structure of organosilanols
US4707531A (en) Method for producing organosilicon polymers and the polymers prepared thereby
US2438055A (en) Preparation of salts of monoorgano silanols
CA1105799A (en) Method of hydrolyzing chlorosilanes
JPS594446B2 (en) Siloxane bond rearrangement method
Sommer et al. Silylindenes and Silylindans1
JP3739477B2 (en) Process for functionalizing condensation products of organosiloxanes
JPH11246662A (en) Production of polyorganosiloxane
JPH02306980A (en) Production of alpha,omega-dihydrogen organopolysiloxane
JP2001504859A (en) High purity branched alkyl silsesquioxane liquid
JPS6337128A (en) Method for blocking terminal hydroxyl group in organopolysiloxane having hydroxyl group at terminal unit and altering molecular weight
US2810628A (en) Method of preparing cyclic polysilox-
JP4278725B2 (en) Process for producing α, ω-dihydrogenorganopentasiloxane
CN114634524B (en) Preparation method and application of dimethylvinylchlorosilane
JP4663838B2 (en) Method for producing cyclic siloxane
JP3606613B2 (en) Low polymerization degree organopolysiloxane production method
JPS602314B2 (en) Method for producing cyclic siloxane
JPH09100352A (en) Polysiloxane and its production
JP2558164B2 (en) Novel cyclic organopolysiloxane and method for producing the same
US3843702A (en) Process for the manufacture of tris-(trimethylsiloxy)-phenylsilane
US2957781A (en) Organosilicon compounds and processes for producing the same
Renkema et al. The preparation of the mixed alkali metal silanolate K4Li4 (OSiMe3) x (OCMe3) 8− x (8⩾ x⩾ 5.7) and the effects of mixed alkali metals on the anion induced ring opening polymerization of octamethylcyclotetrasiloxane
JPH03135985A (en) Production of alpha-hydrogenorganopolysiloxane
JP2805393B2 (en) Method for producing linear silicone
US3637780A (en) Process for the production of arylphenylmethylchlorosilanes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees