JPH02306620A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02306620A
JPH02306620A JP12750489A JP12750489A JPH02306620A JP H02306620 A JPH02306620 A JP H02306620A JP 12750489 A JP12750489 A JP 12750489A JP 12750489 A JP12750489 A JP 12750489A JP H02306620 A JPH02306620 A JP H02306620A
Authority
JP
Japan
Prior art keywords
semiconductor
impurity
substrate
energy
radio waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12750489A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12750489A priority Critical patent/JPH02306620A/en
Publication of JPH02306620A publication Critical patent/JPH02306620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly take out impurity outside semiconductor with superior reproducibility, and introduce impurity into the semiconductor at a low temperature, by projecting radio waves having energy larger than or equal to the bonding dissociation energy on a semiconductor substrate, and changing the distribution of impurity contained in the substrate. CONSTITUTION:A semiconductor substrate 1 is irradiated with radio waves 2 whose energy is larger than or equal to the bonding dissociation energy, and impurity atoms are outwardly diffused by releasing the impurity atoms in the semiconductor from the bonded state. At this time, it is effective that the atmosphere is kept at a vacuum state or a reduced pressure state, and the substrate 1 is heated at a temperature wherein heat is not dissipated. As to the radio waves 2, synchrotron radiation ray SR is practically used because of large energy. When the atmosphere is made to contain impurity while the radio waves 2 is projected, Si-Si bond is cut by the same reason as the case of outward diffusion, e.g. light irradiation. Thereby impurity can be uniformly taken out from semiconductor with superior reproducibility, and introduced into the semiconductor at a low temperature.

Description

【発明の詳細な説明】 〔概要] 半導体内の不純物濃度を制御する方法に関し。[Detailed description of the invention] 〔overview] Regarding methods of controlling impurity concentrations in semiconductors.

不純物を均一に再現性よ(、半導体の外方へ取り出す方
法及び半導体中へ低温で導入する方法を得ることを目的
とし。
The objective is to obtain a method for extracting impurities from the outside of a semiconductor and a method for introducing them into the semiconductor at low temperatures with uniform reproducibility.

半導体基板に該半導体原子の結合解離エネルギ以上のエ
ネルギを持つ電磁波を照射して、該基板中に含まれる不
純物の分布を変化させるように構成する。
The semiconductor substrate is configured to be irradiated with electromagnetic waves having an energy greater than the bond dissociation energy of the semiconductor atoms to change the distribution of impurities contained in the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、半導体内の不純
物濃度を制御する方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of controlling impurity concentration within a semiconductor.

近年、半導体素子はますます高性能化され、その製造工
程にいて、半導体基板、特にその表面付近のドナー、又
はアクセプタ不純物濃度を精密に制御Bすることが要求
されている。
In recent years, semiconductor devices have become more and more sophisticated, and in their manufacturing process, it is required to precisely control the donor or acceptor impurity concentration in the semiconductor substrate, especially in the vicinity of its surface.

その要求に対して1本発明を利用することができる。The present invention can be used to meet this requirement.

〔従来の技術〕[Conventional technology]

半導体中への不純物導入方法として、熱拡散法。 Thermal diffusion method is a method for introducing impurities into semiconductors.

イオン注入法が開発されており、従来より広く使用され
てきた。
Ion implantation methods have been developed and have been widely used.

しかし、これらの方法はいずれも外部から半導体内へ不
純物を導入するもので、これとは反対に半導体から不純
物を引き抜くものではない。
However, all of these methods introduce impurities into the semiconductor from the outside, and do not, on the contrary, extract impurities from the semiconductor.

一方、半導体から不純物を引き抜く方法として半導体を
真空中で加熱したり、或いはSi/SiO□界面におけ
る硼素(B)のように偏析係数の差を利用してSi中の
81度を低減させる方法が可能と考えられていた。
On the other hand, methods for extracting impurities from semiconductors include heating the semiconductor in vacuum, or reducing the 81 degrees in Si by utilizing the difference in segregation coefficients, such as boron (B) at the Si/SiO□ interface. It was thought possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の半導体から不純物を取り出す従来
方法は再現性と均一性が乏しく実用技術にはなり得なか
った。
However, the conventional method for removing impurities from semiconductors has poor reproducibility and uniformity, and has not been a practical technology.

又、素子の微細化、高信頼化に伴い、プロセスの低温化
は重要視されるようになり、半導体中への不純物の導入
も低温化が望ましい。
Further, as elements become smaller and more reliable, lowering the process temperature is becoming more important, and it is desirable to introduce impurities into semiconductors at lower temperatures as well.

本発明は不純物を均一に再現性よく、半導体の外方へ取
り出す方法及び半導体中へ低温で導入する方法を得るこ
とを目的とする。
An object of the present invention is to obtain a method for extracting impurities to the outside of a semiconductor and a method for introducing impurities into the semiconductor at low temperature, uniformly and reproducibly.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、半導体基板に該半導体原子の結合解
離エネルギ以上のエネルギを持つ電磁波を照射して、該
基板中に含まれる不純物の分布を変化させる半導体装置
の製造方法により達成され“る。
The above problem is solved by a method of manufacturing a semiconductor device in which a semiconductor substrate is irradiated with electromagnetic waves having an energy higher than the bond dissociation energy of the semiconductor atoms to change the distribution of impurities contained in the substrate.

ここで、目的に応じて下記の条件を充たすようにすると
効果的である。
Here, it is effective to satisfy the following conditions depending on the purpose.

■ 前記電磁波としてシンクロトロン放射光を用いる。■ Synchrotron radiation is used as the electromagnetic wave.

不純物を基板内に拡散させる。Diffusion of impurities into the substrate.

■ 半導体基板を真空又は減圧雰囲気中に配置し。■ Place the semiconductor substrate in a vacuum or reduced pressure atmosphere.

不純物を基板外へ拡散させる。Diffuse impurities out of the substrate.

■ 半導体基板を1000°C以下に加熱する。■Heat the semiconductor substrate to 1000°C or less.

■ 半導体基板表面に電界を印加する。■ Apply an electric field to the surface of the semiconductor substrate.

■ 半導体基板を不純物ガスを含む雰囲気中に配置し、
不純物を基板内に拡散させる。
■ Place the semiconductor substrate in an atmosphere containing impurity gas,
Diffusion of impurities into the substrate.

[作用〕 本発明は半導体基板にその結合解離エヱルギ以上のエネ
ルギを持つ電磁波を照射し、半導体中の不純物原子を束
縛状態から開放することで不純物原子を外方拡散させる
ようにしたものである。
[Operation] In the present invention, a semiconductor substrate is irradiated with electromagnetic waves having an energy higher than its bond dissociation energy to release impurity atoms in the semiconductor from a bound state, thereby causing the impurity atoms to diffuse outward.

この時、雰囲気は真空又は減圧にし、基板は熱拡散しな
い程度に加熱することが効果的である。
At this time, it is effective to set the atmosphere to vacuum or reduced pressure and to heat the substrate to such an extent that thermal diffusion will not occur.

電磁波としてはシンクロトロン放射光はエネルギが大き
く実用的である。この際の照射エネルギは10〜120
 eV程度である。
As an electromagnetic wave, synchrotron radiation has a large amount of energy and is practical. The irradiation energy at this time is 10 to 120
It is about eV.

又、上記の電磁波を照射しながら雰囲気中に不純物ガス
を含ませると外方拡散のときと同じ理由により、即ち、
光照射により5i−3iボンドが切断されることにより
、半導体中への不純物の拡散を従来の熱拡散より低温で
実施できる。
Also, when impurity gas is included in the atmosphere while irradiating the electromagnetic waves mentioned above, for the same reason as in the case of outward diffusion, namely,
By cutting the 5i-3i bond by light irradiation, impurities can be diffused into the semiconductor at a lower temperature than conventional thermal diffusion.

[実施例〕 第1図は本発明の一実施例を説明する断面図である。[Example〕 FIG. 1 is a sectional view illustrating an embodiment of the present invention.

図において、 1O−9Torrの真空中で燐(P)濃
度10”cm−”のSi基板lにシンクロトロン放射光
(SR)2を10分間照射する。
In the figure, a Si substrate 1 with a phosphorus (P) concentration of 10"cm-" is irradiated with synchrotron radiation (SR) 2 for 10 minutes in a vacuum of 10-9 Torr.

この際のSRの照射エネルギは100 eV 、基板温
度は500°Cである。
At this time, the SR irradiation energy was 100 eV, and the substrate temperature was 500°C.

第2図はSR照射後の、基板表面から深さ方向の不純物
濃度プロファイルである。
FIG. 2 shows an impurity concentration profile in the depth direction from the substrate surface after SR irradiation.

図示のように、 SR照射によりPは外方拡散により引
き抜かれ1基板の表面濃度は10”cm−’に低下する
。  ” 図中1点線は初期状態を示す。
As shown in the figure, P is extracted by outward diffusion by SR irradiation, and the surface concentration of one substrate is reduced to 10 cm-'. In the figure, the dotted line indicates the initial state.

この構造はバイポーラトランジスタのコレクタ層のn/
n”構造に適用できる。
This structure is based on the collector layer of the bipolar transistor.
Applicable to n'' structure.

濃度プロファイルはSRの照射エネルギ、基板温度、照
射時間を調節することにより制御することができる。 
   ′ 本発明では照射エネルギを半導体の結合解離エネルギよ
り大きくすることが必要であるが、参考のために主な半
導体の結合解離エネルギ1)を次に示す。
The concentration profile can be controlled by adjusting the SR irradiation energy, substrate temperature, and irradiation time.
' In the present invention, it is necessary to make the irradiation energy higher than the bond dissociation energy of the semiconductor, but for reference, the bond dissociation energy 1) of the main semiconductors is shown below.

半導体     結合解離エネルギ (KJ/mol、 298.15X) Si          311 Ge          277 Ge−3i         302 Ge−SiGe        3921)Bond 
 dissociation  energy  va
luesin  silicon−cotaining
 compounds  and some ofth
eir  implications。
Semiconductor Bond dissociation energy (KJ/mol, 298.15X) Si 311 Ge 277 Ge-3i 302 Ge-SiGe 3921) Bond
dissociation energy va
luesin silicon-cotaining
compounds and some off
eir implications.

Acc、Chem、  Res、、14. 246  
(1981)。
Acc, Chem, Res, 14. 246
(1981).

ここで、物質の結合解離エネルギは、エネルギを変えた
(分光した)光をその物質に照射し、解離して自由にな
る原子の発生するエネルギ(波長)から求められ、又、
照射エネルギは光の波長と熱量(カロリメータ)から求
めることができる。
Here, the bond dissociation energy of a substance is determined from the energy (wavelength) generated by atoms that dissociate and become free when the substance is irradiated with light with different energy (spectrum), and
The irradiation energy can be determined from the wavelength of the light and the amount of heat (calorimeter).

なお、参考のためにエネルギの次元の換算を次に示す。For reference, the energy dimension conversion is shown below.

1 eV= 1.6X10−19J = 1.6xlO
−” KJ=96 KJ/mol。
1 eV = 1.6x10-19J = 1.6xlO
-” KJ=96 KJ/mol.

第3図は不純物導入の実施例を説明する不純物濃度プロ
ファイルである。
FIG. 3 is an impurity concentration profile explaining an example of impurity introduction.

燐(P)濃度10”cm−’のSi基板にシンクロトロ
ン放射光を照射しながら、ドーピングガスとしてフォス
フイン(P)l*)を導入してガス圧10−’ Tor
rに60分間保つ。
While irradiating a Si substrate with a phosphorus (P) concentration of 10 cm-' with synchrotron radiation, phosphine (P) l*) was introduced as a doping gas and the gas pressure was increased to 10-' Tor.
Keep at r for 60 minutes.

この際のSRの照射エネルギは100 eV 、基板温
度は500°Cである。
At this time, the SR irradiation energy was 100 eV, and the substrate temperature was 500°C.

この結果図示のように、 SR照射により従来の熱拡散
(1000°C程度)より低温でPは基板内に導入され
表面濃度は10”cm−”に上昇する。
As a result, as shown in the figure, P is introduced into the substrate at a lower temperature than conventional thermal diffusion (approximately 1000°C) by SR irradiation, and the surface concentration increases to 10 cm.

この際の、拡散促進の機構は作用の欄で述べたが、更に
次のように考えられる。
The mechanism of diffusion promotion in this case was described in the section of the effect, but it is further thought to be as follows.

■ 照射光によって基板表面に電子−正孔対ができ、拡
散速度の大きい電子が移動するので2表面は正孔リッチ
になる。これにより表面は正に帯電する。
(2) Electron-hole pairs are created on the substrate surface by the irradiation light, and since electrons with a high diffusion rate move, the two surfaces become hole-rich. This causes the surface to become positively charged.

■ 電子が基板表面に吸着したドーピングガスに移り、
基板表面の正電荷に吸引される。
■ Electrons are transferred to the doping gas adsorbed on the substrate surface,
Attracted by positive charges on the substrate surface.

■ この現象を更に加速するために外部より電界を印加
してもよい。例えば、基板に光を照射しながら、基板を
チャンバに対して+100Vにバイアスしてドーピング
を行う。
■ To further accelerate this phenomenon, an electric field may be applied from the outside. For example, doping is performed by biasing the substrate to +100V with respect to the chamber while irradiating the substrate with light.

° 次に、不純物深さの制御性について本発明の効果を
示す数値例を従来例と対比して次表に示す。
°Next, numerical examples showing the effects of the present invention with respect to controllability of impurity depth are shown in the following table in comparison with conventional examples.

項目      実施例   従来例 制御可能な 燐の深さ   0.1μm以下 0.1μm以上精度 
     ±0.01μm  ±0.05μm基板中の
他の 不純物拡散    なし     あり(拡散温度  
   500°C1000°C)〔発明の効果] 以上説明したように本発明によれば、不純物を均一に再
現性よく、半導体の外方へ取り出す方法及び半導体中へ
低温で導入する方法が得られ、半導体素子の微細化、高
性能化に寄与することができる。
Item Example Conventional example Controllable phosphorus depth 0.1 μm or less Accuracy of 0.1 μm or more
±0.01μm ±0.05μm Diffusion of other impurities in the substrate None Yes (diffusion temperature
500°C1000°C) [Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a method for extracting impurities to the outside of a semiconductor and a method for introducing impurities into the semiconductor at a low temperature with good reproducibility. It can contribute to miniaturization and higher performance of semiconductor devices.

【図面の簡単な説明】 第1図は本発明の一実施例を説明する断面図。 第2図はSR照射後の、基板表面から深さ方向の不純物
濃度プロファイル。 第3図は不純物導入の実施例を説明する不純物濃度プロ
ファイルである。 図において。 1はSi基板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view illustrating an embodiment of the present invention. Figure 2 shows the impurity concentration profile in the depth direction from the substrate surface after SR irradiation. FIG. 3 is an impurity concentration profile explaining an example of impurity introduction. In fig. 1 is a Si substrate.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に該半導体原子の結合解離エネルギ以上のエ
ネルギを持つ電磁波を照射して、該基板中に含まれる不
純物の分布を変化させることを特徴とする半導体装置の
製造方法。
1. A method of manufacturing a semiconductor device, comprising irradiating a semiconductor substrate with electromagnetic waves having an energy greater than the bond dissociation energy of the semiconductor atoms to change the distribution of impurities contained in the substrate.
JP12750489A 1989-05-20 1989-05-20 Manufacture of semiconductor device Pending JPH02306620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12750489A JPH02306620A (en) 1989-05-20 1989-05-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12750489A JPH02306620A (en) 1989-05-20 1989-05-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02306620A true JPH02306620A (en) 1990-12-20

Family

ID=14961619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12750489A Pending JPH02306620A (en) 1989-05-20 1989-05-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02306620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186900A (en) * 2009-02-13 2010-08-26 Shin-Etsu Chemical Co Ltd Solar cell and method of manufacturing the same
JP2010232530A (en) * 2009-03-27 2010-10-14 Sharp Corp Method of manufacturing photoelectric conversion element, and photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186900A (en) * 2009-02-13 2010-08-26 Shin-Etsu Chemical Co Ltd Solar cell and method of manufacturing the same
JP2010232530A (en) * 2009-03-27 2010-10-14 Sharp Corp Method of manufacturing photoelectric conversion element, and photoelectric conversion element

Similar Documents

Publication Publication Date Title
US5270250A (en) Method of fabricating semiconductor substrate having very shallow impurity diffusion layer
KR20110082007A (en) Defect-free junction formation using octadecaborane self-amorphizing implants
TW200423185A (en) Method of introducing impurity
CN102959722B (en) INP forces the high concentration of doping to mix P quantum dot solar cell and manufacture method
CN104781919A (en) Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
CN108807157A (en) A kind of low damage ion injection method and injection mask structure for silicon carbide
WO2005119745A1 (en) Impurity introducing method
JPS63166220A (en) Manufacture of semiconductor device
EP0430167A2 (en) Method or producing PN junction device
US9087951B2 (en) Method and apparatus for diffusion into semiconductor materials
Ni et al. A silicon molecular beam epitaxy system dedicated to device-oriented material research
US6077751A (en) Method of rapid thermal processing (RTP) of ion implanted silicon
JPH02306620A (en) Manufacture of semiconductor device
JP3976626B2 (en) Method for producing compound semiconductor thin film
CN107154378B (en) Silicon substrate with top layer on insulating layer and manufacturing method thereof
JPS59218728A (en) Impurity introduction into semiconductor substrate
JPS6227727B2 (en)
JPH03131020A (en) Manufacture of semiconductor device
EP0431444A2 (en) Method of producing MIS transistor having gate electrode of matched conductivity type
JPH09162136A (en) Fabrication of semiconductor device
JP2000331950A (en) Method for doping impurity to semiconductor and manufacture of semiconductor device
EP1354339A2 (en) Method of producing soi materials
Dhar et al. Cathodoluminescence and solid phase epitaxy in Ba-irradiated α-quartz
WO1997036693A1 (en) Process to modify work functions using ion implantation
KR19990072541A (en) A process for fabricating a device with shallow junctions